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PREFACE

TMjfl6ook grew from a course of lectures given to students in

the Design School of the Westinghouse Company in Pittsburgh,

Pa., in the period from 1926 to 1932, when the subject had not

yet been introduced into the curriculum of our technical schools.

From 1932 until the beginning of the war, it became a regular

course at the Harvard Engineering School, and the book was

written for the purpose of facilitating that course, being first

published in 1934. In its first edition, it was influenced entirely

by the author's industrial experience at Westinghouse; the later

editions have brought modifications and additions suggested by
actual problems published in the literature, by private consulting

practice, and by service during the war in the Bureau of Ships of

the U.S. Navy.
The book aims to be as simple as is compatible with a reason-

ably complete treatment of the subject. Mathematics has not

been avoided, but in all cases the mathematical approach used is

the simplest one available.

In the third edition the number of problems has again been

increased, while the principal changes in the text concern subjects

in which recent advances have been made, such as airplane wing

flutter, helicopter ground vibration, torsional pendulum dampers,

singing ships' propellers, and electronic instruments.

The author expresses his gratitude to the many readers who

have written him calling attention to errors and making sugges-

tions for improvements and hopes that readers of this third

edition will also offer suggestions.

J; P. DEN HAIITOG.

CAMBRIDGE, MASS.,

January, 1947.
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LIST OF SYMBOLS

a, A =- cross-sectional area,

do = amplitude of support.
an = Fourier coefficient of sin nut.

bn = Fourier coefficient of cos nut.

c damping constant, either linear (Ib. in.- 1
sec.) or torsionai (Ib.

in. rad.- 1
).

C = condenser capacity.

cc
= criticial damping constant, Eq. (22), page 52.

Ci, C 2
= constants,

d, /) = diameters.

D = aerodynamic drag.
e = eccentricity.

e = amplitude of pendulum support (Sec. 69 only).

E modulus of elasticity.

EQ = maximum voltage, E Q sin o>.

/ = frequency = w/27r.

fn = natural frequency.
f and g = numerical factors used in the same sense in one section only as

follows: Sec. 24 as defined by Eq. (56), page 122. Sec. 30 as

defined by Kq. (92), page 108. See. 45 as defined on page 266.

F = force in general or dry friction force in particular.

F = frequency function [Eq. (80), pago 1581

g = acceleration of gravity.

g = See f.

G = modulus of shear.

h = height in general; motaccntric height in particular (page 134).

i = dec,trie current.

/ = moment of inertia.

j = \/ 1 = imaginary unit.

k, K = spring constants.

Kin = kinetic energy.

Afc = variation in spring constant (page 408).

/ = length in general; length of connecting rod in ("hap. V.

ln = distance from nth crank to first crank (Sec. 39).

L =* inductance.

L = aerodynamic lift.

;/i, M = mass.

M = moment or torque.

W = angular momentum vector.

3fft = magnitude of angular momentum.
n = a number in general; a gear ratio in particular (page 41).

p = real part of complex frequency s (page 166).

p = pressure.

pi, p 2
= (in Sec. 68 only) defined by Eqs. (212) and (213), page 417.

PO = maximum force, PQ sin ut.

Pot =* potential energy.

q natural frequency of damped vibration (pages 53 and 168).



LIST OF SYMBOLS xh

q = load per unit length on beam (page 185).

Q = condenser charge.

r, R = radius of circle.

R = electrical resistance.

s = complex frequency = p jq (page 188).

s = (in Sec. 68 only) multiplication factor.

t = time.

T = period of vibration =
I//.

TQ = maximum torque To sin co/.

T = tension in string.

v, V = velocity.

v, V = volume.

W ~ work or work per cycle.

W = weight.

x = displacement.
x = maximum amplitude.
x8t

= static deflection, usually = I* Q /k.

y =
?/o sin ut = amplitude of relative motion.

y = lateral deflection of string or bar.

a = angle in general; angle of attack of airfoil.

an
~ nth crank angle in reciprocating engine.

mn = influence number, deflection at m caused by unit force at n.

/8n angular amplitude of vibration of nth crank (Chap. V).

J3n
= vector representing n .

5 = small length or small quantity in general.

5 s t static deflection.

e = parameter defined in Eq. (230), page 441.

X = a length.

n mass ratio m/M (Sees. 23 and 24).

m = mass per unit length of strings, bars, etc.

longitudinal displacement of particle along beam (page 172).

p = radius of gyration.

<p
= phase angle or some other angle.

<f,n = phase angle between vibration of nth crank and first crank

(Chap. V).

$ = an angle.

o> = circular frequency =
2irf.

o> = angular velocity.

S2 = large angular velocity.

con, ftn = natural circular frequencies.

Vector quantities are letters with superposed bar, a, V, M, etc.

Scalar quantities are letters without bar, a, T, T, M, etc. Note especially

that boldface type does not denote a vector, but is used merely for

avoiding confusion. For example, V denotes volume and V velocity.

Subscripts used are the following: a = absorber; c =
critical, e = engine,

/ = friction, g = governor or gyroscope, k variation in spring con-

stant k, p ~ propeller, s ~
ship, st *

statical, w water.





MECHANICAL VIBRATIONS

CHAPTER I

KINEMATICS OF VIBRATION

1. Definitions. A vibration in its general sense is a periodic

motion, ?.r., a motion which repeats itself in all its particulars

after a certain interval of time, called the period of the vibration

and usually designated by the symbol T. A plot of the dis-

placement .r against the time t may be a curve of considerable

FIG. 1. A periodic and a harmonic function, showing the period T arid the

amplitude xo.

complication. As an example, Fig. la shows the motion curve

observed on the bearing pedestal of a steam turbine.

The simplest kind of periodic motion is a harmonic motion;

in it the relation between x and t may be expressed by

x = XQ sin

1

(1)
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as shown in Fig. 16, representing the small oscillations of a

simple pendulum. The maximum value of the displacement is

.TO, called the amplitude of the vibration.

The period T usually is measured in seconds; its reciprocal

/ = l/T is the frequency of the vibration, measured in cycles per

second. In some publications this is abbreviated as cyps and

pronounced as it is written. In the German literature cycles per

second are generally called Hertz in honor of the first experimenter
with radio waves (which are electric vibrations).

In Eq. (1) there appears the symbol co, which is known as the

circular frequency and is measured in radians per second. This

rather unfortunate name has become familiar on account of the

properties of the vector representation, which will be discussed

in the next section. The relations between co, /, and T are as

follows. From Eq. (1) and Fig. 16 it is clear that a full cycle of

the vibration takes place when cot has passed through 360 deg.

or 2w radians. Then the sine function resumes its previous

values. Thus, when co =
2x, the time interval t is equal to the

period T or

T = sec. (2)
CO

Since / is the reciprocal of T,

f =
jr- cycles per second (3)
ZTT

For rotating machinery the frequency is often expressed in vibra-

tions per minute, denoted as v.p.m. 30co/7r.

In a harmonic motion for which the displacement is given by
x = XQ sin co, the velocity is found by differentiating the dis-

placement with respect to time,

-jj-

= x = ZQCO cos co (4)

so that the velocity is also harmonic and has a maximum value

cox .

The acceleration is

= x = co
2 sin co (5)

also harmonic and with the maximum value co
2x .



VECTOR METHOD

Consider two vibrations given by the expressions x\ = a sin ut

and x z
= b sin (ut + <p) which are shown in Fig. 2, plotted

against ut as abscissa. Owing to the presence of the quantity

<p, the two vibrations do not attain their maximum displacements
at the same time, but the one is v?/o> sec. behind the other. The

quantity (p is known as the phase angle or phase difference between

the two vibrations. It is seen that the two motions have the

t

FIG. 2. Two harmonic motions including the phase angle <p.

same co and consequently the same frequency /. A phase angle

has meaning only for two motions of the same frequency; if

the frequencies are different, phase angle is meaningless.

Example: A body, suspended from a spring, vibrates vertically up and

down between two positions 1 and 1J-2 in. above the ground. During each

second it reaches the top position (!)<> in. above ground) twenty times.

What are T, f, ,
and *<>?

Solution: x* ~ H in., T = Ko
sec., / = 20 cycles per second, and

o> = 2-n-f
= 120 radians per second.

2. The Vector Method of

Representing Vibrations. The

motion of a vibrating particle

can be conveniently represented

by means of a rotating vector.

Let the vector a (Fig. 3) rotate

with uniform angular velocity

w in a counterclockwise direc-

tion.

Flo. 3. A harmonic vibration rep-

When time is reckoned resented by the horizontal projection

from the horizontal position of
of a rotating vcctor '

the vector as a starting point, the horizontal projection of the

vector can be written as

CL COS tot
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and the vertical projection as

a sin cot

Either projection can be taken to represent a reciprocating

motion; in the following discussion, however, we shall consider

only the horizontal projection.

This representation has given rise to the name circularfrequency

for co. The quantity co, being the angular speed of the vector,

is measured in radians per second; the frequency / in this case

is measured in revolutions per second. Thus it can be seen

immediately that co = 2irf.

The velocity of the motion x =
a cos cot is

\ x = aco sin cot

and can be represented by (the

horizontal projection of) a vector

of length aco, rotating with the

same angular velocity co as the

displacement vector but situated

always 90 deg. ahead of that

vector. The acceleration is aco
2

cos cot and is represented by (the

Fio. 4. Displacement, velocity, horizontal projection of) a vector
and acceleration are perpendicular Qf lcngth aa,2 rotating with the
vectors.

same angular speed co and 180 deg.

ahead of the position or displacement vector or 90 deg. ahead of

the velocity vector (Fig. 4). The truth of these statements can

be easily verified by following the various vectors through one

complete revolution.

This vector method of visualizing reciprocating motions is

very convenient. For example, if a point is simultaneously

subjected to two motions of the same frequency which differ by
the phase angle <^, namely, a cos cot and b cos (cot <p), the

addition of these two expressions by the methods of trigonometry
is wearisome. However, the two vectors are easily drawn up,

and the total motion is represented by the geometric sum of the

two vectors as shown in the upper part of Fig. 5. Again the

entire parallelogram a, 5 is considered to rotate in a counter-

clockwise direction with the uniform angular velocity co, and the

horizontal projections of the various vectors represent the
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displacements as a function of time. This is shown in the lower

part of Fig. 5. The line a-a represents the particular instant

of time for which the vector diagram is dnuMi. It is readily

seen that the displacement of the sum (dotted line) is actually

the sum of the two ordi nates for a and 5.

That this vector addition gives correct results is evident,

because a cos ut is the horizontal projection of the a-vector and

Fia. 5.~Two vibrations arc added by adding their vertors geometrically.

b cos (ut <p) is the horizontal projection of the L-vector. The

horizontal projection of the geometric sum of these two vectors

is evidently equal to the sum of the horizontal projections of the

two component vectors, which is exactly what is wanted.

Addition of two vectors is permissible only if the vibrations

are of the same frequency. The motions a sin ut and a sin 2co

can be represented by two vectors, the first of which rotates with

an angular speed co and the second with twice this speed, i.e.,

with 2w. The relative position of these two vectors in the
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diagram is changing continuously, and consequently a geometric
addition of them has no meaning.
A special case of the vector addition of Fig. 5, which occurs

rather often in the subsequent chapters, is the addition of a sine

and a cosine wave of different

amplitudes: a sin ut and b cos ut.

For this case the two vectors are

perpendicular, so that from the

diagram of Fig. 6 it is seen at

once that

a sin (jot + b cos wt =

where
+ b 2 sin (wt + <p)

tan <p
= b/a.

(6)

r A ,
.... . .

, Example: What is the maximum
. G. Addition of a sine and cosine '

wave of different amplitudes. amplitude of the sum of the two

motions

= 5 sin and x* = 10 sin (25* + 1) in.?

(b)

Solution: The first motion is represented by a vector 5 in. long which may
be drawn vertically and pointing downward. Since in this position the

vector hns no horizontal projection, it rep-

resents the first motion at the instant t = 0.

At that instant the second motion is x% 10

sin 1, which is represented by a vector of 10 in.

length turned 1 radian (57 deg.) in a counter-

clockwise direction with respect to the first

vector. The graphical vector addition shows

the sum vector to be 13.4 in. long.

3. Beats. If the displacement of a

point moving back and forth along a

straight line can be expressed as the

sum of two terms, a sin uit + 6 sin co 2 ,

where coi ^ o> 2 ,
the motion is said to

be the "
superposition" of two vibra-

tions of different frequencies. It is _ .. A ,.1 FIG. 7. Vector diagrams
Clear that SUch a motion is not itself illustrating the mechanism of

sinusoidal. An interesting special case beats -

occurs when the two frequencies wi and co 2 are nearly equal

to each other. The first vibration can be represented by
a vector a rotating at a speed coi, while the 5-vector rotates

with co2. If 0)1 is nearly equal to o>2, the two vectors will

retain sensibly the same relative position during one revolution,
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i.e., the angle included between them will change only slightly.
Thus the vectors can be added geometrically, and during one

revolution of the two vectors the motion will be practically a

sine wave of frequency o>i ~ co 2 and amplitude c (Fig. 7). During
a large number of cycles, however, the relative position of a and
E varies, because coi is not exactly equal to co 2 ,

so that the magni-
tude of the sum vector c changes. Therefore the resulting
motion can be described approximately as a sine wave with a

frequency coi and an amplitude varying slowly between (b + a)

and (b a), or, if b =
a, between 2a and (Figs. 7 and 8).

This phenomenon is known as beats. The beat frequency is

the number of times per second the amplitude passes from a

FICJ. 8. Bouts.

minimum through a maximum to the next minimum (A to B in

Fig. 8). The period of one beat evidently corresponds to the

time required for a full revolution of the 5-vector with respect to

the a-vector. Thus the beat frequency is seen to be coi co 2 .

Example: A body describes simultaneously two vibrations, x\ = 3 sin 4(M

and Xi 4 sin 41f, the units being inches and seconds. What is the maxi-

mum and minimum amplitude of the combined motion and what is the

beat frequency?
Solution: The maximum amplitude is 3 -f- 4 = 7 in.; the minimum is

43 = 1 in. The circular frequency of the beats w?> = 41 40 = 1

radian per second. Thus fb w,/'2ir
=

l/2-n- cycles per second. The

period Tb or duration of one full beat is Tb = !//&= 0.28 sec.

The phenomenon can be observed in a great many cases (pages

109, 402). For audio or sound vibrations it is especially not-

able. Two tones of slightly different pitch and of approxi-

mately the same intensity cause fluctuations in the total intensity

with a frequency equal to the difference of the frequencies of the

two tones. For example, beats can be heard in electric power

houses when a generator is started. An electric machine has a
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((

magnetic hum/
7

of which the main pitch is equal to twice the

frequency of the current or voltage, usually 120 cycles per second.

Just before a generator is connected to the line the electric

frequency of the generator is slightly different from the line

frequency. Thus the hum of the generator and the hum of the

line (other generators or transformers) are of different pitch, and

beats can be heard.

The existence of beats can be shown also by trigonometry. Let the two

vibrations be n sin coif and 6 sin co 2 ,
where coi and co 2 are nearly equal and

CO 2 COi
= ACO.

Then

a sin co it -{- b sin co-2 t

= a sin co!/ + b (siri uit cos Acof -f cos coif sin Acof)

= (a -}- b cos Acof) sin co^ + b sin Acof cos u\t

Applying formula (0) the resultant vibration is

V\a +6 cos Awif)
2

-f- b 2 sin 2 Aw sin (to if + <p)

where the phase angle <p can be calculated but is of no interest in this case.

The amplitude, given by the radical, can be written

a 2
4- 6 2

(cos
2 Ato -f sin 2

Aco7) -f 2ab cos

whicli expression is seen to vary between (a + b) and (a 6) with a fre-

quency Aco.

4. A Case of Hydraulic-turbine Penstock Vibration. A
direct application of the vector concept of vibration to the

solution of an actual problem is the following.

In a water-power generating station the penstocks, i.e., the

pipe lines conducting the water to the hydraulic turbines, were

found to be vibrating so violently that the safety of the brick

building structure was questioned. The frequency of the

vibration was found to be 113j^ cycles per second, coinciding

with the product of the speed (400 r.p.m.) and the number of

buckets (17) in the rotating part of the (Francis) turbine. The

penstocks emitted a loud hum which could be heard several miles

away. Incidentally, when standing close to the electric trans-

formers of the station, the 6% cyps. beat between the penstock
and transformer hums could be plainly heard. The essential

parts of the turbine are shown schematically in Fig. 9, which

is drawn in a horizontal plane, the turbine shaft being vertical.

The water enters from the penstock I into the "
spiral case"
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II; there the main stream splits into 18 partial streams on

account of the 18 stationary, non-rotating guide vanes. The
water then enters the 17 buckets of the runner and finally turns

through an angle of 90 deg. to disappear into the vertical draft

tube III.

Two of the 18 partial streams into which the main stream

divides are shown in the figure. Fixing our attention on one

of these, we see that for each revolution of the runner, 17 buckets

pass by the stream, which thus is subjected to 17 impulses. In

FIG. 9. Explains the vibration in the penstock of a Francis hydraulic turbine.

total, 113}3 buckets are passing per second, giving as many
impulses per second, which are transmitted back through the

water into the penstock. This happens not only in stream a but

in each of the other partial streams as wr

ell, so that there arrive

into the penstock 18 impulses of different origins, all having

the same frequency of 113J^ cycles per second. If all these

impulses had the same phase, they would all add up arithmetically

and give a very strong disturbance in the penstock.

Assume that stream a experiences the maximum value of its

impulse when the two vanes 1 and 1 line up. Then the maximum
value of the impulse in stream b takes place somewhat earlier

(to be exact, 1/(17 X 18)th revolution earlier, at the instant

that the two vanes 2 and 2 are lined up).
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The impulse of stream a travels back into the penstock with

the velocity of sound in water (about 4,000 ft./sec.)* and the

same is true for the impulse of stream 6. However, the path

traveled by the impulse of b is somewhat longer than the path

for a, the difference being approximately

one-eighteenth part of the circumference

of the spiral case. Because of this fact,

the impulse b will arrive in the penstock

later than the impulse a.

In the machine in question it happened
that these two effects just canceled each

other so that the two impulses a and b

arrived at the cross section AA of the

penstock simultaneously, i.e., in the same

phase. This of course is true not only for

a and b but for all the 18 partial streams.

In the vector representation the impulses

behave as shown in Fig. 10a, the total

(a) u (6)?jjiiz
imPu ^se at AA being very large.

In order to eliminate the trouble, the

existing 17-bucket runner was removed

from the turbine and replaced by a 16-

bucket runner. This does not affect the

parHo. imSh
t the

difference caused by the different

section AA of Fig. 9 lengths of the paths a, b, etc., but it does

W a^d
17^ flllTckel Chan e thc intCrVal Of time betwCCn thG

runner (6). impulses of two adjacent guide vanes. In

particular, the circumferential distance between the bucket

2 and guide vane 2 becomes twice as large after the change.
In fact, at the instant that rotating bucket 1 gives its impulse,
bucket 9 also gives its impulse, whereas in the old construction

bucket 9 was midway between two stationary vanes (Fig. 9).

It was a fortunate coincidence that half the circumference of

the spiral case was traversed by a sound wave in about % X Kis
sec., so that the two impulses due to buckets 1 and 9 arrived in

the cross section AA in phase opposition (Fig. 106). The phase

angle between the impulses at section AA of two adjacent partial

streams is thus one-ninth of 180 degrees, and the 18 partial

* The general streaming velocity of the water is small in comparison to the

velocity of sound, so that its effect can be neglected.



COMPLEX NUMBERS 11

impulses arrange themselves in a circular diagram with a zero

resultant.

The analysis as given would indicate that after the change in

the runner had been made the vibration would be totally absent.

However, this is not to be expected, since the reasoning given is

only approximate, and many effects have not been considered (the

spiral case has been replaced by a narrow channel, thus neglecting
curvature of the wave front, reflection of the waves against the

various obstacles, and effect of damping). In the actual case

the amplitude of the vibration on the penstock was reduced

to one-third of its previous value, which constituted a satis-

factory solution of the problem.
5. Representation by Complex Numbers. It was shown

in the previous sections that rotating vectors can represent

harmonic motions, that the geometric addition of two vectors

corresponds to the addition of two harmonic motions of the same

frequency, and that a differentiation of such a motion with

respect to time can be understood as a multiplication by w and a

forward turning through 90 dog. of the representative vector.

These vectors, after a little practice, afford a method of visualiz-

ing harmonic motions which is much simpler than the consider-

ation of the sine waves themselves.

For numerical calculations, however, the vector method is not

well adapted, since it becomes necessary to resolve the vectors

into their horizontal and vertical components. For instance, if

two motions have to be added as in Fig. 5, we write

c ~ a + 5

meaning geometric addition. To calculate the length of c, i.e.,

the amplitude of the sum motion, we write

a = a x + ciy

which means that a is the geometric sum of a x in the x-direction

and av in the ?/-direction. Then

c = a + ay + b x + bv
=

(a x + b z) + (av + bv)

and the length of c is consequently

c = V(a x + b xy + (ay + &J~
2

This method is rather lengthy and loses most of the advantage

due to the introduction of vectors.
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There exists, however, a simpler method of handling the

vectors numerically, employing imaginary numbers. A complex
number can be represented graphically by a point in a plane
where the real numbers 1, 2, 3, etc., are plotted horizontally

and the imaginary numbers are plotted vertically. With the

notation

these imaginary numbers are

j, 2j, 3/, etc. In Fig. 11, for

example, the point 3 + 2j is

shown. In joining that point

with the origin, the complex
number can be made to rep-

resent a vector. If the angle

of the vector with the horizontal

axis is a and the length of the

written as

Fit;.

-J

11. - A vector represented
point in the complex plane.

by

vector is a, it can bo

a (cos a + j sin a)

Harmonic motions are represented by rotating vectors. A sub-

stitution of the variable angle at for the fixed angle a in the last

equation leads to

a (cos ut + j sin (7)

represent ing a rotating vector, the horizontal projection of which

is a harmonic motion. But this horizontal projection is also

the real part of (7). Thus if we say that a
"
vector represents a

harmonic motion/' we mean that the horizontal projection of the

rotating vector represents that motion. Similarly if we state

that a "complex number represents a harmonic motion/' we

imply that the real part of such a number, written in the form (7)

represents that motion.

Example: Solve the example of page 6 by means of the complex method.

Solution: The first vector is represented by 5j and the second one by
-lOj cos 57 + 10 sin 57 = -5.4; -f 8.4. The sum of the two is

8.4 -
10.4;, which represents a vector of the length V(8.4) 2 + (10.4)

2

= 13.4 in.

Differentiate (7) which gives the result

a( -co sin ut + jco cos atf)
=

jco a(cos ut + j sin co)



COMPLEX NUMBERS 13

since by definition of j we have j
2 = 1. It is thus seen

that differentiation of the complex number (7) is equivalent to

multiplication by ju.

In vector representation, differentiation multiplies the length
of the vector by w and turns it ahead by 90 dog. Thus we are

led to the conclusion that multiplying a complex number by j
is equivalent to moving it a

quarter turn ahead without

changing its absolute value.

That this is so can be easily

verified:

j(a+jb)=-b+ja
_

which Fig. 12 actually shows
~b

in the required position. FI<;. 12. Multiplying a complex

In making extended Calcilla-
Dumber by y amounts to turning its

"
vcH-lor ahead through 1)0 dog.

tions with these complex num-

bers the ordinary rules of algebra are followed. \Vith every step

we may remember that the motion is represented by only the

real part of what we are writing down. Usually, however, this

is not done: the algebraic manipulations are performed without

much recourse to their physical meaning and only the final

answer is interpreted by considering its real part.

For simple problems it is hardly worth while to study the

complex method, since the solution can be obtained just as

easily without it. However, for more complicated problems,

such as are treated in Sec. 24, for example, the labor-saving

brought about by the use of the complex notation is substantial.

The expression (7) is sometimes written in a different form:

a(oos co -f j sin co) ac^ 1

(8)

or, if for simplicity a = 1 and ut =
a,

c ia = cos a 4- j sin a (8a)

The right-hand side of this equation is an ordinary complex number, but

the left-hand side needs to be interpreted, as follows. The Maclaurin series

development of ex is

Substituting x ==
ja. this becomes

.
,

.

2 x
e* = 1 +J<*

- - -
}
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= ~
2! 4!

---- ~
3! 61

----

The right-hand side is a complex number, which by definition is the meaning
of e'a . But we recognize the brackets to be the Maclaurin developments of

cos a and sin a
,
so that formula (8a) follows.

A simple graphical representation of the result can be made in the complex

plane of Fig. 11 or 12. Consider the circle with unit radius in this plane.

Each point on the circle has a horizontal projection cos a. and a vertical

projection sin a and thus represents the number, cos a -\- j sin a = e }a .

Consequently the number c la is represented by a point on the unit circle,

a radians away from the point +1. If a is now made equal to oo
;

it is

seen that e jut represents the rotating unit vector of which the horizontal

projection is a harmonic vibration of unit amplitude and frequency co.

On page 52 we shall have occasion to make use of Eq. (8a).

6. Work Done on Harmonic Motions. A concept of impor-
tance for many applications is that of the work done by a har-

monically varying force upon a harmonic motion of the same

frequency.

Let the force P = P Q sin (ut + <p) be acting upon a body for

which the motion is given by x = #o sin ut. The work done by
the force during a small displacement dx is Pdx, which can be

written as P:- dt.
dt

During one cycle of the vibration, ut varies from to 2?r and

consequently t varies from to 2ir/u. The work done during

one cycle is:

sin
fr jr if 2* 7 r>i*

P~dt = - P^d(0 = PoZo si

Jo dt ujo dt J
T

2T

= P Zo I cos cousin ut cos <p + cos ut sin <p]d(<)t)
Jo

/2r /

= Po^o cos <p I sin co cos utd(u) + P x sin <p I

Jo Jo

A table of integrals will show that the first integral is zero and

that the second one is TT, so that the work per cycle is

W = 7rP :ro sin ^ (9)

This result can also be obtained by a graphical method, which

interprets the above calculations step by step, as follows.

The force and motion can be represented by the vectors Po

and XQ (Fig. 13). Now resolve the force into its components
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Po cos v? in phase with the motion, and P sin <p y
90 deg. ahead

of the motion 3? . This is permissible for the same reason that

geometric addition of vectors is allowed, as explained in Sec. 2.

Thus the work done splits up into two parts, one part due to

a force in phase with the motion and another

part due to a force 90 deg. ahead of the motion.

Consider the first part as shown in Fig. Ma,
in which the ordinatos are the displacement x

and the "in phase" component of the force.

Between A and B the force is positive, say

upward, and the body is moving in an upward
direction also; positive work is done. Between

B and C, on the other hand, the body moves

downward toward the equilibrium point while

the force is still positive (upward, though of

gradually diminishing intensity) ,
so that negative forro lm ,\ a motion

work is clone. The work between A and B of tho same fr -

Quency.
cancels that between B and C, and over a

whole cycle the work done is zero. // a harmonic force acts on

a body subjected to a harmonic motion of the same frequency, the

component of the force in phase with the displacement does no work.

FIG. 14. A force in phase with a displacement does no work over a full

cycle; a force 90 deg. out of phase with a displacement does a maximum amount

of work.

It was shown in Sec. 2 that the velocity is represented by a

vector 90 deg. ahead of the displacement, so that the statement

can also be worded as follows:

A force does work only with that component which is in phase

with the velocity.

Next we consider the other component of the force, which is

shown in Fig. 146. During the interval AB the displacement

increases so that the motion is directed upward, the force is

positive, and consequently upward also, so that positive work is

done. In the interval BC the motion is directed downward, but
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the force points downward also, so that the work done is again

positive. Since the whole diagram is symmetrical about a

vertical line through 5, it is clear that the work done during
AB equals that done during BC. The work done during the

whole cycle AT) is four times that done during AB.
To calculate that amount it is necessary to turn to the defini-

tion of work:

w - dt

This shows that the work done during a cycle is the time integral

of the product of force and velocity. The force is (Fig. 146)

f2ir
FIG. 15. Showing that I cos 2 ado. = TT.

JO

P = (P {] sin <p) cos ut and the velocity is v = x co cos co, so that

the work per cycle is

rT . f2irl/o sin <p cos (jot j'uco cos ut at = IVro sin <p I cos 2

utd(u()jo jo

The value of the definite integral on the right-hand side can be
deduced from Fig. 15, in which curve I represents cos ut and
curve II represents cos 2

ut. The curve cos 2 ut is sinusoidal

about the dotted line AA as center line and has twice the fre-

quency of cos utj which can be easily verified by trigonometry:

COS 2 =!(! + COS 2a)

Consider the quadrangle 1-2-3-4 as cut in two pieces by the curve
II and note that these two pieces have the same shape and the

same area. The distance 1-4 is unity, while the distance 3-4 is

7T/2 radians or 90 deg. Thus the area of the entire quadrangle
is 7T/2 and the area of the part under curve II is half of that.
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Consequently the value of our definite integral taken between

the limits and T/4 is 7r/4, and taken between the limits and

T it is TT. Thus the work during a cycle is

W = irPo.ro sin <p (9)

It will be seen in the next section that a periodic force as well

as a periodic motion may be "impure," i.e., it may contain

"higher harmonics" in addition to the "fundamental harmonic."

In this connection it is of importance to determine the work

done by a harmonic force on a harmonic motion of a frequency

different from that of the force. Let the force vary with a

frequency which is an integer multiple of co, say nu, and let the

frequency of the motion be another integer multiple of u, say

raco. It will now be proved that the work done by such a force

on such a motion during a full cycle of u is zero.

Let the force beP = Po sin nut and lot the corresponding motion

be x = sin (mut + <p). Then the work per cycle is

JC T
dx C

T

Pdx = I PrM =
I Po sill nut xtfnu cos (tnut + <p)dt

Jo dt Jo

Since

cos (mut + ip) cos 'tnut eos <p sin mut sin <

and since <p is independent of the time and can bo brought in

front of the integral sign, the integral splits up into two parts of

the form

f sin nut sin mut dt and I sin nut eos mut dt
Jo Jo

Both these integrals arc zero if n is different from m, which can be

easily verified by transforming the integrands as follows:

sin nut sin mul = ^2 c
'os (n ~~ m)^ ~~

/2 (>os ( tl + w)wt

sin nut cos mut = l
/i sin (n + m)ut + \% sin (n m}ut

Since the interval of integration is T =
27r/co, tlu 1 sine and cosine

functions are integrated over multiples of 2ir, giving a zero result.

In order to gain a physical understanding of this fact let us con-

sider the first of the above two integrals with n = 4 and m = 5.

This case is represented in Fig. 16, where tho amplitudes of the

two waves are drawn to different vertical scales in order to

distinguish them more easily. The time interval over which the

integration extends is the interval AB. The ordinates of the two

curves have to be multiplied together and then integrated.
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Consider two points, one somewhat to the right of A and another

at the same distance to the left of C. Near A both waves are

positive; near C one is positive arid the other is negative, but the

absolute values of the ordinatcs are the same as near A. There-

fore the contribution to the integral of an element near A cancels

the contribution of the corresponding element near C. This

canceling holds true not only for elements very near to A and C
but generally for two elements at equal distances to the left from
C and to the right from A. Thus the integral over the region
AD cancels that over CD. In the same way it can be shown
that the integral over CB is zero.

/*2ir

FIG. 16. Showing that I sin not sin met da 0.

Jo

It should be understood that the work is zero only over a

whole cycle. Starting at A, both waves (the force and the

velocity) are positive, so that positive work is done. This work,

however, is returned later on (so that in the meantime it must
have been stored in the form of potential or kinetic energy) .

This graphical process can be repeated for any combination
of integral values of m and n and also for integrals containing a

cosine in the integrand. When m becomes equal to n, we have
the case of equal frequencies as already considered. Even
then there is no work done when the force and displacement
are in phase. In case m = n and the force and displacement are

90 deg. out of phase, the work per cycle of the nth harmonic is

TrPoZo as before, and since there are n of these cycles in one cycle
of the fundamental frequency o>, the work per fundamental

cycle is nirP^XQ.

The results thus obtained can be briefly summarized as

follows :

1. The work done by a harmonic force acting upon a harmonic

displacement or velocity of a different frequency from that of the force
is zero during a time interval comprising both an integer number of

force cycles and a (different) integer number of velocity cycles.
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2. The work done by a harmonic force 90 deg. out of phase with

a harmonic velocity of the same frequency is zero during a whole

cycle.

3. The work done by a harmonic force, of amplitude P and

frequency co, in phase with a harmonic velocity v (}
~

oroco of the same

frequency, is irPoVo/u = 7rPoX Q over a whole cycle.

Example: A force 10 sin 2irC)Ot (units are pounds and seconds) is acting
on a displacement of J-io si 11 [2irGOJ 45] (units are inches and seconds).

What is the work done during the first second, and also during the first one-

thousandth of a second?

Solution: The force is 45 deg. out of phase with the displacement and can

be resolved into two components, each of amplitude 10/\/2 lb., being in phase
and 90 deg. out of phase with the displacement. The component in phase
with the displacement does no work. That 90 deg. out of phase with the dis-

placement docs per cycle irPvXo TT - = 2. 22 in. lb. of work. Dur-
V2 iu

ing the first second there are 60 cycles so that the work performed is 60 X
2 22 - 133 in. lb.

During the first one-thousandth of a second there are 60/1,000 0.06

cycle, so that the vectors in the diagram turn through only 0.00 X 360 dog.
= 21.6 deg. Formula (9) holds only for a full cycle. For part of a cycle the

integration has to be performed in full:

IT I Fdx = I 7*0 sin oof Xoco cos (cot <p)dt

/*2i n
n

PoXv I sin (oof; cos (oof </?)d(oof)
Jo

/%21.6
= 10 J'i'o I sin (oof)[cos (<*>0 eos <f> -f- sin (oof) sin <p]d(wt)

JO
(21 /L'l.C

cos </? I sin (cot) cos (oof)^(wf) + sin v? I

JO 4/0

= K cos v sin 2
(oof) -f sin <p[Koof J.i sin 2oof]

= i cos 45 sin 2 21.6 + i |^| sin 45 - *
sin 45 sin 43.2

2 2 57.3 4

sn 2

= X 0.707 X 0.3682 +
.

x Q 7Q7 _ x () 7()7 x () (}85

= 0.048 -f- 0.133 - 0.121 = -f0.060 in. lb.

This is considerably less than one-thousandth part of the work performed
in a whole second, because during this particular 1/1,000 sec. the force is

very small, varying between and 0.368Po.

7. Non-harmonic, Periodic Motions. A "periodic" motion

has the property of repeating itself in all details after a certain

time interval, the "period" of the motion. All harmonic
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motions are periodic, but not every periodic motion is harmonic.

For example, Fig. 17 represents the motion

x a sin ut + ^
sin 2ut,

the superposition of two sine waves of different frequency.

It is periodic but not harmonic. The mat hematical theory shows

FKJ. 17. The Hum of two harmonic motions of different frequencies is not a

harmonic motion.

that any periodic curve f(t) of frequency co can be split up into a

series of sine curves of frequencies co, 2co, 3w, 4co, etc. Or

/(O = An + Ai sin (ut + <>i) + A 2 sin (2ut + <^ 2 )

+ A 3 sin (Zat + <?:,) + -

(10)

provided that f(f) repeats itself after each interval T = 2ir/u.

The amplitudes of the various waves AI, A 2 ,
. . .

,
and their

phase angles #\, <p<2 ,
. . .

,
can be determined analytically when

f(t) is given. The series (10) is known as a Fourier scries.

The second term is called the fundamental or first harmonic

of /(O and in general the (n + l)st term of frequency nu is known

as the nth harmonic of f(t). Since

sin (nut + <pn)
= sin nut cos <pn + cos nut sin v?n

the series can also be written as

an sin nut + + b

+ bn cos nut + *

(10a)

f(t)
= a\ sin ut + a 2 sin 2ut +
+ ^i cos ut + 6 2 cos 2ut +
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The constant term 6 represents the "average" height of the

curve f(t) during a cycle. For a curve \vhich is as much above

the zero line during a cycle as it is below, the term b (} is zero.

The amplitudes &i . . . a n . . .
, l>i . . . b n . . . can be deter-

mined by applying the three energy theorems of pages 18 and 19.

Consider for that purpose f(t) to be a force, and let this non-

harmonic force act on a point having the harmonic velocity

sin nut. Now consider the force /(O as the sum of all the terms

of its Fourier series and determine the work done by each har-

monic term separately. All terms of the force except a n sin nut

and bn cos nut are of a frequency different from that of the veloc-

ity sin nut, so that no work per cycle is done by them. More-

over, bn cos nut is 90 deg. out of phase with the velocity so that

this term does not do any work either. Thus the total work done

is that of the force a r, sin nut on the velocity sin nut, and is

!* pcr cycle of the ?ico-frequency. Per cycle of the funda-

mental frequency (which is n times as long), the work is ira n/u.

Thus the amplitude a n is found to be CO/TT times as large as the

work done by the complete non-harmonic force /(/) on a velocity

sin nut during one cycle of the force. Or, mathematically
27T

an = - I
/(/) sin nut dt (lla)

By assuming a velocity cos nut instead of sin nut and repeating

the argument, the meaning of bn is disclosed as

27T

bn = -
I f(t) cos nutdt

^yO

The relations between an ,
bn and the quantities A n , <(>n of Kq. (10)

are as shown in Kq. (6), page 6, so that

A\ = a l + bl and tan (pn
= -

d n

Thus the work done by a non-harmonic force of frequency o>

upon a harmonic velocity of frequency nu is merely the work of

the component of the 7ith harmonic of that force in phase with

the velocity; the work of all other harmonics of the force is zero

when integrated over a complete force cycle.

With the aid of the formulas (11) it is possible to find the (^

and bn for any periodic curve which may be given. The branch
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of mathematics which is concerned with this problem is Known as

harmonic analysis.

Example: The curve c of Fig. 254 (page 426) shows approximately the

damping force caused by turbulent air on a body in harmonic motion. If

the origin of coordinates of Fig. 254 is displaced one-quarter cycle to the left,

the mathematical expression for the curve is

f(ut) = sin 2 ut for < at < IT

S in 2 wj for ^ < ^1 < 2ir

Find the amplitudes of the various harmonics of this curve.

Rotation: The curve to be analyzed is an "antisymmetric" one, i.e., the

values of /(o>0 are equal and opposite; at two points :i ut at equal distances

on both sides of the origin. Sine waves are antisymmetric and cosine

waves arc symmetric. An antisymmetric curve cannot have cosine com-

ponents. Hence, all b n are zero. This can be further verified by sketching

the integrand of Eq. (116) in the manner of Fig. 16 and showing that the

various contributions to the integral cancel each other. The constant

term 6 =
0, because the curve has no average height. For the sine com-

ponents we find

r

an I

W

TfJO
sin nut dt

= - I sin 2 ut sin nut d(ut) I sin 2 ut sin nut dut

The integrands can be transformed by means of the last formula on page

17,

sin 2 ut sin nut (% % cos 2ut] sin nut

=
}/i sin nut }> sin (n -\- 2)ut J- sin (n 2)ut

The indefinite integral of this is

I 1 1

F(ut) -TV cos nut -f- T-/ ; sx cos (n 4- 2)w 4- -77 x^ cos (n
- 2)ut

2n 4(n -f 2) 4(n 2)

The harmonic an is 1 /TT times the definite integrals.

Since F(27r) = F(0), we have

- F(0) -
F(2ir) + F(T)! = -FF(ir) - F(0)l

J ^L J

"(COS 717T ~ 1) ^7
-f

_2,
. .- -(cw -

x,
L -^ -r

4(n + 2)

-r
4(n 2)J

"
T T^n 2 ^4)

For even values for n the an thus is zero, while only for odd values of n the

harmonic exists. In particular for n 1, we have for the fundamental

harmonic

fll
= JL 0.85

STT

Thus the amplitude of the fundamental harmonic is 85 per cent of the

maximum amplitude of the curve itself.



HARMONIC ANALYZER 23

The evaluation of the integrals (11) by calculation can be done

only for a few simple shapes of /(/). If /(O is a curve taken from

an actual vibration record or from an indicator diagram, we do

not even possess a mathematical expression for it. However,
with the aid of the curve so obtained the integrals can be deter-

mined either graphically or numerically or by means of a machine,
known as a harmonic analyzer.

Such a harmonic analyzer operates on the same principle as

Watt's steam-engine indicator. The indicator traces a closed

curve of which the ordinate is the steam pressure (or piston

A
;

rcr-

FIG. IS. The harmonic analyzer, an instrument operating on the name principle
as Watt's steam-engine indicator.

force) and the abscissa is the piston displacement. The nrea of

this closed curve is the work done by the piston force per cycle.

The formulas (11) state that the coefficients a n or b n are CO/TT times

the work done per cycle by the force /(i) on a certain displacement
of which the velocity is expressed by sin nut. To obtain complete

correspondence between the two cases, we note that sin nut is the

velocity of cos nut, so that (lla) can be written in the modi-
nu

fied form

1 C 1 C
an = /(Orf(cos nut) = i VPds

nir J mr J

The symbol indicates that the integration extends over the

closed curve described during one cycle of the force f(t).

The machine is shown schematically in Fig. 18. A is a card-

board template representing one cycle of the curve f(t) which

is to be analyzed. The template A is fastened to a rack and a

pinion J3, which is rotated by an electric motor. The arm C
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is guided so that it can move in its longitudinal direction only

and is pressed lightly against the template by a spring. Thus

the vertical motion of the pen D on the arm C is expressed by

f(t). The table, or "platen," E moves horizontally and is

driven by a scotch crank and gear which is connected by suitable

intermediate gears to B so that E oscillates n times, while

A moves through the length of the diagram. The machine

has with it a box of spare gears so that any gear ratio n from 1 to

30 can be obtained by replacing one gear in the train by another.

The horizontal motion of the platen E is expressed by sin nut

or by cos nut, depending on the manner in which the gears are

interlocked. The point D will thus trace a closed curve on the

platen, for which the area equals an or b n (multiplied by a constant

1/mr). Instead of actually tracing this curve, the instrument

usually carries a planimeter of which one point is attached to E
and the other end to D, so that the area is given directly by the

planimeter reading.

Harmonic analyzers have been built on other principles as well.

An interesting optical method using the sound tracks of motion

picture films was invented by Wente and constructed by Mont-

gomery, both of the Bell Telephone Laboratories. The reference

to this paper is given in the Bibliography.
Electrical harmonic analyzers giving an extremely rapid analy-

sis of the total harmonics A n = V^n + ^n [Eqs. (10) and (10a)],

without giving information on the phase angles <pn [or the ratios

an/6n , Eq. (10)], are available on the market. They have been

developed by the Western Electric Company (model RA-277 to

be used in conjunction with model RA-246) for sound or noise

analysis and require the original curve to be available in the form

of an electric voltage, varying with the time, such as results

from an electric vibration pickup (page 81) or a microphone.
This voltage, after proper amplification, is fed into an electric

network known as a "band-pass filter," which suppresses all

frequencies except those in a narrow band of a width equal to

5 cycles per second. This passing band of frequencies can be

laid anywhere in the range from 10 to 10,000 cycles per second.
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When a periodic (steady-state) vibration or noise is to be Fourier-

analyzed, a small motor automatically moves the pass band
across the entire spectrum and the resulting analysis is drawn

graphically by a stylus on a strip of waxed paper, giving the

harmonic amplitudes vs. the frequency from 10 to 10,000 cycles

per second, all in a few minutes. The record is immediately
readable.

Another electrical analyzer, operating on about the same prin-

ciple but without graphic recording, is marketed by the General

Radio Company, Cambridge, Mass.

There are several methods for calculating the Fourier coefficients numer-

ically, i.e., methods to evaluate the integrals (11) in eases where the function

f(t) is given only in the form of a curve. For convenience we rewrite Kq.

(11), by taking as the abscissa not the time /, but rather the combination

<?
=

wt, which is an angle. With the latter, Kqs. (lla and b) become

I C2ir 1 r2ir

On = - I fM sin n<p d<p bn = -
I CM cos n<? d<p

TTjQ ITJO

Tn order to calculate these integrals numerically, we divide the base length

2-rr of the curve in a number N of equal parts, each of which is 2-rr/N A.

(In the particular example that follows, N = '18 and A = 7..
r
> deg.) The

ordinates of tho curve J(<p) at these N points are designated as j/ , ?/i, //a

. . .
, etc., so that r/ 2

=
/(A*A). With this notation we can replace the

above continuous integrals by finite sums, which are approximately equal
to these integrals:

1 V / lA^ Adn - > Vfcfsm ??7;A) A
7T ^W '

* = N -
1

bn **
\ X ^ ((><>8 7//fA)

' A

(lie)

In case the subdivision of the base of the curve becomes finer and finer,

i.e., N becomes greater and A smaller, these sums gradually approach the,

integrals in value. In order to find, say, the fifth sine harmonic of a curve,

the expressions (lie) instruct us to subdivide the base in a number, say,

48 equal pieces of 7.5 deg.; to measure the ordinates ?/o, T/I, 2/2, . . .
, 2/22; to

calculate the products y\ sin (5 X 7)*>), 2/2 sin (10 X 7}^), etc.; to add these

48 products, and to multiply the sum by A/TT which is ^4. The sines

appearing in these 48 products show certain regularities. For instance,

taking the following four terms out of the 48,

i sin (5 X 7^), 2/47 sin (47 X 5 X 7M), 2/23 sin (23 X 5 X
t/26 sin (25 X 5 X
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we can write

2/i sin 37Jjj', ?/47 sin (5 X 360 -
37>i), yu sin (5 X 180 -

37}'2T,

2/ 2 5 sin (5 X 180 + 37>$)

and the sum of these four terms is

(2/i + 2/23
-

2/25
-

2/47) sin 37K

In order to take full advantage of the simplifications arising from these

regularities, Runge devised the scheme of pages 28 and 29. In this schedule

the full-size numbers are always the same, while the small-type num-

bers refer to a specific example. The example taken in this case is the

squared sine function of page 22. The 48 ordinates of this function are

first entered in the top two rows. For example, 7/9
= sin 2

(9 X 7}^)
=

sin 2
(S2}2) = 0.924 2 = 0.854 is shown in the space provided for it, while

immediately below appears 2/39 0.854. Since we picked an antisym-
metric curve, the values 2/24-43 are equal and opposite to 2/24-0. The third

and fourth line of small numbers are the sum c and difference d, respec-

tively, of the two numbers above them. The third line is entirely made up
of zeros, because our curve is antisymmetric. The c-values of the third

line are entered into the second square to the left, while the d-values are

copied at the right. In copying the numbers they are "folded about the

center" in order to take advantage of the regularities in the sine and cosine

functions. The same operation of addition and subtraction is performed
on the c's and d's, and continuing in this manner the entire sheet is filled in.

The A-values appearing in the bottom center arc the sines of 7H, 15, 22} 2

deg., etc.

Now any harmonic can be calculated by referring to pages 30 and 31.

The formulas shown there are the same as Eqs. (lie), taking advantage
of the various symmetries. Consider for example the third sine harmonic.

By Eqs. (lie) we have

--
8
= 24i =

2/0 sin -f- //i sin 3A -f 2/2 sin 6A -f-

-f 2/48 sin 138A -f 2/47 sin 141A =
(iji 2/47) sin 3A -f (2/2 2/4) sin 6A

+ G/23
-

2/25) sin 69A -f (2/24) sin 72A.

Now sin 72A = sin 540 =
0, and using the notation of pages 28 and 29

this can be written as

24as = di sin 3A -f d 2 sin 6A -f-
. .

-f- <f28 sin 69A
=-

(d\ -f d23 ) sin 3A -f (d* -f d22) sin 6A -f

+ (dn + du) sin 33A -f- dn sin 36A
=

0i sin 3A -f (72
sin 6A + -f- g\\ sin 33A d^ =
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=
(0i sin 3A) -f 07 sin 21 A -f <J* sin 27A) -{ (</ : sin GA -f 06 sin 18A

-f 0io sin 30A) -f (#3 sin 9A) -f r/ 5 sin 15A -f </n sin 33A)

+ (04 sin 12A + 0s sin 24A) -
rf 12

=
ji sin 3A -f- jo sin 6A -f J3 sin 9A -f 4

-
ei, 2

=
04 ^12 -f A 3jl -f ^6J2 -f -Iij3

In a similar manner the other entries on pages 30 and 31 ean be verified.

The numerical calculation of the various harmonics of our sine squared
curve by substituting the figures of pages 28 and 29 in the formulas of

pages 30 and 31 leads to the results below. The exact answers from page
22 are listed for comparison.

The higher odd sine harmonics up to 22 become too small to be of any

importance; ?>., f/ 21
= 0.0005 by Hunge's method and a-n 0.0003

by the exact formula.

In this exposition of the method the formulas (lie) have been considered

merely as approximations of the integrals (lla) and (lib). However, they
have an additional signiiicance. Suppose we write not an infinite Fourier

scries, but a finite one containing 23 a- or sine terms and 25 b- or cosine

terms, 48 in all. Let the coefficients a and b of this finite series be indeter-

minate to start with. Consider next the 48 points T/ O , y\, \ji . . . j/4? of

our curve. Now by algebra it will be possible to solve for the 48 's and

6's, so that the, curve determined by the finite Fourier series passes exactly

through the 48 points of the given curve. To find the r;- and 6-values that

do just this requires writing the 48 conditions that the series curve passes

through the designated points and then solving the 48 unknown c/'s and f/s

from the 48 algebraic equations. This has been done, and the result, sur-

prisingly, is just Eqs. (lie). For a proof of this interesting property, the

reader is referred to the hooks of Runge or Scarborough, quoted in the

Bibliography.

Problems

1. A force P Q sin cot acts on a displacement x x sin

= 5 lb., X Q
= 2 in., and w = 62.8 rad./sec.

a. What is the work done during the first second?

b. What is the work done during the first J
^ sec.?

(Continued on page 32)

-f 30), where
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f i
-

fr
-

fg =
ii =

f 2
-

fe
- f 10

= i 2
=

fa
-

f*
- fn =

13
=

Ai =0.131
A 2

= 0.259
As = 0.383
A 4

= 0.500
A6

- 0.609
A - 0.707
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2. If a body is vibrating harmonically back and forth on a table with

dry friction between the two so that the friction force is independent of

the velocity, that force can be expressed as

f(t)
= F for < at < TT and -F 7T < CO* < 27T

Calculate the harmonic coefficients of this force by means of (11) and show

that

f(t)
= 1/Ysii + sin 3co -f sin

3. Let a periodic curve /(J) be as shown in Fig. 19.

Prove that

8/ . 1 . 1 . K \
f(t)

=
-5! sm cot sin 3o> + ^ sin 5<o I

7T
Z
\ O^ O^ /

4. Referring to Fig. 18, let the curve to be analyzed consist of a pure

sine wave, so that ai = 1 and all other a's and 6's are zero. Sketch the

FIQ. 19. Curve represented by the series of Problem 3.

shape of the curve traced on the platen E of Fig. 18, if the gear B and the

scotch crank rotate at equal speeds. The closed curve on E depends on how

the two gears are coupled. Show that by displacing them 90 deg. with

respect to each other, the platen curve varies from a circle to a straight line

at 45 deg. Find the area of the circular E'-curve and show that a\ = 1

and 61 = 0.

5. Sketch the ^-curves of Problem 4 for the case where the scotch crank

turns 2, 3, ... times as fast as B, and show that the area registered by
the planimeter is zero in all these cases.

6. Deduce Kq. (6) on page 6 by trigonometry.

7. A rectangular curve has the value +a during three-eighths of the

time and the value a during live-eighths of the time, as shown in Fig. 20.

Find the Fourier coefficients.

FIG. 20.

8. A curve is made up of parabolic arcs as follows. Between x = 1/2

and x = +1/2 the equation is y = o(2x/f)
2
. Farther the curve repeats

itself by mirroring about the vertical lines x = 1/2 and x =* + 1/2. Calcu-

late the Fourier coefficients. m



PROBLEMS 3,S

9. The torque-angle relation of a two-cycle Diesel engine, of the type
discussed on page 248, has the following ordinates:

^20 tO 7/34
=

0, ?/ 36
= -0.005,7/36 = -0.020, 7/37

= "0.040

// 38
= -0.075,7/39 = ~0.115,y4o - -0.155,?/4i = -0.190,7/42 = -0.270

7/43
= -0.350,7/4, = -0 430, //,.,

- ~0 -175, // 4C
= -0 495, 7/47

= -0.315

Find the various liunnonics by means of llunge's method.



CHAPTER II

THE SINGLE-DEGREE-OF-FREEDOM SYSTEM

8. Degrees of Freedom. A mechanical system is said to

have one degree of freedom if its geometrical position can be

expressed at any instant by one number only. Take, for

example, a piston moving in a cylinder; its position can be speci-

fied at any time by giving the distance from the cylinder end,

and thus we have a system of one degree of freedom. A crank

shaft in rigid bearings is another example. Here the position of

the system is completely specified by the angle between any one

crank and the vertical plane. A weight suspended from a

spring in such a manner that it is constrained in guides to move
in the up-and-down direction only is the classical single-degree-

of-freedom vibrational system (Fig. 23).

Generally if it takes n numbers to specify the position of a

mechanical system, that system is said to have n degrees of

freedom. A disk moving in its plane without restraint has three

degrees of freedom : the x- and ^-displacements of the center of

gravity and the angle of rotation about the center of gravity.

A cylinder rolling down an inclined plane has one degree of

freedom; if, on the other hand, it descends partly rolling and

partly sliding, it has two degrees of freedom, the translation and

the rotation.

A rigid body moving freely through space has six degrees of

freedom, three translations and three rotations. Consequently
it takes six numbers or

" coordinates
"

to express its position.

These coordinates are usually denoted as x, y, z, <p, ^, x- A
system of two rigid bodies connected by springs or other ties in

such a manner that each body can move only along a straight

line and cannot rotate has two degrees of freedom (Fig. 21).

The two quantities determining the position of such a system can

be chosen rather arbitrarily. For instance, wr

e may call the

distance from a fixed point to the first body xi, and the distance

from to the second body #2. Then x\ and 2 are the coordi-

nates. However, we might also choose the distance from to

34



DEGREES OF FREEDOM 35

the center of gravity of the two bodies for one of the coordinates

and call that y\. For the other coordinate we might choose the

distance between the two bodies, ?/ 2
= .r 2 .ri. The pair of

numbers xi, x>2 describes the position completely, but the pair

7/1, 7/2 does it equally well.

The latter choice has a certain

practical advantage in this

case, since usually we are not

interested so much in the loca-

tion of the system as a whole

as in the stresses inside it. The
stress in the spring of Fig. 21 is

completely determined by ?/ 2 ,

so that for its calculation a

knowledge of y\ is not required.

A suitable choice of the coordi-

nates of a system of several

degrees of freedom may simplify , ff" J i J Yu*. 21. Two degrees of freedom.
the calculations considerably.

It should not be supposed that a system of a single degree of

freedom is always very simple. For example, a 12-eylinder gas

engine, with a rigid crank shaft and a rigidly mounted cylinder

block, has only one degree of freedom with all its moving pistons,

rods, valves, cam shaft, etc. This is so because a single number

(for instance, the angle through which the crank shaft has turned)

determines completely the location of every moving part of the

engine. However, if the cylinder block is mounted on flexible

springs so that it can freely

^i~>-x move in every direction (as is

the case in many modern

automobiles), the system has
-A beam lias an infinite number i r r i

of degrees of freedom. SeVCn ^CCS of freedom,

namely the six pertaining to

the block as a rigid body in free space and the crank angle as the

seventh coordinate.

A completely flexible system has an infinite number of degrees

of freedom. Consider, for example, a flexible beam on two sup-

ports. By a suitable loading it is possible to bend this beam into

a curve of any shape (Fig. 22). The description of this curve

requires a function y =
f(x), which is equivalent to an infinite

number of numbers. To each location x along the beam, any
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deflection y can be given independent of the position of the other

particles of the beam (within the limits of strength of the beam)
and thus complete determination of the position requires as

many values of y as there are points along the beam. As was

the case in Fig. 21, the y = f(x) is not the only set of numbers

that can be taken to define the position. Another possible way
of determining the deflection curve is by specifying the values

of all its Fourier coefficients a n and bn [Eq. (11), page 21], which

again are infinite in number.

9. Derivation of the Differential Equation. Consider a

mass m suspended from a rigid ceiling by means of a spring,

as shown in Fig. 23. The "stiffness" of the spring is denoted by

A its "spring constant" &, which by defini-A ///////////////////
1 t> > J

tion is the number of pounds tension neces-

sary to extend the spring 1 in. Between

the mass and the rigid wall there is also

an oil or air dashpot mechanism. This is

P sincjt n t supposed to transmit any force to the

mass as long as it is at rest, but as soon as

the mass moves, the "damping force" of

-- r the dashpot is ex or cdx/dt, i.e., propor-

|x tional to the velocity and directed opposite

to it. The quantity c is known as the

23. The funda- damping constant or more at length as the

mental singie-dcgrce-of- coefficient of viscous damping.
freedom system. r

*m , . ,

Ihc damping occurring in actual me-

chanical systems does not always follow a law so simple as this

ex-relation; more complicated cases often arise. Then, however,
the mathematical theory becomes very involved (see Chap. VIII,

pages 430 and 435), whereas with "viscous" damping the analysis

is comparatively simple.

Let an external alternating force P sin cot be acting on the mass,

produced by some mechanism which we need not specify in detail.

For a mental picture assume that this force is brought about by

somebody pushing and pulling on the mass by hand.

The problem consists in calculating the motions of the mass w,
due to this external force. Or, in other words, if x be the distance

between any instantaneous position of the mass during its motion

and the equilibrium position, we have to find a: as a function of

time. The "equation of motion," which we are about to derive,
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is nothing but a mathematical expression of Newton's second law,

Force = mass X acceleration

All forces acting on the mass will be considered positive when

acting downward and negative when acting upward.
The spring force has the magnitude A\r, since it is zero when

there is no extension x. When x = 1 in., the spring force is

k Ib. by definition, and consequently the spring force for any
other value of x (in inches) is A\r (in pounds), because the spring

follows Hooke's law of proportionality between force and

extension.

The sign of the spring force is negative^ because the spring
pulls upwai^d on t hc'lnasslxTicn the displacement is downward, or

tne~spri"ng force is negative when x is positive. Thus "Hie spring
force is expressed by kx.

The damping force acting on the mass is also negative, being

ex, because, since it is directed against the velocity x, it, acts

upward (negative) while jf: is directed downward (positive). The
three downward forces acting on the mass are

kx ex -\- PU sin ut

Newton's law gives

d'
2

,

d'
2x .. , .

I r> jm ,
- mx kx ex + 1\ sin cot,

or

mx + ex + kx = Po sin ut (12)

This very important equation* is known as the differential

equation of motion of a single-dcgrce-of-freedom system. The four

terms in Kq. (12) are the inertia force, the damping force, the

spring force, and the external force.

Before proceeding to a calculation of x from Eq. (12), i.e., to

a solution of the differential equation, it is weJl to consider some

other problems that will lead to the same equation.

* In the derivation, the effect of gravity has been omitted. The ampli-
tude x was measured from the "equilibrium position," i.e., from the position

where the downward force mg is held in equilibrium by an upward spring

force k5(d being the deflection of the spring due to gravity). It would have

been possible to measure x\ from the position of the unstressed spring, BO

that Xi = x -f 5. In Eq. (12), then, x must be replaced by x\, arid on the

right-hand side a force mg must be added. This leads to the same result

(12).



38 ONE DEGREE OF FREEDOM

10. Other Cases. Figure 24 represents a disk of moment of

inertia / attached to a shaft of torsional stiffness fc, defined as

the torque in inch-pounds necessary to produce 1 radian twist at

the disk. Consider the twisting motion of the disk under the

influence of an externally applied torque T Q sin cot. This again

is a one-degree-of-freedom problem since the torsional displace-

ment of the disk from its equilibrium position can be expressed

by a single quantity, the angle </>.
Newton's law for a rotating

body states that

Torque = moment of inertia X angular
acceleration

As in the previous problem there are three

torques acting on the disk : the spring torque,

damping torque, and external torque. The

t sin t
sPr^n8 torque is fc^>, where <p is measured in

Fir, 24 The tor-
radians. The negative sign is evident for the

sionai one-degree-of- same reason that the spring force in the pre-
freedom system. vioug ^^ wag _^ The damping torque

is c<p, caused by a dashpot mechanism not shown in the figure.

The "damping constant
"

c in this problem is the torque on the disk

caused by an angular speed of rotation of 1 radian per second.

The external torque is TQ sin coZ, so that Newton's law leads to

the differential equation

/ -f c<p + k<f>
= To sin cot (12a)

which has the same form as

Eq. (12).

As a third example, consider

an electric circuit with an

alternating-current generator,

'V

FIG. 25. The electrical single-degree-of-
freedom circuit.

a condenser C, resistance R y
and

inductance L all in series. Instead of Newton's law, use the rela-

tion that the instantaneous voltage of the generator e = EQ sin ut is

equal to the sum of the three voltages across C, R, and L. Let

i be the instantaneous value of the current in the circuit in the

direction indicated in Fig. 25. According to Ohm's law, the

voltage across the resistance is F 3 F4
= Ri. The voltage

across the inductance is V* -4- For the condenser, the
at
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relation Q = CV holds, where Q is the charge, C the capacitance,

and V the voltage. The charge Q can be expressed in terms of i,

as follows. If the current i flows during a time element dt, the

quantity of electricity transported through the circuit is idt.

This does not flow through the condenser but merely increases its

charge so that

dQ - idt*

Hence

i =
d~ = Q or Q = SMt

To show that this electric circuit behaves in the same manner

as the vibrating mass of Fig. 23 it is better to work with the

charge Q rather than with the more familiar current i. The

various voltage drops can be written

V V Q
1 i

-
1 ,

-

As the sum of these three voltage drops must equal the generator

voltage, the differential equation is

LQ + liQ + ~Q =
A'<> sin ut (126)

which is of exactly the same form as Kq. (12).

Therefore, the linear, torsional, and electrical cases thus far

discussed all lead to the same differential equation. The trans-

lation from one case to another follows directly from the table

shown on page 40.

All the mechanical statements made have their electrical ana-

logues and vice versa. For example, it was stated that "the

voltage across the induct ance /, is
L^-"

In mechanical language

this would be expressed as "the force of the mass m is
^;-"

A mechanical statement would be "The energy stored in the

* The letter i unfortunately is dotted. To avoid confusion it is agreed

that i shall mean the current itself and that for its differential coefficient

the Leibnitz notation di/dt will he used.
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mass is^rnt;
2 ." The electrical analogue is "The energy stored

in the inductance is

\

1,

FIG. 26. Torsional vibrations of two
disks on an elastic shaft.

Nor are these three cases the only ones that are determined

by Kq. (12). Any system with inertia, elasticity, and damping

proportional to the velocity, for

which the displacements can be

described by a single quantity,

1
4 ^ belongs to this class. For ex-

ample, consider two disks of

moment of inertia I\ and 7 2 ,

joined by a shaft of torsional

stiffness k in. -Ib. /radian (Fig. 26).

On the first disk the torque jT

sin ut is made to act, while there

is a damping with constant c,

proportional to the twist in the shaft. What will be the motion?
There are two disks, each of which can assume an angular

position independent of the other by twisting the shaft.

Apparently, therefore, this is a "
two-degree-of-freedom

"

system. However, the quantity in which the engineer is

most interested is the angle of twist of the shaft, and it

is possible to express the motion in terms of this quantity only.

Let <pi and ^>2 be the angular displacements of the two disks, then

<pi <f>2 is the shaft twist, k(<pi <p 2 ) is the shaft torque, and

c(<i>i <pz) is the damping torque. Apply Newton's law to the

first disk.
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To sin wt = 7i

and to the second disk,

= 7 2 <>2

Divide the first equation by I lf the second by 72 , and subtract

the results from each other:

To .

y- sin co =
(<pi

1\

Call the twist angle <$\

tion by 7i/2/(/i + / 2),

V

=
^, and multiply the whole equa-

n

T T T nrL \L <*
I i i i ^2*0 . /<rt

-

-\f/ -f- c\y -f- ky = _ =- sin cot (12tf)
-*! ~T -/2 YI -p /2

giving again an equation of the form (12). Of course, this equa-

tion, when solved, tells us only about the twist in the shaft or

about the relative motion of the two disks with respect to each

other. No information can be T%,V,^/

gained from it as to the mo-

tions of the disks individually.

A variant of Fig. 26 is shown

in Fig. 27, in the shaft of

which is inserted a gear-and-

pinion system. Let the disks

again have the moments of

inertia I\ and 7 2 ,
and assume

the gears G and P to be with-

out any inertia whatsoever.

Also assume the gear teeth to

be stiff, so that the torsional

flexibility is limited to the shafts ki and A: 2 . The gear ratio is n.

The differential equation for Fig. 27 could be derived from

Newton's law directly, but suppose we reduce Fig. 27 to Fig. 26

by omitting the gears and replacing /c?, 7 2 ,
and ^ by other

"equivalent quantities" so that the differential equation (12c)

can be applied.

In Fig. 26 the elasticity k can be determined experimentally

by clamping 72 and applying a constant torque To to 7 X . This

causes I\ to deflect through an angle <pQt so that k = TQ/<pQ .

Fit;. 27. Geared system whieh can
red need to the system of Fig. 20.
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Repeat this experiment with Fig. 27, i.e., clamp 72 and apply

To to /i. On account of the gears the torque in the shaft k 2 is

To/n, and the angle of twist of & 2 is therefore To/nk z . Since 72

is clamped, this is the angle of rotation of the pinion P. The

angle of the gear G is n times smaller or TQ/ri
2
k<2. Add to this the

angle 7
T

//Ci for the shaft ki and we have the angular displace-

ment of /i. Thus the equivalent k is

1 = _* = 1 + L-
k T Q ki n'

2
/c 2

Now consider the inertia. The inertia 7 2 in Fig. 26 could be

determined by the following hypothetical experiment. Give

7i (or the whole shaft fc) a constant angular acceleration a. Then
the shaft at the section A would experience a torque TQ

= a!2

coming from the right. Thus, 72
= To/a. Repeat this experi-

ment in Fig. 27. The acceleration a in ki and G becomes no.

in & 2 . Hence, the torque in 7c 2 is na/2 . This is also the torque

at the pinion P. The gear G makes it n times larger, so that the

torque at A is n 2
o:72 and the equivalent of 7 2 in the gearless

system is ?&
27 2 . In general, therefore, a geared system (such as

shown in Fig. 27) can be reduced to an equivalent non-geared

system (Fig. 26) by the following rule:

Divide the system into separate parts each of which has the

same speed within itself. (In Fig. 27 there are two such parts

but in general there may be several.) Choose one of these

parts as the base and assign numbers n to each of the other

parts so that n is the speed ratio with respect to the base, (n > 1

for speeds higher than the base speed; the n of the base is unity.)

Then, remove all gears and multiply all spring constants k and all

inertias I by the factors n 2
. The differential equation of the

reduced gearless system is then the same as that of the original

geared construction.

The last example to be considered resembles the first one in

many respects and yet is different. Instead of having the force

Po sin ut acting on the mass of Fig. 23, the upper end or ceiling

A of the spring is made to move up and down with an ampli-
tude a

,
the motion of A being determined by a sin cot. It will

be shown that this motion of the top of the spring is completely

equivalent to a force on the suspended mass.

Again let the downward displacement of the mass be x\ then,

since the top of the spring moves as a sin ut, the spring extension
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at any time will be .r a sin ut. The spring force is thus

k(x do sin oil) and the damping force is c(x a w cos ut).

Newton's law gives

mx + k(x a sin uf) -f- c(.r r;,,co cos co/)
=

or

mx + cu* + kx =
A'fto sin co + ca w cos cotf

By Eq. (6), page 6, the sum of a sine and a cosine wave of the

same frequency is again a harmonic function, so that

mx + ex + A\r = v/(/a7 )
2 + (ca w)

2 sin (co + cp) (I2d)

Therefore, a motion of the top of the spring with ampli-

tude a is equivalent to a force on the mass with amplitude

\/(A:ao)
2 + (raoco)

2
. The expressions kao and rcoao in the radical

are the maxima of the spring force and damping force, while the

entire radical is the maximum value of the total force for the case

where the mass is clamped, i.e., where the x-motion is prevented.

Example: Find the differential equation of the relative motion y between

the mass and the veiling of Kig. 23, in which /
J = and in which the ceiling

is moved harmonically up and down.

y x o sin col

Solution: We have by differentiation:

x y -f- o sin ut

j- = y -|- a,,w cos ut

.r = y a ()co'
2 sin ut

Substitute these into Kq. (\2d):

my ???a co
2 sin ut -f- cy -\- ra ()co cos cot -\- Icy -f- /ca u sin cot

= kan sin cot -{- ca^co cos cot

or

my -{ cy -j- ky = manor sin cot (12e)

Thus the relative motion between the mass and the moving ceiling acts

in the same manner as the absolute motion of the mass with a ceiling at rest

and with a force of amplitude Ma a>
2
acting on the mass. The right-hand

side of (12e) is the inertia force of the mass if it were moving at amplitude
a

; hence, it can be considered as the force that has to be exerted at the top
of the spring if the spring is made stiff, i.e., if the 7/-motion is prevented.

11. Free Vibrations without Damping. Before developing
a solution of the general equation (12), it is useful to consider

first some important simplified cases. If there is no external or

impressed force P sin ut and no damping (c
=

0), the expression

(12) reduces to
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mx + kx = (13)

or

x = --xm

or, in words: The deflection x is such a function of the time that when

it is differentiated twice, the same function is again obtained, multi-

plied by a negative constant. Even without a knowledge of

differential equations, we may remember that such functions

exist, viz., sines and cosines, and a trial reveals that sin t\/k/m

and cos t\/k/m are actually solutions of (13). The most general

form in which the solution of (13) can be written is

x = Ci sin t + C2 cos t
~

(14)

where Ci and 0% are arbitrary constants. That (14) is a solution

of (13) can be verified easily by differentiating (14) twice and then

substituting in (13) ;
that there are no solutions of (13) other than

(14) need not be proved here: it is true and may be taken for

granted.

Let us now interpret (14) physically. First, it is seen that the

result as it stands is very indefinite; the constants Ci and C-2 may
have any value we care to assign to them. But the problem
itself was never fully stated. The result (14) describes all the

motions the system of mass and spring is capable of executing.

One among others is the case for which Ci =
2
=

0, giving

x =
0, which means that the mass remains permanently at rest.

We now specify more definitely that the mass is pulled out of

its equilibrium position to x = rr and then released without

initial velocity. Measuring the time from the instant of release,

the two conditions are

At t = 0, x =
0*0 and x

The first condition substituted into (14) gives

x = Ci + C 2 1 or C 2
= x,

For the second condition, Eq. (14) must be differentiated first

and then we get

= CK 1 - C2 . or Ci =
m
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Substitution of these results in (14) leads to the specific solution

x = XQ cos t*l (14a)

This represents an undamped vibration, one cycle of uhich

occurs when t\/k/m varies through 360 dog. or 2ir radians

(Fig. 28). Denoting the time of a cycle or the period by T, we
thus have

or T = 27T (15)

It is customary to denote -\/k/m by con ,
called the "

natural

circular frequency.
"

This value \/k/m = con is the angular

FIG. 28. Undamped free vibration starting from an initial displacement.

velocity of the rotating vector which represents the vibrating

motion (see page 4).

The reciprocal of T or the natural frequency / is

f _ i _ i l
k - ^

Jn - T
~
2/Vm

~
27r

(16)

measured in cycles per second. Hence it follows that if m is

replaced by a mass twice as heavy, the vibration will be \/2

times as slow as before. Also, if the spring is made twice as

weak, other things being equal, the vibration will be \/2 times

as slow. On account of the absence of the impressed force

Po sin ut, this vibration is called a free vibration.

If we start with the assumption that the motion is harmonic,

the frequency can be calculated in a very simple manner from an

energy consideration. In the middle of a swing the mass has

considerable kinetic energy, wiiereas in either extreme position

it stands still for a moment and has no kinetic energy left. But



46 ONE DEGREE OF FREEDOM

then the spring is in a state of tension (or compression) and thus

has elastic energy stored in it. At any position between the

middle and the extreme, there is both elastic and kinetic energy,

the sum of which is constant since external forces do no work on

the system. Consequently, the kinetic energy in the middle of a

stroke must be equal to the elastic energy in an extreme position.

We now proceed to calculate these energies. The spring force

is kxj and the work done on increasing the displacement by dx is

kx - dx. The potential or elastic energy in the spring when

stretched over a distance x is jkx dx =
} %kx*. The kinetic

energy at any instant is %mv 2
. Assume the motion to be

x = XQ sin co, then v x^u cos ut. The potential energy in the

extreme position is /2/wTy, and the kinetic energy in the neutral

position, where the velocity is maximum, is

Therefore,

from which o>
2 = k/m, independent of the amplitude x . This

"energy method" of calculating the frequency is of importance.

In Chaps. IV and VI, dealing with systems of greater complexity,

it will be seen that a frequency determination from the differential

equation often becomes so complicated as to be practically impos-

sible. In such cases a generalized energy method, known as the

method of Rayleigh, will lead to a result (see pages 178-194).

The formula un = \/k/m may be written in a somewhat

different form. The weight of the mass m is mg, and the deflec-

tion of the spring caused by this weight is mg/k. It is called the

static deflection dst or static sag of the spring under the weight.

_ rng
dat ~~k~

Hence,

k_ ^ g

m d8t

or

con = (17)

If 88t is expressed in inches, g = 386 in. /sec.
2

,
and the

frequency is
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\/T~
= 3.14.J cycles per second

\ o a t \ 0*f

/ = 188A /-~ cycles per minute

47

(17a)

This relationship, which is very useful for quickly estimating

natural frequencies or critical speeds, is shown graphically in

Fig. 29.

1800

(inches) -*-

FIG. 29. Curve representing Eq. (17a) for the natural frequency of an un-

damped, single-degree system.

12. Examples. Consider some numerical examples of the

application of the fundamental formula (16).

1. A steel bar of 1 by V2 in. cross section is clamped solidly

in a vise at one end and carries a weight of 20 Ib. at the other end

(Fig. 30). (a) What is the fre- ^
quency of the vibration if the dis- # < ,

tance between the weight and the ^
~

I I

vise is 30 in.? (b) What percent-
/y

age change is made in the frequency

by shortening the rod ! in.?

a. The weight of the bar itself is > 2 by 1 by 30 cu. in. X 0.28 Ib.

per cubic inch or roughly 4 Ib. The particles of the bar near the

20-lb. weight at its end vibrate with practically the same ampli-

tude as that weight, whereas the particles near the clamped end

vibrate hardly at all. This is taken account of by adding a

Fio. 30.
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fraction of the weight of the bar to the weight at its end. On
page 194 it is shown that approximately one-quarter of the weight
of the bar has to be thus added. Therefore the mass m in Eq.

(16) is 21/0 = 2
j 86 Ib. in." 1 sec. 2

.

A force P at the end of a cantilever gives a deflection

6 P13
/3EI. The spring constant by definition is

k = P/d = 3EI/1*.

The moment of inertia of the section is 7 = 1 f2^ 3 =
J 24

(or '()G , depending upon whether the vibrations take place in the

stiff or in the limber plane). The circular frequency is

k 3 3(Fl(>
7

~386

24 - 30- ~21

The frequency /n = w n/2ir
= 8.0 cycles per second.

In case the bar vibrates in the direction of the weak side of the

section, / = J^, and fn becomes one-half its former value,

4.0 cycles per second.

6. The question regarding the change in

frequency due to a change in length can be

answered as follows. The spring constant A;

is proportional to 1/P, and the frequency

consequently is proportional to \/l7^ = J~"'
a

"

Shortening the bar by 1 per cent will raise the

frequency by 1J2 Per cent. Thus the shorten-

ing of ^4 in. will increase / by \}^ per cent.

2. As a second example consider a U-tube

filled with water (Fig. 31) . Let the total length

of the water column be Z, the tube cross section

be A, and the mass of water per cubic inch be

7ft!, If the water oscillates back and forth,

the mass in motion is t A -I In thin

U- problem there is no specific "spring," but still

the force of gravity tends to restore the water

level to an equilibrium position. Thus we have a "gravity

spring/' of which the spring constant by definition is the force

per unit deflection. Raise the level in one arm of the tube by

1 in., then it will fall in the other arm 1 in, This gives an

unbalanced weight of 2 in. water column, causing a force of

column
tubo *
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(2miA) gr,
which is the spring constant. Therefore the fre-

quency is

m

3. Consider the systems shown in Fig. 32, where a mass m
is suspended from two springs k\ and A* 2 in three apparently
different ways. However, the cases 32a and 326 are dynamically

identical, because a downward
deflection of 1 in. creates an

upward force of (A'i + A^ 2) lb.

in both cases. Thus the nat-

ural frequency of such systems
is

Ik i +~*2
*
\ m

For Fig. 32c the situation is

different. Let us pull down-

ward on the mass with a force

of 1 lb. This force will be

transmitted through both

springs in full strength. Their

respective elongations are 1/ki

FKJ. .'J2. Throe systems with com-
pound springs, which are equivalent to

tho system of Fitf. US. (n) and (//)

have "parallel" springs; (c) has its

springs "in scries."

per pound being
k 2

and l//c 2 ,
the total elongation

But, by definition, this is I/A:, the

reciprocal of the combined spring constant. Hence,

k - *

Rule: The combined spring constant of several "parallel" springs

is k = ^/cn ;
for ti springs "in series" the spring constant is found

from l/k = SI /fc n .

For example, if a given coil spring of stiffness k is cut in two

equal parts, each piece will have the stiffness 2k. (It takes

twice as much load to give to half the spring the same deflection

as to the whole spring.) Putting the two half springs in series,

we find, indeed, r = J_
2k
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It is of interest to note that this rule for compounding spring
constants is exactly the same as that for finding the total conduct-

ance of series and parallel circuits in electrical engineering.

4. The last example to be discussed in this section is illustrated

in Fig. 33. A massless, inflexible beam is hinged at one end and

carries a mass m at the other

end. At a distance a from

m ^
the hinge there is a spring

1 \\ of stiffness k. What is the

/ .. . ._ ....
natural frequency of vibration

FIG. 33.~Tho spring k as shown is
of this system?

equivalent to a fictitious spring of We shall consider the vibra-
stiffness k(a/l) 2 placed at the mass m. ,. , , i, ,1 , . i

turns to be so small that the

mass moves sensibly up and down only. In deriving the equation
of motion on page 35, the spring force on the maxs was equated to

mx. In this case also we have to ask: What force has to be

exerted on the mass in order to deflect it 1 in? Let that force

be F. Then from static equilibrium the force in the spring is

- F. Since the deflection at the mass is 1 in., it is a/I in. at

the spring. This leads to a spring force -.- k. Hence

L.p = *k or F -

a I

Therefore, the effective spring constant at the mass is k - (/Z)
2

.

The effect of the stiffness of the spring is thus seen to diminish

very fast when it is shifted to the left.

The frequency is

With the energy method of page 46 the calculation is as fol-

lows: Let the motion of the mass be x = X Q sin ut, where w is as

yet unknown. The amplitude of motion at the spring then is

foil/I and the potential energy in the spring is } -jArS
2 =

} 2A-(r a//)
2

.

The kinetic energy of the mass is J^rra;'
2 = }%mulxl. Equating

these two, the amplitude X Q drops out and

k a?

rn
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Some of the problems at the end of this chapter can be solved

more easily with the energy method than by a direct application

of the formula involving \f~kjm.

13. Free Vibrations with Viscous Damping. It was seen

that an undamped free vibration persists forever [Eq. (14) or

(14a)]. Evidently this never occurs in nature; all free vibrations

die down after a time. Therefore consider Eq. (12) with the

damping term ex included, viz.:

mx + ex + kx = (18)

The term "viscous damping" is usually associated with the

expression ex since it represents fairly well the conditions of

damping due to the viscosity of the oil in a dashpot. Other

types of damping exist and will be discussed later (page *13(>).

The solution of (18) cannot be found as simply as that of (13).

However, if we consider the function x = e
st

,
where t is the time

and s an unknown constant, it is seen that upon differentia-

tion the same function results, but multiplied by a constant.

This function, substituted in (18) permits us to divide by c" and

leads to an algebraic equation instead of a differential equation,

which is a great simplification. Thus we assume that the

solution is cst . With this assumption, Eq. (18) becomes

(ms* + cs + k)e
st = (19)

If (19) can be satisfied, our assumption x = c*
1 for the solution

is correct. Since Eq. (19) is a quadratic in
-s,

there are two

values Si and s2 that will make the left side of (19) equal to zero

k

so that e9 ** and e'* are both solutions of Eq. (18). The most

general solution is

x = Cie'i' + C 2e"< (21)

where Ci and C2 are arbitrary constants.

In discussing the physical significance of this equation two

cases have to be distinguished, depending upon whether the

expressions for s in Eq. (20) are real or complex. Clearly for

(c/2m)
2 > fc/ra, the expression under the radical is positive so

that both values for s are real. Moreover, they are both negative

because the square root is smaller than the first term c/2m.
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Thus (21) describes a solution consisting of the sum of two

decreasing exponential curves, as shown in Fig. 34. As a

representative example, the case C\ =
1, C 2

= 2 is drawn
as a dashed line.

Without analyzing any special cases by determining their

values for Ci and C^ the figure shows that the motion is no

"vibration" but rather a creeping back to the equilibrium

position. This is due to the fact that for (c/2m)
2 > k/m the

damping c is extremely large. For smaller values of c, which

pertain to more practical cases, (20) gives complex values for s,

Fiu. 34. Motions of a single-degree system with damping greater than the
critical damping c< .

and the solution (21), as written, becomes meaningless. The

damping c at which this transition occurs is called the critical

damping c c :

Ik= 2wA /-

\m
= 2\/mk = 2raco n (22)

In case the damping is less than this, (20) can better be

written as

. fife
__ /_cV

'\ro \2m)
(20a)

where j = \/ l. Though the radical is now a real number

both values of s contain j and consequently the solution (21)

contains terms of the form c }

'

at
,
which have to be interpreted by

means of Eq. (8a), page 13.
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With (20a) and (8a), the solution (21) becomes

c_

x = e 2m [Ci(cos qt + j sin qt) + C 2 (cos qt j sin qt)]

= e~5^[(Ci + CO cos gZ + (jC
Y

i
- jCO sin qt] (23)

Since C\ and C2 were arbitrary constants, (Ci + Ct) and

O'Ci jC 2) are also arbitrary, so that for simplicity we may write

them Ci and C2 . Thus

a; = e 2m* (CJ cos ^ + CJ sin

where

(24a, b)

1 A

FIG. 35. Free vibration of a system with dumping loss than the critical damping
of Kq. (22).

This is the solution for a damping smaller than cf . It consists

of two factors, the first a decreasing exponential (Fig. 34) and

the second a sine wave. The combined result is a "damped
sine wave," lying in the space between the exponential curve

and its mirrored image (Fig. 35). The smaller the damping
constant c, the flatter will be the exponential curve and the more

cycles it will take for the vibrations to die down.

The rate of this dying down is of interest and can be calcu-

lated in a simple manner by considering any two consecutive

maxima of the curve: A-B
y B-C, etc. During the time interval

between two such maxima, i.e., during 2ir/q sec., the amplitude
of the vibration (which at these maxima practically coincides

<l C_
t C_

/ , 27T\

with e 2m) diminishes from e 2m toe 2m\ "*"/. The latter of

these two expressions is seen to be equal to the first one multiplied
jrc

by the constant factor e
,
which factor naturally is smaller

than unity. It is seen that this factor is the same for any two
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consecutive maxima, independent of the amplitude of vibration

or of the time. The ratio between two consecutive maxima is

constant; the amplitudes decrease in a geometric series.

If x n is the nth maximum amplitude during a vibration and zn+i is the

next maximum, then we have seen that xn *\
= xnt'~*c/

' mq or also e
log

(.r n /x n +\)
= irc/mq = 5. This quantity 6 is known as the logarithmic

decrement. For small damping we have

(25)
mq c

and also xn \/xn e~ 5 1 5, so that

-^---'-^ (25 >

The frequency of the vibration is seen to diminish with increas-

ing damping according to (246), which if written in a dimension-

less form with the aid of (22) becomes

This relation is plotted in Fig. 36 where the ordinate q/un is the

ratio of the damped to the undamped natural frequency, while

the abscissa is the ratio of the

actual to the critical damping
constant. The figure is a circle;

naturally for critical damping
(c

= cc ) the natural frequency q

is zero. The diagram is drawn
for negative values of c as well,

the meaning of which will be"
^

T, _ ,ri
c

.
. fFio. 30. The natural frequency. .

of a damped sinKle-degrcc-of-freedom explained later in Chap. VII

i

?
ng-TqT246)

fUIlCti011 f thodamp"

(page 347). On account of the

horizontal tangent of the circle

at c = 0, the natural frequency is practically constant and equal

to \/k/m for all technical values of the damping (c/cc < 0.2).

The undamped free vibration, being a harmonic motion, can

be represented by a rotating vector, the end point of which

describes a circle. With the present case of damped motion this

graphical picture still holds, with the exception that the ampli-

tude decreases with time. Thus, while revolving, the vector

shrinks at a rate proportional to its length, giving a geometric

series diminution. The end point of this vector describes a
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''logarithmic spiral'
'

(Fig. 37). The amplitudes of a diagram
like Fig. 35 can be derived from Fig. 37 by taking the horizontal

projection of the vector, of which the end point lies on the spiral

and which rotates with the uniform angular velocity q [Kq. (24)].

A special case of the foregoing occurs when the mass or inertia

of the system is negligibly small, so that there remain only
a spring and a dashpot. We want to know the motion of the

Flo. 37. Vector diagram of a damped free vibration.

(massless) dashpot piston when it is released from an initial deflec-

tion XQ. The differential equation is

c ~ + kx =
at *

which can be solved directly by writing

cdx ,

fc 7 - ~ dt

t

c Cdx c=
y I = r
rC I X 1C

,.
,

.

x

(log:r + const.)

At t = the deflection x = z
,
so that the constant is log x .

Hence

and
-*<

X = Xo6
c

, (26)
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a relation represented by one of the solid curves of Fig. 34.

Evidently the exponent of the e-function is a dimensionless quan-

tity, so that c/k must have the dimension of a time. It is known
as the relaxation time, which, by definition, is the time in which
the deflection X Q of the system "relaxes" to 1/eth part of its

original value. On page 444 we shall have occasion to use this

concept.

Example: In the system shown in Fig. 33, page 50, the mass weighs 1 oz.;

the spring has a stiffness of 10 Ib. per inch; 1=4 in.; a= 6 = 2 in. More-

over, a dashpot mechanism is attached to the mid-point of the beam, i.e.,

to the same point where the spring is fastened to it. The dashpot produces
a force of 0.01 Ib. for a velocity of 1 in. per second.

a. What is the rate of decay of the free vibrations?

6. What would be the critical damping in the dashpot?
c. Find the relaxation time in the case of critical damping.
Solution: Let us first answer question (6) by means of Eq. (22). The

undamped natural frequency is con = \/k/m. On page 50 we found that

the equivalent spring constant of Fig. 33 is ha* /I* or fc/4
= 2,5 Ib. per inch.

Thus

W|| = \/2.5 X 16 X 386 = 124 radians per second

The critical damping constant of the system (i.e., the critical damping of an

imaginary dashpot at the mass) is, by Eq. (22),

2 X rr-J QQ , X 124 = 0.041 Ib./in./sec.
lo X ooi)

Since the dashpot is actually located at the mid-point of the beam, the dash-

pot must have a constant which is four times as great, for the same reason

that the spring there must be taken four times as stiff as the "equivalent"

spring (see page 50). Thus we find for the answer to question (6)

cc
= 0.164 Ib./in./sec.

a. The rate of decay is to be foufcd from Eq. (24). First it is rioted that

the actual damping is one-sixteenth of critical, so that by Fig. 36 the differ-

c_
t

ence between q and o> is negligible. The vibrations decrease as e 2m and

for a full cycle (two consecutive deviations to the same side)

T _127T 27T _ 27T _ 1

~7~ q
~

u>

~
124

~
26

sec>

The damping constant c is that at the mass, which is four times smaller

than that at the dashpot: c = 0.01/4. Thus the ratio between consecutive

amplitudes is

0.01X16X386
4X2X20 = e-0.386 - Q.68
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Question (c) requires the calculation of the "relaxation time," which was
defined only for a system without mass. Assuming the mass absent, the

interaction of the spring and the dashpot alone gives a relaxation time

*relax
= T =

'~\rT~

~ 0.0164 SCC.

The mass in the system will cause the motion to slow down somewhat. For
this case it is noted that the two roots, Eq. (20a), are equal, which makes
the solution of the differential equation too difficult to he treated here.

Readers familiar with this theory may calculate the relaxation time with the

mass present and find the answer 0.017 sec., slightly larger than without the

mass.

14. Forced Vibrations without Damping. Another impor-

tant particular case of Eq. (12) is the one where the damping
term ex is made zero, while everything else is retained :

mx + kx = Po sin ut (27)

It is reasonable to suspect that a function x = Xo sin ut may
satisfy this equation. Indeed, on substitution of this function

Eq. (27) becomes

wco 2
o sin ut + kxo sin ut ~ PO sin ut

which can be divided throughout by sin ut, so that

x (k mco 2
)
= Po

or

L o * o/ fa J- o/ *^

t/O T o -|

~
~o II i / / \9

& mar 1 war/A; 1 (o}/o)n)

and

* o/*G /oo\
x = f. . sm ul (2&)

is a solution of (27). The expression P /fc in the numerator has

a simple physical significance: it is the static deflection of the

spring under the (constant) load P . We therefore write

and with this the solution becomes

- = ^-L -.sinorf (28a)
X9t 1 (w/COn)

2

Although it is true that this is "a" solution of (27), it cannot be

the most general solution, which must contain two integration

constants. It can be easily verified, by substitution, that
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x = Ci sin unt + C2 cos u n t +
-,

X
~ t

1 r, sin wt (29)
1 ~ (cO/Wn)

2

satisfies (27). The first two terms are the undamped free vibra-

tion; the third term is the undamped forced vibration. This

is a manifestation of a general mathematical property of differ-

ential equations of this type, as stated in the following theorem:

Theorem: "The general solution (29) of the complete differential

equation (27) is the sum of the general solution (14) of the

equation with zero right-hand member (13), and a particular

solution (28) of the complete equation (27)."

It is seen that the first two terms of (29) (the free vibration)

form a sine wave having the free or natural frequency w w ,
whereas

the forced vibration (the third term) is a wave having the forced

frequency co. Since we are at liberty to make co what we please,

it is clear that co and co n are entirely independent of each other.

The solution (29), being the sum of two sine waves of different

frequencies, is itself not a harmonic motion (see Fig. 44c, page 71).

It is of interest now to examine more closely the implications

of the result (28a). Evidently x/xst is a sine wave with an ampli-

tude 1/[1 (co/con)
2

], depending on the frequency ratio co/w rt
.

Figure 38 represents this relation.

From formula (28a) it follows immediately that for w/a; n < 1

the amplitudes or ordinates arc positive, while for co/co rt > 1 they
are negative. In order to understand the meaning of these nega-

tive amplitudes we return to Eq. (27) and the assumption

Xo sin u>t for the solution made immediately thereafter. It

appears that in the region w/w n > 1 the results for J are negative.

But we can write

j- sin co = +#o sin (co + 180 deg.)

which shows that a u
negative amplitude" is equivalent to a

positive amplitude of a wave which is merely 180 dcg. out of

phase with (in opposition to) the original wave. Physically

this means that, while for o>/co/i < 1 force and motion are in

phase, they are in opposition for w/w n > 1. Whereas for

co/wn < 1 the mass is below the equilibrium position when the

force pushes downward, we find that for co/con > 1 the mass

is above the equilibrium position while the force is pushing
downward.
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Usually this phase relation is considered as of slight interest,

while the amplitude is vitally important; therefore, the negative

sign may be disregarded and the dashed line in Fig. 38 appears.

Fio. 38. Resonance diagram for the absolute motion of a, system of which
the mass is subjected to a force of constant amplitude and variable frequency;
Eq. (28). This diagram is different from Fig. 40.

There are three important points, A, B, and C in Fig. 38, at

which it is possible to deduce the value of the ordinate from

purely physical reasoning. First consider the point A, very
close to o> = 0; the forced frequency is extremely slow, and the

mass will be deflected by the force to the amount of its static
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deflection only. This is physically clear, and thus the ampli-
tudes of the curve near the point A must be nearly equal to

unity. On the other hand, for very high frequencies co/wn ^>> 1,

the force moves up and down so fast that the mass simply has no

time to follow, and the amplitude is very small (point B).

But the most interesting thing happens at point C, where the

amplitude becomes infinitely large. This can also be understood

physically. At co/wn = 1, the forced frequency coincides exactly

with the natural frequency. The force then can push the mass

always at the right time in the right direction, and the ampli-
tude can increase indefinitely. It is the case of a pendulum
which is pushed slightly in the direction of its motion every time

it swings: a comparatively small force can make the amplitude

very large. This important phenomenon is known as "reso-

nance," and the natural frequency is sometimes called also the
" resonant frequency."

Fiu. 39. Unbalanced motor giving a force raco'^ao leading to the resonance

diagram of Fig. 40.

Thus far the theory has dealt with an impressed force of which

the amplitude P Q is independent of the frequency co. Another

technically important case is where P Q is proportional to or. For

example, Fig. 39 represents a beam on two supports and carrying

an unbalanced motor in the middle. While running, the motor

axle experiences a rotating centrifugal force Wiorr, where m\ is

the mass of the unbalance and r its distance from the center of

the shaft. This rotating force can be resolved into a vertical

component 7/ijcoV sin cot and a horizontal component m\& 2
r cos co.

Assume that the beam is very stiff against horizontal displace-

ments but not so stiff against vertical ones. Then we have a

sirigle-degree-of-freedom system with a mass m (the motor),

and a spring fc = 48Z?//Z
3
(the beam), acted upon by a vertical

disturbing force of amplitude m^r, which is dependent on the

frequency.

Another example of this type wras discussed on page 43.

There it was seen that the
"
relative motion" y between the mass

and the support of Fig. 23 (where the support moves as a sin ut

and the force P is absent) acts as if a force raa o>
2 were acting
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on the mass. Incidentally, this case is of great importance
since most vibration-recording instruments (vibrographs) are

built on this principle (see page 75).

The resonance curve for the two cases just mentioned can be

found directly from Eq. (28) by substituting ///oro for /V Then

(C0/C0 n)
2

or

(co/con )
2

(30)

FIG. 40. Resonance diagram of Eq. (30) showing (a) the relative motion of a

system in which the end of the spring is subjected to an alternating motion
of constant amplitude ao, and (M the absolute motion of a system in which the

mass experiences a force of variable amplitude 77?o>
2ao.

It is to be remembered that a is the amplitude of motion at

the top of the spring, while
*/

is the relative motion between the

mass and the top of the spring, or the extension of the spring,

which is the same thing. The ordinates of the three points A,

B, and C of Fig. 40, representing (30), can again be understood

physically. At A the frequency o> is nearly zero; the top of the

spring is moved up and down at a very slow rate; the mass follows

this motion and the spring does not extend: ?/
= 0. At B the

motion of the top of the spring is very rapid, so that the mass

cannot follow and stands still in space. Then the relative motion
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is equal to the motion of the top and 7/o/a
= 1. At the point C

there is resonance, as before, so that the extensions of the spring

become theoretically infinitely large.

This last result is obviously not in agreement with actual

observations, and it is necessary therefore to consider damping,
which is done in Sec. 15.

Example: A motor generator set consists of a 25-cycle induction motor

coupled to a direct-current generator. The set is rated at 200 hp. and 725

r.p.m. The connecting shaft has a diameter of 3^f 6 in. and a length of 14 in.

The moment of inertia of the motor rotor is 150 Ib. in. sec. 2 and that of the

generator is 600 Ib. in. sec. 2
. The driving torque of the induction motor is

not constant (see page 90) but varies between zero arid twice the full-load

torque T at twice the frequency of the current, i.e., 50 cycles per second,

thus*

7' + To sin (27T 500

while the counter torque of the direct-current generator is constant in time.

Find the maximum stress in the shaft at full load.

Solution: First find the torsional spring constant of the shaft.

_ torque GIP _
'

32 __ 32
' ' l()

K """
, .

" ' '

I
' "

, i
~~ i\J . &\J /\ All 111. llJ./Ittll.

angle / / 14

The system is idealized in Fig. 20 (page 40) arid its differential equation is

(12c). The natural circular frequency is

_ =
<y|__j_^_^_^^

= 290 radians per second
150 X 600

The forced frequency is 50 cycles per second, or

co =
27T/

= 314 radians per second

Apparently the system is excited at 31 ?2oo = 1-08 times resonance, so that

by Fig. 38 or Eq. (28) the effect of the torque is magnified by a factor

From Eq. (12c) we see that the torque in question is 60 %5o^r o, or four-

fifths of the amplitude of the alternating component of the torque. As

stated, the torque consists of a steady part 7
T and an alternating part of the

same amplitude TV The maximum torque in the shaft thus is

T + 6.0 X *T = 5.80To

The steady torque To can be found from the speed and horse power thus:

7-. - ^E: -?^33
f2 = M50 ft. Ib. - 17,400 in. Ib.
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The shear stress in the shaft due to this steady torque is

& - = * = = _X ",0 . 2,500 ,./!..
/P 7rd 4

/32 d j
(3;'iGr

On account of the proximity to resonance, this stress is multiplied by
5.80, so that the total maximum shear stress is 14,500 lh./in.

2
. The "fatigue

strength" of a steel, as listed, is derived from a tensile test, where the tensile

stress is twice the shear stress. The fatigue limit of usual shaft steels is

lower than 29,000 lb./in.
2

,
so that the shaft is expected to fail. The design

can be improved by reducing the shaft diameter to 2 ]
2 in. Then the

natural frequency becomes 171 radians per second and the magnification

factor 0.42. The new maximum tensile stress becomes 6,200 lb./in.
2

,

which is safe.

15. Forced Vibrations with Viscous Damping. Finally, the

complete Eq. (12),

mx + ex + kx = P sin wt (12)

will be considered. It can be verified that the theorem of page
58 holds here also. According to that theorem, the complete
solution of (12) consists of the sum of the complete solution of

the Eq. (18), which is (12) with the right-hand side zero, and a

particular solution of the whole Eq. (12). But the solution of

the equation with the zero right-hand side has already been

obtained (Eq. 24), so that

x
c_

e 2w
(Ci sin qt + Cz cos qt) + particular solution (31)

It is therefore necessary merely to find the particular solution.

Analogous to the case of Sec. 14, we might assume x = r sin ut,

but then the term ex would give cos o>2, so that this assumption
is evidently incorrect. It is possible to assume

x = A sin ut + B cos wt

and to substitute this in (12). In this case, only terms with

sin ut and cos co occur, but there are two constants A and B at

our disposal. By solving for A and B algebraically, a particular

solution can be obtained. Here we shall derive the result in a

somewhat different manner, in order to give a clearer physical

understanding of the phenomenon.
Let it be assumed that the solution is a sine wave with the

forced frequency co. Then all the four forces of Eq. (12) are sine

waves of this frequency and can be represented by vectors.
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A differentiation is equivalent to a multiplication of the length
of the vector wTith co and a forward rotation through 90 deg.,

as explained on page 4.

Let the displacement be represented by x = X Q sin (at <p),

where :r and y? are as yet unknown, and draw this displacement

iX<t
as a vertical upward vector (dotted) in the

diagram of Fig. 41. The spring force kx

has an amplitude kx Q and is directed down-

ward in the diagram. The damping force

ex has an amplitude coxr and is 90 deg.

ahead of the spring force. The inertia force

mx is 90 deg. ahead of the damping force

and has an amplitude mu-Xo. The external
*"

force P sin cot is <p deg. ahead of the dis-

placement J sin (cot <>). Thus the com-

plete diagram in Fig. 41 is obtained (0*0 and

<p being unknown).
Newton's law [or Eq. (12), which is the

same thing] requires that the sum of the

four forces be zero at all times. This means

MK that the geometric sum of the four vectors

in Fig. 41 must be zero, which again implies

FIG. 41. Vector dia- that the horizontal as well as the vertical

gram from which Fi K . component of this resultant must be zero.
42 can be deduced.

.

Expressed mathematically :

Vertical component: kx Q mw 2x PO cos <p
=

Horizontal component: cou'o PO sin v =

From these two equations the unknowns XQ and <p are solved,

with the result that

+~(fc~- /A_4
\\ j

=. (32o)

tan & =
k - mco 2 1 - (

2

/
(326)
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With the aid of the mechanical-electrical glossary of page 40, this can

be translated into

o
=

(33 /

Since i = dQ/dt, and (?
=

<? sin w/, the current is /
= (?ow cos wf. The

left-hand side of Eq. (33) is the maximum value of the current. The square

root in the denominator to the right is known as the "impedance," a familiar

element in electrical engineering.

The expressions (32a, b) for the amplitude rr and for the phase

angle p are in terms of "dimensionless quantities" or ratios only.

There appear the frequency ratio co/co u and the damping ratio

c/cr ,
where cc is the "critical damping" of formula (22). l\)/k

can be interpreted as the deflection of the spring under a load 7%;

it is sometimes called the "static deflection" xst .

These relations are plotted in Figs. 42a and b. The ampli-

tude diagram contains a family of curves, one for each value of

the damping c. All curves lie below the one for 7,ero damping,
which is of course the same curve as that of Fig. 38. Thus we
see that the amplitude of forced vibration is diminished by

damping. Another interesting property of the figure is that the

maxima of the various curves do not occur any longer at co/co n
= 1

but at a somewhat smaller frequency. In fact, in the case of

damped vibrations three different frequencies have to be dis-

tinguished, all of wrhich coincide for c =
0, viz.,

Ik
(1) con = A /

= the
"
undamped natural frequency"

^ JfL

I
Jc

/'
c

\ 2

(2) q =
^/
-- f

-
J

= the "damped natural frequency"
\ Ytl/ \ifl/ I

(3) The "frequency of maximum forced amplitude," sometimes

referred to as the "resonant frequency."

For small values of the damping these three frequencies are

very close together.

The phase-angle diagram 426 also is of considerable interest.

For no damping, it was seen that below resonance the force and

the displacement are in phase O =
0), while above resonance



66 ONE DEGREE OF FREEDOM

I /, '

FIG. 42a. Amplitudes of forced vibration of any of Figs. 23 to 27 for varioua

degrees of damping.

FIG. 426. The phase angle between force and displacement as a function of the

frequency for various values of the damping.
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they are 180 deg. out of phase. The phase-angle curve therefore

shows a discontinuous jump at the resonance point. This can

also be seen from Eq. (326) by imagining the damping c very
small. Below resonance, the denominator is positive so that

tan (p is a very small positive number. Above resonance, tan <p

is a very small negative number. Thus the angle # itself is either

close to deg. or slightly smaller than 180 deg. Make the damp-
ing equal to zero, and <p becomes exactly deg. or exactly 180 deg.

For dampings different from zero the other curves of Fig. 426

represent the phase angle. It is seen that in general the damping
tends to smooth out the sharpness of the undamped diagrams
for the amplitude as well as for the phase.

It is instructive to go back to the vector diagram of Fig. 41

and visualize how the amplitude and phase angle vary with the

frequency. For very slow vibrations (co 0) the damping and

inertia forces are negligible and P =
kx^, with ^ = 0. With

increasing frequency the damping vector grows, but the inertia

force grows still faster. The phase angle cannot be zero any

longer since P must have a horizontal component to the left to

balance CUX Q . The inertia-force vector will grow till it becomes as

large as the spring force. Then <p must be 90 deg. and P = cux^.

This happens at resonance, because ?/ior.r = A\r or or = k/m.
Thus at resonance the phase angle is 90 deg., independent of

damping. Above this frequency wororo will grow larger than kx (h

so that PO dips downward and <p is larger than 90 deg. For very

high frequencies kx Q is insignificant with respect to ?/iw 2
j-|,,

so that

PQ is used up to balance the inertia force and <p
= 180 (leg.

At slow speeds the external force overcomes the spring force;

at high speeds the external force overcomes inertia, while at

resonance it balances the damping force.

The energy relations involved in this process also serve to give

a better physical understanding. For very slow motions <p
=

0,

and it was shown on page 15 that no work is done over a whole

cycle. In other words, no mechanical energy is transformed

into heat during a cycle. Starting from the equilibrium position,

the external force moves through a certain distance before reach-

ing the extreme position. It certainly does work then. But

that work is merely converted into potential or elastic energy
stored in the spring. During the next quarter cycle the motion

goes against the external force and the spring gives up its stored

energy. At slow speeds, therefore, the work of the external
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force is thrown into elastic energy and nothing is converted into

heat. At the resonant frequency, <p
= 90 deg. and the work

dissipated per cycle is 7rP Xo (page 17). The external force is

equal and opposite to the damping force in this case, so that the

work is dissipated in damping. The spring force and the inertia

force are equal and opposite, and also in phase with the dis-

placement. Each of these forces does perform work during a

quarter cycle, but stores the energy, which is returned during
the next quarter cycle. The work of the spring force is stored

periodically as elastic energy in

the spring and the work of the

inertia force as kinetic energy
of motion of the mass.

Incidentally these energy
relations can be used for cal-

culating the " resonant ampli-

tude.
" The damping force has

the amplitude c(x) maK
= caxr

and is 90 deg. out of phase
A
A

. , .

B c withthe displacement XQ.
Amplitude x

^

FIG. 43. Work per cycle performed Consequently the work dis-

by a harmonic force and by a viscous sipated in damping per Cycle
damping force for various amplitudes. . 9 rri_ i T

is TTCCOXQ. The work done per

cycle by the external force is irP QXQ which must equal the

dissipation of damping:

TrFo^o = ncuxl (34)

This relation is illustrated by Fig. 43 in which the work per cycle

done by the force P at resonance and also that by the damping
force are plotted against the amplitude of motion. Where the

two curves intersect, we have energy equilibrium and this ampli-

tude #o is the one that will establish itself. If at some instant

the amplitude were greater, the energy dissipation would be

greater than the input, which would gradually diminish the

kinetic energy of the system until the equilibrium amplitude is

reached.

Solving (34) for x Qj we obtain

CW
(34a)

Strictly speaking, this is the amplitude at the frequency where

the phase angle is 90 deg., which is not exactly the frequency of
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maximum amplitude. However, these two frequencies are so

close together that a very good approximation of the maximum

amplitude can be obtained by equating the work done by the

external force to the work dissipated by damping. For the

single-degree-of-freedom system this method of calculating the

resonant amplitude is of no great interest, but later we shall

consider more complicated cases where an exact calculation is too

laborious and where the approximate method of Eq. (34) and

Fig. 43 gives acceptable results (page 256).

Equations (32a) and (326) are the most important ones of this

book. They have been derived from the differential equation (12)

in two ways : first by algebra and second by the vector diagram of

Fig. 41. We shall now deduce them in a third manner, by means

of the complex-number method (page 11).

This is done with two purposes in mind: not only will it serve to make the

results better understood, but it will also be an introduction to more com-

plicated cases (page 120), where the complex method affords a great saving

in effort.

Each of the four vectors of Fig. 41 can be replaced by a complex number.

If the displacement be denoted by the complex number #, the first derivative

x can be written ju>x and the second derivative x = co
2z as was shown

earlier (page 13). Let the external-force vector, written as a complex

number, be denoted by P'. Then (12) becomes

mco2
-f- jucx + kx = P'

or

(-raw2
4- jcoc +k)x = P'

Solving for x by the rules of ordinary algebra,

P'

-f- k

In this expression P' is still a complex quantity. It can be made real by
turning the complete diagram Fig. 41 clockwise through about 135 deg.

(Fig. 41a). After this has been done, P' P is real and the expression for

x can be brought to the form a -\- jb as follows :

Po * (-w + k) -ycoc~ =
(-mco 2

-f k) + jcoc (-mco2
-f- k) + jcoc

^
(-raw2

-f fc)
-

.

D (-mco 2 + fc) -jcoc Po
u

(-raco
2 + A;)

2 -
(jcoc)

2
[(-mco2

-f k)
2 + co 2c2

J

{(-mco2 +fc) -.

This is a complex number, the real part of which represents the length OA in

Fig. 41a and the (negative) imaginary part represents OB. It follows that

, imaginary part coc ,nn . .

tan ?>
= &

.
J

\ ==
-j 3 (326)

real part k - mcu2 v '

and
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length of vector

Po

[(-raw 2 + fc)
2 +

V(real) + (imag.)'

,V<-+ fcJ
5^ 2c2

(32a)
A;)

2
-f co

2c2
'

the same results as obtained before (page 62).

Finally we return to the expression (31) on page 63 and

remember that everything stated in the 7 previous pages pertains

to the "
particular solution" or "forced vibration" only. The

general solution consists of the damped free vibration superposed
on the forced vibration. After a short time the damped free

vibration disappears and the forced vibration alone persists.

Therefore, the forced vibration is also called the "
sustained

Fio. 41a. The diagram of Fig. 41 turned around so as to make the disturbing
force Po a real quantity.

vibration/' while the free vibration is known as the "transient."

The values of the constants C\ and 2 depend on the conditions

at the start and can be calculated from these conditions by an

analytical process similar to that performed on page 44. How-

ever, it is possible to construct the whole motion by physical reason-

ing only. As an example, consider the following problem:
A spring-suspended mass is acted on by an external harmonic

force having a frequency eight times as slow as the natural

frequency of the system. The mass is held tight with a clamp,
while the external force is acting. Suddenly the clamp is

removed. What is the ensuing motion if the damping in the

system is such that the free vibration decreases by 10 per cent

for each cycle?
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In solving this problem, it is first to be noted that its state-

ment is ambiguous, since it was not mentioned at what instant

during the force cycle the mass was released. To make the

FIG. 44. Starting transient.

problem definite, assume the release to occur at the moment
that the forced vibration would just have its maximum ampli-
tude. From the initial conditions of the problem it follows

that at the instant of release the mass has no deflection and no

velocity. We have prescribed the forced vibration to start with
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x = XQ and x = 0. These two conditions can be satisfied only

by starting a free vibration with x = x and x = 0. Then the

combined or total motion will start at zero with zero velocity.

Figure 44a shows the free vibration, 446 the forced vibration,

and 44c the combined motion.

It is seen that the transient disappears quickly and that the

maximum amplitude at the start is nearly twice as great as the

sustained final amplitude. If the difference between the free and

forced frequencies is small and if the damping is also small, the

diagram shows " beats" between the two frequencies (see page 7).

Because of damping such beats will disappear after some time . In

order to have sustained beats it is necessary to have two sustained

or forced vibrations.

Example: An automobile has a body weighing 3,000 lb. mounted on four

equal springs which sag 9 in. under the weight of the body. Each one of

the four shock absorbers has a damping coefficient of 7 lb. for a velocity of

1 in. per second. The car is placed with all four wheels on a test platform
which id moved up and down at resonant speed with an amplitude of 1 in.

Find the amplitude of the car body on its springs, assuming the center of

gravity to be in the center of the wheel base.

Solution: From Eq. (17a) the natural frequency is

u n = 27T/n
= -v/386/5,, = \/38679 = 6.6 radians per second

The damping of the system (four shock absorbers) is

c = 4 X 7 = 28 lb. /in. /sec.

The differential equation governing the motion is (12c?) of page 43. At

resonance the disturbing force is

oi)* + (coii)"
2

Here k = ~
1

' = 333 lb./in.; a = 1 in.; c = 28 Ib./in./sec., and w =

= 6.6 radians per second.

2 + (ca co)
2 = V(333) 2 + (185T2 = 380 lb.

From Eq. (34a) the amplitude of the car body is found:

Po 380 nA .

Zo = =
9g v ft r

= 2.06 m.
CO) ZO X O.O

16. Frequency-measuring Instruments. Figure 40 is the key
to the understanding of most vibration-measuring instruments.

A vibration is sometimes a wave of rather complicated shape.

When this wave has been traced on paper, everything regarding

the vibration is known, but in many cases such complete knowl-
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edge is not necessary. We may want to know only the frequency

or the amplitude of the motion or its acceleration. For such

partial requirements, instruments can be made very much

simpler and cheaper than if a record of the complete wave shape
were demanded.

First, consider the methods of measuring frequency only.

In many cases the vibration is fairly pure, i.e., the fundamental

harmonic has a much greater amplitude than any of the higher

harmonics. In such cases a measurement of the frequency is

usually easily made, and the result may give a hint of the cause of

the vibration. Frequency meters are based nearly always on

the resonance principle. For frequencies below about 100 cycles

per second, reed tachometers are useful. There are two types of

these: with a single reed and with a great many reeds.

The single-reed frequency meter consists of a cantilever strip

of spring steel held in a clamp at one end, the other end being

free. The length of the free portion of the strip can be adjusted

by turning a knob, operating a screw mechanism in the clamp.
Thus the natural frequency of the strip can be adjusted at will,

and for each length the natural frequency in cycles per second

is marked on the reed (see Fig. 120a on page 192). In use,

the clamped end is pressed firmly against the vibrating object,

so that the base of the reed partakes of the vibration to be

measured. The screw is then turned slowly, varying the free

length of the reed, until at one particular length it is in resonance

with the impressed vibration and shows a large amplitude at

the free end. The frequency is then read. Such an instrument

is made and marketed by the Westinghousc Corporation. (Type
JC-1 Vibrometer.)

Example: A variable-length, single-reed frequency meter consists of a

strip of spring steel of cross section 0.200 by 0.020 in. and carries a weight of

y oz. at its end. What should be the maximum free length of the cantilever

if the instrument is to be designed for measuring frequencies from 6 cycles

per second to 60 cycles per second?

Solution: The spring constant of a cantilever beam is 3EI/13
. The

moment of inertia of the cross section is 7 = y\$h* V\i X 0.2 X (0.02)
3

= % 10-' in.
4

. The bending stiffness El thus is 30 - 10 6 X ^ 10~ 7 = 4 Ib.

in. 2
,
and the spring constant k = 12/1*. The mass at the end is m =

l/(4 X 16 X 386) = 4.05 - 10~ 5 Ib. in.- 1 sec. 2 The mass per inch of strip is

/n = 0.004 X 0.28/386 = 0.29 10-Mb, in." 2 sec. 2 Since about one-quarter of

the strip length is effective as mass (see page 188), we have in total

m + = (4.05 -f 0.07/) 10-*
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The frequency of maximum length is 6 cycles per second, or w2
(2ir 6)

2

- 1,420 rad. 2
/sec.

2

Applying Eq. (16),

1,420
12 ' 106

Z
3
(4.05 + 0.07Q

or

l*(l + 0.0170 - 206

This equation can be solved by trial and error. Since the second term
in the parentheses (due to the mass of the strip) is small with respect to

the first term (due to the J^-oz. mass), we neglect the second term as a

first guess.

Z
3 - 206 or I - 5.9

With this, the parentheses becomes 1 -f 5.9 X 0.017 = 1.10, so that

.,
206

, Q_ .
,/<-_ =187m.

and
I = 5.72 in.,

which is sufficiently accurate.

The other type of frequency meter employs a great number
of reeds and is known as Frahm's tachometer. It consists of a

FIG. 45. Frahm'a tachometer.

light box b containing many small cantilever spring-steel strips a

placed in one or more rows. Each reed has a slightly higher

natural frequency than its left-hand neighbor, so that a whole

range of natural frequencies is covered. In use, the box is placed

on the vibrating machine with the result that most of the reeds

hardly move at all. However, one or two of them for which the

natural frequency is very close to that of the impressed vibration

will swing with considerable amplitude. This is made clearly

visible by painting the inside of the box dull black and giving

white tips c to the free ends of the reeds (Fig. 45). Tachometers

of this type are widely used.

The same instrument is also used for indicating the frequency of an alter-

nating electric current. The mechanical excitation of an impressed force is

replaced by an electric excitation. To this end one or more coils are placed
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in the box under the reeds. The current flowing through these coils produces
an alternating magnetic force on the reeds.

17. Seismic Instruments. For measurement of the amplitude
of the vibration a "seismic" instrument is ordinarily used, con-

sisting of a mass mounted on springs inside a box. The box
is then placed on the vibrating machine, and the amplitude of

the relative motion between the box and the mass follows the

diagram of Fig. 40 for the various frequencies of the motion to

be recorded. It is seen that, when the disturbing frequency is

large with respect to the natural frequency of the instrument,
the recorded amplitude yQ is practically the same as that of

the motion a . Thus to get a displacement-measuring device or

"vibrometer" it is necessary to give the instrument a natural fre-

quency at least twice as slow as the slowest vibration to be recorded.

In case the motion is impure, e.g., contains higher harmonics,
this does not present any difficulty, since any higher harmonic
has a higher frequency than the fundamental and will be recorded
still more precisely.

A seismic mass on springs is capable of recording accelerations

also. If the motion be a sin atf, the corresponding acceleration

is a w 2 sin ut, with the amplitude a co
2

. Now, the left-hand

branch of Fig. 40 (from w/con = to u>/con
= }$) has practically

this a w 2
characteristic. The equation of Fig. 40 is (page 61)

For small values of w/con ,
the denominator differs only slightly

from unity, so that the equation becomes approximately

or 2/0=2* a o<*>'
2

^n

Here l/o>* is a constant of the instrument, independent of the

frequency of the external vibration. Hence the extreme left-

hand part of Fig. 40 actually represents the accelerations at vari-

ous frequencies.

An accelerometer is a seismic instrument with a natural frequency
at least twice as high as the highestfrequency of the accelerations to be

recorded. This statement carries the possibility of a real diffi-

culty, because an impure motion contains harmonics of frequen-
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cies higher than the fundamental and it may well be that one of

these frequencies is very close to the natural frequency of the

instrument. This trouble is peculiar to the accelerometer. A
vibrometer is free from it since the harmonics in a wave are always

higher in frequency than the main or fundamental wave, so that

there is danger of resonance only when the recorded main fre-

quency is lower than the natural frequency of the instrument.

In order to avoid this particular difficulty, it is necessary to intro-

duce damping in the acceleromcter. Besides the original curve

of Fig. 40 (for c/cc 0) and the desired parabola of acceleration,

2.0

FIQ. 46. Resonance curves witb various amounts of damping compared with
the parabolic curve of an ideal accelerometer.

Fig. 46 shows two other curves, namely those for 0.5 and for 0.7

critical damping. Both these lie even closer to the desired parab-

ola than docs the undamped characteristic. Moreover, no reso-

nance is to be feared. An accelerometer, therefore, with damping
between half and 0.7 critical value will record accelerations up
to three-quarters of the instrument frequency without appreciable

error, while higher harmonics in the acceleration arc diminished

or, if their frequency is sufficiently high^ they are practically

suppressed.

The calculation of the curves of Fig. 46 is as follows: The differential

equation (12e), page 41, applies. Its solution [Eq. (32a), page 62] can bo-

used immediately, after replacing P by m^a^. Thus

is the equation of Fig. 46. The reader would do well to check the formula

with the figure for a few points.
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FIG. 47. Vibrometer for horizontal

and vertical motions.

The phase-angle formula (326) and the corresponding figure 426 can be

applied to this case without any change at all. It is interesting to note

that for a damping between 0.5 and 0.7 critical the phase characteristic

Fig. 426 differs but slightly from a straight diagonal line in the region
below resonance. This has the advantage of avoiding an error known as

"phase distortion." For each harmonic of an impure wave the damped
instrument shows a different phase angle between the actual wave and its

record. If this angle is proportional to the frequency, all the recorded

waves form the same combined pattern as the actual waves.

Historically, the oldest seismic instruments are the seismo-

graphs for the recording of earthquake vibrations. The elasti-

cally suspended mass in these

devices is sometimes very large,

weighing a ton or more. The
natural frequency is very low, of

the order of a single vibration

per 10 sec.

For technical applications a

great variety of portable instru-

ments are on the market, weigh-

ing from about 20 Ib. for general

use to a few ounces for airplane work. The main difference

among the various instruments lies in the manner of recording.

In the most simple ones a dial gage is attached to the frame of the

instrument and rests with its foot on the seismic mass. Figure 47

shows such an arrangement with one gage for horizontal and

one for vertical vibrations. The vibratory motion is usually so

rapid that the pointer of the gage is seen as two pointers with a

blurred region between them ;
twice the amplitude of the vibration

is then the distance between the two positions of the pointer. A
very simple and light instrument of this type is made by the Amer-
ican Instrument Company, Silver Spring, Md., under the name of

"Cordero Vibrometer."

In a variation of this scheme the dial gage is replaced by a tiny
mirror which is given a rocking motion by the vibration. The

light of a small automobile headlight passes through a slit and is

then reflected from the rocking mirror on a strip of ground glass.

With the mirror standing still the image is a line, which broadens

into a band due to the vibration. All instruments of these tj^pes,

where no permanent record is made, are called vibrometers. The
more elaborate vibrographs contain a recording mechanism, which

usually is larger than the seismic part of the instrument. Some
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have a pen recording on a band of paper, which is moved by

clockwork; some scratch the record on celluloid or glass, which

is examined subsequently under the microscope, and some throw

a light beam on a moving photographic film. Vibrographs some-

times are built without special damping devices. These devices

do appear in accelerometers, sometimes as dashpots with either air

or oil, but usually in the form of magnetic damping, where the

seismic mass carries a tongue or thin copper plate moving parallel

to its own plane in the narrow slit between the two poles of a

powerful electromagnet. The motion of the tongue induces

eddy currents in itself, and these currents develop a damping
force proportional to the velocity.

Example: The vibrograph is sometimes used without the seismic part at all,

i.e., as a mere recording device. In that case the instrument is mounted in a

place free from vibration, for example it is placed on a mass which is sus-

pended from a crane in the factory. The only connection with the vibrating

object is a needle which is pressed against the object with a spring; the other

end of the needle operates the recording mechanism. Find the spring pres-

sure on the needle which is necessary to hold it down on an object vibrating

as a sin cot. The mass of the needle and the connected moving parts of the

recording device is m.

Solution: If there were 110 spring at all, the vibrating object would lose

contact with the needle point as soon as the object would have a receding

acceleration. If there is no contact, the acceleration of the needle toward

the object is P/ra, where P is the spring pressure. This acceleration must

be at least equal to the maximum receding acceleration of the vibrating

object, so that

= a w2

m
or

P = raa<)0>
2

For recording torsional vibrations, a seismic instrument is

used which is a modification of a vibrograph. Instead of a mass

on linear springs the torsiograph contains a flywheel on torsional

springs. A very light aluminum pulley a (Fig. 48) is keyed to

the shaft b. The heavy flywheel c can turn freely on the shaft

but is coupled to it by a soft torsional spring d. When the pulley

is held, the flywheel can perform free torsional vibrations about

the shaft with a low natural frequency. When an alternating

angular motion is given to the pulley, the relative motion between

flywheel and pulley is again governed by the diagram of Fig. 40

(on account of the equivalence of the Figs. 23 and 24). Torsio-

graphs of this type are widely used for measuring the torsional
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vibrations of crank shafts of slow- and medium-speed internal-

combustion engines. Besides the vibration to be measured, such

a shaft has also a uniform rotation. In use, the pulley a is

driven from the crank shaft by means of a small canvas belt.

When the crank shaft rotates uniformly, the flywheel follows

and no relative motion between a and c occurs. When the

shaft rotates non-uniformly (i.e., has a torsional vibration super-

imposed on its rotation), the light pulley a will follow the shaft

motion faithfully. The flywheel c, however, has so much
inertia that it can rotate only at uniform speed. Thus the

vibration appears as a relative motion between a and c, which is

transmitted through a system of small bell cranks and a thin

rod located along the center line of the hollow shaft 6. The rod

FIG. 48. Seismic part of a torsiograph.

in turn operates a pen which scribes the record on a strip of

paper, moved under the pen by clockwork. This instrument,

known as the Geiger vibro- and torsiograph dating back to

1916, is marketed by the Commercial Engineering Laboratories,

Detroit, Mich. It is still suitable for slow-speed machines, such

as ship drives. However, for modern high-speed Diesel engines

the recording-pen system comes to local resonance and, more-

over, the magnification of the record obtainable (up to 24) is not

sufficient. Then the Summers mechanical torsiograph, made by
the General Motors Research Laboratories, Detroit, Mich., can

be used to advantage. It is good up to 10,000 cycles per minute

and gives a record in the form of a polar diagram.

Example: Let the flywheel c of the torsiograph of Fig. 48 be represented

approximately by a solid steel disk of 4^ in. diameter and 2 in. thickness.

The outside diameter of the pulley is 5 in. If the flywheel c is held clamped,
a string is wrapped round the pulley, and a %-lb. weight is suspended from
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one end of the string, the pulley circumference turns K in. (i.e., the weight
descends H in )

If, with this instrument, a record is taken of a torsional vibration of 3

cycles per second, what is the error in the reading? What is the error in the

recorded amplitude of the third harmonic of this curve?

Solution: First we have to find the natural frequency of the instrument.

The torsional stiffness k in inch pounds per radian follows from the fact that

a torque of % Ib. X 2 }A in. causes an angular deflection of rt , x
m

'- X 1 radian.
6 Y

/2 m.
Thus

, _ % X = 9.37 in.-Ib./rad.

The weight of the flywheel is

wy4 i -o I* X 2 X 0.28 Ib. = 8.9 Ib.

Its moment of inertia is

1 -
J""'

-
-2

' S(2
1)

2

-
- "' ''' ^*

The natural frequency thus is

ffi /ITS? /wn =
\j \Q jyrq

~ vl59 = 12.6 radians per second

/n =
^

n =
2~~

~ 2.0 cycles per second

The frequency to be recorded is 50 per cent higher. Thus by Kq. (30)

the ratio of the recorded to the actual amplitudes is

ac\2 9 0^\
)_ _. Z -Z _ i o

1 -
(1.5)

2 1.25

The third harmonic is 4^ times as fast as the natural vibration of the

instrument, so that its magnification factor is

_JH^li_ _ 20 ' 2^ - or"
19.25

" 1A)0

18. Electrical Measuring Instruments. The rapid develop-
ment in radio technique during the last decade has made pos-

sible a number of instruments that are generally much smaller

and more sensitive than the older mechanical types discussed in

the previous section. Most of these electrical
"
pickups" are still

seismic instruments, for either linear or torsional vibrations,

which operate on the same principle as the devices described in

the previous section but have electrical windings in them that

convert the mechanical vibration into an electrical voltage which



ELECTRICAL MEASURING INSTRUMENTS 81

can then be amplified and recorded by means of an oscillograph.

Figure 49a shows schematically a pickup for linear vibrations,

developed by Draper and Bentley, made and marketed under the

name "Sperry-M.I.T." by the Sperry Gyroscope Company,
Brooklyn, N.Y. and by the Consolidated Engineering Corpora-

tion, Pasadena, Calif. The electrical apparatus inside this unit,

which has over-all dimensions of about 1 in. and a weight not

exceeding 2 oz., is practically the same as that found in a dynamic

type of radio loud-speaker. The instrument is a body of revolu-

tion which can be conceived of as generated by a rotation about

its vertical center line. The part a is a piece of steel which is

seismically supported on springs c. An important item, not

FIG. 49a. Sei.smo-electrio

pickup, being essentially a loud-

speaker element.

FIG. 49fr.- Torsiograph-
seismo-electric pickup.

shown in the figure, is the guiding of the mass a, the motion of

which is restricted to the vertical direction entirely. No lateral

motion of a can be allowed. In the hollow interior of a, a coil b is

mounted around the central cylindrical core. This coil is ener-

gized by direct current so as to make a magnet out of a. Some-

times, for simplicity, the coil b is omitted and the part a is

fashioned as a permanent magnet of some special alloy steel.

The magnet a, being a body of revolution, has a ring-shaped air

gap with a radial magnetic field, into which is inserted a thin

paper cylinder e carrying a coil around it of extremely thin wire.

The paper cylinder e is attached to the cover of the housing d and

the entire apparatus is supposed to be attached to the machine of

which the vibration is to be measured. Any motion of the

magnet a in a vertical direction will cause a relative motion

between the magnet and the "
voice coil" e and will set up

an electrical alternating voltage in e. This voltage, which is

proportional to the velocity of relative motion, is now fed into
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an amplifier and after sufficient magnification is recorded on an

oscillograph film. Oscillographs suitable for this work have been

developed in the last decade primarily in connection with appli-

cations of oil prospecting and are now readily available on the

market.

A torsiograph pickup of a similar type is illustrated in Fig. 496

where a is the torsionally seismic element comparable to the part

c in Fig. 48. This seismic element is made to be a permanent

magnet with a north and a south pole as indicated. It can

revolve freely on a soft torsional spring around the core d which

is rigidly attached to the shaft of which the torsional vibration

is to be measured. The core d carries a voice coil e. The mag-
netic field travels from the north pole to the south pole across

FIG. 49c. Integrating circuit to transform a velocity i coord into an amplitude
record.

the core d and any relative torsional motion between a and d

will cause voltage variations in the voice coil e, the intensity of

which is proportional to the angular velocity of the relative motion.

The records obtained on the oscillograph from either of these

two instruments therefore indicate velocity rather than ampli-

tude. This in itself is no particular disadvantage, but for certain

applications it is more convenient to have a direct record of the

amplitude instead of performing the necessary integration

numerically or graphically on the record. This can be done

electrically by means of the so-called
"
integrating circuit" illus-

trated in Fig. 49c. In this figure, e is again the "
voice coil/'

carrying a voltage proportional to the velocity. This voltage is

fed into a C-fl-series circuit so proportioned that the voltage
across the resistance is many times, say ten times, greater than

the voltage across the condenser. The voltage across the resist-

1 f
ance is iR and the voltage across the condenser is -^ I i dt, and

if the first voltage is very much greater than the second, it is

permissible to say that the voltage iR is practically equal to the

total voltage V of the voice coil. Since, therefore, V is directly
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proportional to i (or to the velocity), the voltage across the

condenser is directly proportional to Jidt (or to the integral

of the velocity) which is exactly the quantity we are looking for.

These relations are illustrated for harmonic variations in the

vector diagram of Fig. 49c. The integrated voltage is then put
on the grid of the first tube of the amplifier. Since the voltage
across the condenser is about one-tenth part of the total voltage,

the sensitivity of the scheme is cut down by a factor 10, which

means that an additional stage of amplification is necessary.

Amplifiers of a sensitivity independent of the frequency can be

easily built for frequencies higher than 10 cycles per second and

FIG. 49d. Instrument operat-

ing on the principle of variation

of reluctance, employing a carrier

current of a frequency sub-

stantially higher than that of the

vibration to be measured.

FIG. 49e. Wheatstone-

bridgo circuit for the

instrument of Fig. 49d.

recently have been made even down to % cycle per second, and

up to 8,000 cycles per second, thus covering the entire practical

frequency range for mechanical work.

For vibrations of very slow frequency another electrical prin-

ciple known as the "
variation of reluctance

7 ' has been employed,
which is illustrated in Figs. 49d, e, and /. In Fig. 49d, the two

pieces a are rigidly attached to each other and they carry coils c

which are energized by a constant voltage of a frequency that

is high with respect to the frequencies that are to be measured.

Usually, ordinary 60-cycle current will suffice for vibrations

slower than 15 cycles per second; however, if vibrations consider-

ably faster than this are to be recorded, a special alternator of

say 500 cycles per second is used to energize the coils c. The

voltage of the alternator is fed through the two coils c in series.

A core 6, made of laminated steel sheets like the U-pieces a, is

mounted between these U-pieces so that the air gaps between

them are as narrow as practicable. The central piece 6 vibrates
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back and forth between the two pieces a, thus varying the air

gaps with the frequency of the vibration. If the two air gaps
on the two sides of b are exactly alike, the voltage of the alter-

nator is equally divided between the coils c; but if the air gaps
of one of the pieces a are wider than those of the other piece a,

then the voltages of the two coils c differ. The instrument is

connected in a Wheatstone-bridge circuit as shown in Fig. 49e

in which the coils are balanced by two equal impedances d.

For equal air gaps and consequently equal voltages across c, the

instrument in the Wheatstone bridge will show a zero reading,

and the reading of that instrument will be proportional to the

difference between the two air gaps. Naturally, the meter is

FIG. 49/. Record obtained from the Wheatstone bridge.

affected by a current of a frequency equal to that of the exciting

source; and if the instrument is replaced by an oscillograph, a

record such as the upper one in Fig. 49f results. The fast varia-

tions in this record are those of the exciting alternator and the

slow variation of the envelope is the effect we are looking for.

For greater ease of reading, sometimes an electrical rectifier is

inserted in the instrument branch of a Wheatstone bridge which

transforms the upper record of Fig. 49/ into the lower one. The

apparatus of Fig. 49d can be used as a seismic instrument where

the two pieces a are mounted scismically, whereas b is directly

attached to the object to be measured. It has also been used

as a strain meter where the two pieces a are attached to one part

of the structure to be measured, while the central piece b is

attached to some other part of that structure.

The device under the name "Siemens-McNab Electric Torsion

Meter " has been used for measuring the horse power of ships'

shafts while under way. The part a of Fig. 49c? is attached to a

sleeve clamped on one section of the propeller shaft. The part

6 is attached to another sleeve, clamped to a section of the shaft

some 3 ft. away from the first. If this length of 3 ft. of shafting

twists with the strain, the parts b and a change position relative
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to each other, while rotating with the shaft. Turning to Fig. 49e,

the parts c, c rotate with the shaft, and the current is supplied

the shaft through three slip rings. But the non-rotating instru-

ment contains not just dead resistances d, but again a complete

set-up like Fig. 49d. The relative povsition of the (non-rotating)

pieces b and a is varied with an accurate micrometer screw until

the ammeter reads zero. Then the rotating and non-rotating
air gaps must be alike; their position, and hence the shaft torque,

is read off the non-rotating micrometer screw.

A device which has become very important in recent years is

the resistance-strain-sensitive wire gage, first used by Simmons
and Datwyler, further developed by Ruge and De Forest,

marketed under the trade name " SR-4

gage" by the Baldwin Locomotive

Works, Philadelphia, Pa., and now in f < : i

universal use, particularly in the air-

craft industry. The gage is made of
. , . /r. ~m . x . <M i i j_ Fiu. 490. Wire-strain gage.

very thin (0.001 in.) wire of high electric
*

resistance (nichrome) arranged as shown in Fig. 49(7 and mounted

between two thin sheets of paper. The total length is about an

inch; the total electric resistance is about 500 ohms. The gage is

glued to the metal object under test, and if the metal (and con-

sequently the nichrome wire) is strained, its electric resistance

changes. The strain-sensitivity factor, which is the percentage

change in resistance divided by the percentage change in length, is

about 3. This means that for a stress of 30,000 lb./in.
2 in steel,

where the strain is 0.001
,
the resistance changes by 0.003, so that in

a gage of 500 ohms resistance the change in resistance is 1.5 ohms.

Figure 49/i shows how the gage may be connected in a circuit.

The battery voltage is divided between the gage a and a steady

resistance b. If the strain and hence the resistance of a varies

with time, so will the voltage across its terminals, and this vary-

ing voltage is put on the grid of the first vacuum tube in an'

amplifier, and from there passed on to an oscillograph.

Figure 49z shows the adaptation of this method to the meas-

urement of twist in a shaft. It is well known that in a shaft in

torsion the maximum strains have directions of 45 deg. with

respect to the longitudinal axis of the shaft. Therefore, if two

strain gages are glued on as shown, and the shaft is twisted, one

of the gages will be elongated and the other one will be shortened.

The voltage of the direct-current battery, therefore, will be
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unequally divided between the two strain gages and the varia-

tions in voltage will follow the strain and consequently the torque
in the shaft.

The particular advantage of the strain gages just described

lies in their extreme lightness. For the measurement of stresses

in airplane propellers or turbine blades, where the centrifugal

field is as high as 9,000 g, only a pickup of practically no weight
is at all feasible. The introduction of electric-resistance-strain

gages has made possible for the first time the reliable measure-

ment of vibrational phenomena in airplane propellers.

For variations of very slow frequency, the ordinary amplifier

does not work, and the gages are energized by a high-frequency

current, much as in Fig. 49e. The Foxboro Company, Foxboro,

Mass., is marketing an instrument under the trade name "Dyna-

FIG. 49/i. Circuit for electric

resistance-strain gage.

FIG. 41H*. Two strain gages
mounted at 45 deg. on a shaft

to form a torsion-sensitive unit.

log" with a 1,000-cycle carrier current generated by a vacuum
tube oscillator built in the instrument. The wiring diagram is

somewhat like Fig. 49e, where c, c are the two gages, one in

tension, the other in compression, and d, d are condensers, one

fixed, the other variable. The unbalance current of the bridge,

instead of passing through the ammeter of Fig. 49e passes through
a small motor which turns the shaft changing the capacity of the

variable condenser d, until new balance is obtained and the motor

current is zero. The position of the condenser shaft indicates

the strain, which can be read easily to 1 per cent of full scale, the

full scale commonly being a strain of 0.001 in./in.

In conjunction with this Dynalog there are available a number
of

"
pickups" for the measurement of various quantities, such as

strain, stress, and pressure. The pressure pickups have the

appearance and size of spark plugs and can be screwed into the

pipe line. They contain a member which is strained proportionally
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to the fluid or gas pressure, and to which an SR-4 gage is attached.

They come in various sensitivities, the most sensitive being to

600 lb./in.
2 full scale, while the least sensitive ranges from to

20,000 lb./in.
2 full scale. Also there are spark-pluglike differ-

ential pressure gages, the most sensitive of which registers from

to 100 in. of water head full scale, superposed on a basic pressure

of 500 lb./in.
2 or higher.

The stroboscope is a device for producing intermittent flashes

of light by means of which rapid vibratory motions can be made
to appear to stand still or to move very slowly. In a good strobo-

scope the flashes of light are of extremely short duration. Imag-
ine a vibrating object illuminated with this kind of light which

is adjusted to the same frequency as the vibration. The object

will be seen in a certain position; then it will be dark, and conse-

quently the object is invisible while traveling through its cycle.

When it returns to the first position after one cycle, another flash

of light occurs. Thus the object appears to stand still. If the

frequency of the flashes differs slightly from the frequency of the

motion, the vibration will apparently take place very slowly.

There have to be at least 15 flashes per second in order to create

a good, non-flickering illusion of standstill, just as in a moving-

picture projector. The sharpness of the picture obtained

depends on the fact that during the time of the flash the object

moves very little. A flash of long duration will blur the picture.

The modern developments in vacuum and gas-filled tubes have

made it possible to construct stroboscopes giving flashes of great

intensity and of very short duration. The frequency of the

flashes can be read on a calibrated dial as in a radio receiver.

Thus for rather large amplitudes the instrument can be used as

frequency and amplitude meter combined.

For smaller amplitudes, the stroboscope in conjunction with

a seismically mounted microscope is useful. Take a seismic mass

of very low frequency, carrying a microscope. Paste a very
small piece of emery cloth to the vibrating object and focus the

microscope on the emery, which is illuminated by stroboscopic

light. The individual emery particles will appear as sharp

points, which, on account of the stroboscope, run through
closed curves. Thus the frequency and the amplitude can be

determined.

Some stroboscopes have two or more lamps available which

are operated from the same circuit and thus flash simultaneously.
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This is very useful for finding phase relations. Suppose that

two parts of a machine are vibrating at the same frequency
and that it is desired to know whether the vibrations are in

phase or in opposition. Each of two observers takes a lamp,
the flash frequency being regulated so that the vibration appears

very slow. They now observe the two spots and the first

observer signals each time his vibration is in one of the two

extreme positions. The other observer can then easily check

whether his motion is in phase or in opposition. A very con-

venient instrument, developed by Edgerton, is marketed by the

General Radio Company, Cambridge, Mass., under the trade

name "Strobotac."

Example: We wish to observe stroboscopically a point located 4 in. from

the axis of a machine rotating at 10,000 r.p.m. If we desire a blurring of less

than J^2 m ->
what should be the duration of the light flashes?

Solution: The point in question travels per second

. 2T 4 = 4,200 in. = 135,000 X ^2 in.

Thus the flash should last 1/135,000 sec. or less.

An interesting torsiograph, based on an entirely different prin-

ciple, was developed by the General Motors Research Labora-

tories. It is called the "
phase-shift torsiograph" and consists of

a thin (say KG in.) wheel with a large number of equally spaced
teeth (say 300) mounted on the rotating shaft. Two small

electromagnets with windings are brought close to the toothed

wheel, which operates somewhat like an inverted electric clock.

The teeth passing by set up an alternating voltage of tooth-pass-

ing frequency in the two coils. This frequency is constant only
if the shaft rotates uniformly; if the shaft executes a torsional

vibration the record of the current shows alternate sine waves

bunched close together and further apart. This variable fre-

quency output current is fed into a box and mixed with a con-

stant frequency current of average frequency generated by a

vacuum tube oscillator. Thus the two currents will have a

constantly varying phase angle between them, and by a clever

trick it is possible to take an oscillograph record in which the

torsional vibration amplitude shows directly against time. The

advantages of this method are the absence of slip rings, the possi-

bility of installing it on engines so compactly built that there

is no space for any other instrument, and that the record is
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independent of the amplification ratio of the electronic apparatus,
since it depends on phase angles only. It is interesting to note

that the
"
seismic

"
element in this method is no longer a mechan-

ical flywheel running at constant speed, but rather the vacuum
tube oscillator producing a current of constant frequency.

Finally, for electric wave analyzers, see page 24 in the section

on Fourier series.

19. Theory of Vibration Isolation. An unbalanced machine

has to be installed in a structure where vibration is undesirable.

Such a situation is not uncommon. An alternating-current

elevator motor in a hospital or hotel and the engine in an auto-

mobile are examples. The problem consists in mounting the

machine in such a manner that no vibrations will appear in the

structure to which it is attached.

Its universal solution consists in properly mounting the

machine on springs, and again Figs. 38 and 40 contain the infor-

mation for the correct design of such mountings. In Fig. 50 the

machine is represented as a mass m with a force P sin wt acting

on it. In Fig. 50a it is attached solidly to its substructure, while

in 506 it is mounted on springs with a combined vertical flexibility

k (the k of Fig. 50a is infinitely large). For simplicity the sub-

structure is assumed to be rigid. If now P is held constant and

the frequency is varied, the amplitude of motion of m varies

according to the diagram of Fig. 38.

Our problem consists in finding the magnitude of the force

transmitted to the substructure by the machine. Since only
the springs k are in contact with the foundation, the only trans-

mitted force can be the spring force, which has the amplitude kx

(damping being considered absent). The ordinates of Fig. 38

represent the ratio of the maximum displacement XQ of the mass

to the static displacement x8t
= Po/k. Thus

~ ,. , XQ XQ kxQ spring force
Ordmate = =

=-77-
= -=~ = - *- >=

xe t iQ/k PQ impressed force

transmitted force ... . .,.,.,_ ,,=
j-7 = transmissibmty

impressed iorce

The ideal is to have this ratio zero; the practical aim is to make
it rather small. In Fig. 50a the spring constant k = <x> and

hence the natural or resonant frequency is infinite. Therefore,
the operating frequency w of the force is very slow with respect

to the natural frequency; i.e., we are at the point A of Fig. 38,
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so that the transmitted force equals the impressed force. Phys-

ically this is obvious, since a rigid foundation was assumed and

thus the mass m cannot move: the whole force P must be trans-

mitted to the foundation. The diagram of Fig. 38 shows immedi-

ately that it is necessary to design the supporting springs so as to

make the natural frequency of the whole machine very slow compared

1
P sin Ut iP sinwt

(a)

(b)

FIG. 50. A support of very flexible springs prevents vibrations from being
transmitted to the foundation.

with the frequency of the disturbance; in other Avords, the springs

should be very soft.

An inspection of this diagram and its formula (28a) reveals that

if to is smaller than o>n\/2 = \/2K/m, the springs actually make
matters worse: the transmissibility is greater than one. If the

natural frequency is one-fifth of the disturbing frequency, the

transmissibility is 1 part in 24. This is fairly good, but in many
cases it is better to make the springs softer yet.

Thus far, the support has been considered to be entirely with-

out damping, which is practically the condition

existing in steel springs. Sometimes, however,
rubber or cork padding is used for this purpose,
and then the damping is not negligible. The

system can then be symbolized by Fig. 51
;
the

amplitude of the motion of m being shown by
one of the curves of Fig. 42. In this case the

displacement curve is not directly proportional
to the amplitude of the transmissibility curve,

as was the case with no damping. Now the transmitted force is

made up not only of the spring force kxo but of the damping force

CCO.TO as well. It was shown on page 64 that these two forces (being
in phase with the displacement and the velocity respectively) have
a 90-deg. phase angle between them. Consequently their sum,

being the total transmitted force, is [Eq. (6), page 6]

|p
sincJt

F i o . 5 1 . A
Apr ing support
with damping.

2 + (ceo)
2

(35)
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The amplitude x is given by formula (32a) on page 64 so that

(35) becomes

Transmitted force =

or, since P is the impressed force,

Transmissibility =
1 +

(36)

which actually reduces to formula (28a) on page 57 for the case

of zero damping, c/cc
= 0. This relation is shown graphically

o i Yz a

/

Fro. 52. Showing that damping in the spring support is advantageous for

a; < con \/2 but is detrimental for w > con v2.

in Fig. 52. Damping is seen to be advantageous only in the region

co/W < 1.41 (where spring mounting makes matters worse); for

all values of co/o>n where spring mounting helpsf
the presence of

damping makes the transmissibility worse.

This rather paradoxical statement is not quite so important
as it sounds. In the first place, the bad effect of damping is

not great and can be easily offset by making the springs some-
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what weaker, i.e.j by moving somewhat more to the right in

Fig. 52. On the other hand, though it is not our intention to

run at the resonance point co/o>n
=

1, this unfortunately may
sometimes occur, and then the presence of damping is highly

desirable. Thus in spite of the dictum of Fig. 52, some damping
in the springs generally is of advantage.

20. Application to Single-phase Electrical Machinery. Prac-

tical cases of isolation by means of springs occur in many machines.

The main field of application, however, lies in apparatus which is

inherently unbalanced or inherently has a non-uniform torque.

Among the latter, single-phase electric generators or motors and

internal-combustion engines are the most important.

First, single-phase machines are to be discussed. As is well

known, the torque in any electric machine is caused by the pull

of the magnetic field on current-carrying conductors. The

magnetic field itself is caused by a current flowing through the

field coils. If the machine is operated by single-phase alternating

current of say 60 cycles per second, it is clear that the current

flowing into the machine (and through the field coils) must
become zero 120 times per second. But at zero current there is

zero magnetic field and hence zero torque. Without knowing

anything about the mechanism of such a machine we may sus-

pect the torque to be some alternating periodic function of

120 cycles per second.

A more exact analysis is as follows: In any electric machine the instan-

taneous power in watts (which is of the dimension of work per second) equals

the product of voltage and current, or

Watts = ei

If the voltage on the machine is e emax sin cot (where co = 60 X 2?r radians

per second), and i = tmax sin (ut </?),

WattS = Imaxl'max sin O>t Sill (w <f>)

= CmaxVmax sin ojt (sin cot cos <p cos at sin <p)

= 6max?max (sin
2

cot cos <p s'ui cot cos cot sin <p)

= [cos <p(l
- cos 2orf)

- sin <p sin 2<*t]

a
^^[COS <p

- COS (2ut
-

<?)]

This is seen to consist of two terms, one independent of the time, representing
a steady flow of power (which is the purpose for which the machine is built),

and another harmonically alternating with frequency 2o>. This latter term

does not deliver power during a long period of time, because its positive
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parts are neutralized by corresponding negative parts. The torque is found

from the power as follows:

_ work torque X angle . vx . . . xPower = ^Ed = ^^d torque x angular vclocity

Thus all conclusions drawn for the power hold also for the torque when the

angular velocity is constant, which is practically the case for a running
machine.

The torque-time relation is given in Fig. 53, showing in this

particular case that the amplitude of torque variation a is 30 per
cent larger than the steady rated torque b of the machine.

Though this represents a bad condition, the best that can possibly

FIG. 53. The torque of a singlo-plia.se a.c. motor is a periodic function having
twice the frequency of the line voltage.

occur is that a = b. Then the torque merely becomes zero 120

times per second but does not become negative.

The machine consists of two parts, a rotor and a stator. Though
it is the object of the machine to deliver torque to the rotor,

Newton's law that action equals reaction requires that an equal
and opposite torque act on the stator. If this stator is solidly

bolted to its foundation, we have the torsional equivalent of the

case of Fig. 50a. The torque reaction is fully transmitted to the

foundation and from there can travel far and wide. Though
the vibratory motion thus broadcast is usually very small, it may
be that at quite a distance from the source there is a beam or other

structure having for its natural frequency the same 120 cycles.

That structure will pick up the motion and magnify it by reso-

nance. A case is on record concerning a number of large single-

phase generators installed in a basement in New York City.

Complaints of a bad humming noise came from the occupants of
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an apartment house several blocks from where the generators

were located, while the neighbors much closer to the source did

not complain. The obvious explanation was that the complainers
were unfortunate enough to have a floor or ceiling just tuned to

120 cycles per second. The cure for the trouble was found in

mounting the generators on springs, as shown in Fig. 54.

Since the disturbance is a pure torque and not an up-and-down

force, the springs have to be arranged in such a fashion that the

stator can twist (i.e., yield to the torque). The stiffness of the

FIG. 54. Spring support for large single-phase generators to take the torque
reaction.

springs has to be so chosen that the torsional natural frequency
of the stator on the springs is about one-seventh of 120 cycles per

second.

In an actual construction for a large machine the springs of

Fig. 54 are usually not coil springs as shown but rather beams of

spring-steel loaded in bending, arranged with their length direc-

tion parallel to the axis of rotation of the generator. Figure 55

is a sketch of such a construction (cross section AA of Fig. 54) ;
a

denotes the stator, b the supporting foot, and c the beam spring,

which carries its load on four points.

Small single-phase motors are used extensively in domestic

appliances like refrigerators, washing machines, etc. Some-
times such motors have a pinion on the shaft, driving a gear, and

then it becomes imperative to support the rotor bearings so that

they are very stiff against either vertical or lateral displacements
in order to secure good operation of the gears. On the other
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hand, the stator should be mounted very flexibly in the rotational

mode of motion.

There are several constructions on the market whereby both

these requirements are satisfied. Two of them will be described

here. Their common feature is that the rotor bearings are built

solidly into the stator (which constitutes a difference from Fig. 54

l-i,"

4

FIG. 55. Detail of beam spring for machine of Fig. 54.

where the bearings are mounted solidly on the floor so that the

springs are between the rotor bearings and the stator). This

solid rotor-stator unit is mounted on springs to the base or floor.

The manner in which this is done, however, varies considerably.

In the first construction (Fig. 56) each end of the stator is

mounted in a heavy rubber ring a which is held in the foot b

bolted to the floor. Rubber is a material which can be stretched

FIG. 56. Support of small single-phase motor in a rubber ring a, which is

flexible in torsion and stiff against vertical or lateral displacements.

enormously within the elastic limit, but at the same time it is

extremely resistant to changes in volume: if a band of rubber is

stretched to twice its length, its average cross section becomes

half as small. (Another way of stating this is that rubber has a

Poisson's ratio of one-half.) Owing to this property, the bearing

inside the rubber ring can hardly move sidewise with respect to

the foot, because that would mean thinning of the ring on one

side, which can occur only if rubber escapes vertically. This,
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however, is prevented by friction, so that the ring forms a stiff

link between the bearing and the foot as far as lateral (or vertical)

motions are concerned. Against rotation of the bearing in the

foot, however, the rubber opposes only a shearing reaction, which

can take place without a change in volume, making the ring

flexible with respect to that motion.

The second method of accomplishing the same result is equally

ingenious and is shown in Fig. 57. The bearing is supported
on a strip of steel, bent so as to have two 45-deg. sections and

three horizontal sections (being the spring and supporting foot

in one). This amounts to having two 45-deg. beams between

the floor and the bearing, built in at each end. The design is

FIG. 57. Small-motor spring support consisting of two 45-deg. sections passing

through the center of the machine.

such that the center lines of the beams pass through the bearing

center. Any vertical or horizontal displacement of the bearing

is associated with either tension or compression in the beams,
whereas a turning of the bearing only bends the beams. Since

thin strips are flexible in bending but very much stiffer in direct

tension or compression, the desired result is obtained.

21. Application to Automobiles; "Floating Power." Internal-

combustion engines have a torque-time diagram which does not

differ appreciably from that of Fig. 53. For a four-cycle engine

its frequency is ^ X (r.p.m.) cycles per minute where n is the
&

number of cylinders. This will be explained in detail on page

248; here it is of interest only to know that the non-uniformity in

torque exists. With the engine mounted rigidly on the frame,
these torque variations have reactions on the car which may
make themselves felt very uncomfortably. The obvious remedy
is to mount the engine so that the free rotary vibration about

the torque axis takes place very slowly, or, more precisely, so

that the natural frequency of such a vibration is appreciably
lower than n/2 times the running speed.
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This can be accomplished conveniently by mounting the whole

engine block on two journals, fore and aft, supported in bear-

ings attached to the chassis, enabling the block to rotate about

an axis practically parallel to the torque axis and passing through
the center of gravity (shown as AA in Fig. 58). Without

anything other than the construction just described, the block

would be free to rotate about the A -axis. This is prevented by a

cantilever leaf spring B between the block and the frame, of

which the stiffness is so chosen as to make the natural frequency

sufficiently low.

FIG. 58. Scheme of "floating-power" automobile engine.

Besides having an unbalanced torque, a four-cylinder engine
also experiences some horizontal and vertical inertia forces (see

page 221), which naturally have reactions at A and B. For

this reason the bearings A as well as the end of the spring B are

embedded in rubber.

In the actual construction, the axis AA is not quite parallel

to the torque axis. This is correct procedure, for generally

the torque axis is not a principal axis of inertia and consequently

does not coincide with the corresponding axis of rotation.

Any rigid body has three "principal axes of inertia." Consider, for

instance, an elongated solid piece of rectangular steel (Fig. 59) and attach

to it a (weightless) shaft passing through the center of gravity but not

coinciding with one of the principal axes (here axes of symmetry). The bar

and shaft lie in the plane of the drawing. Apply a sudden torque to the

shaft, and consider the acceleration caused by it. The upper part of the

bar is accelerated into the paper, the lower part comes out of the paper (as

indicated by dots and crosses in the figure). Multiplied by the mass of the

respective elements these accelerations become "inertia forces." It is

clear from the figure that these inertia forces multiplied by their distances

from the shaft form a torque, which is equal and opposite to the impressed

torque. Moreover, these forces multiplied by their distances to the vertical
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dotted line have a torque about that line as an axis. This will have its

reaction in the bearings; the right-hand bearing will feel a force pushing it

toward the reader out of the paper, and the left-hand bearing is pushed into

the paper. Now if the bearings were absent, it is clear that under the

influence of the torque the body would not rotate about the torque axis (since

forces at the bearings are required in order to make it do so). Thus, in

general, a body under the influence of a torque will rotate about an axis

not coinciding with the torque axis (if the torque axis is not a principal axis).

Fia. 59. Rotation about an axis different from a principal axis of inertia results

in rotating reaction forces at the bearings.

The axis, about which the "
floating-power" engine has to be

suspended, therefore should not be the torque axis itself but

rather the axis of rotation belonging to the torque axis. Only
when the torque axis is a principal axis do the two coincide.

There are several other constructions of spring-supported auto-

mobiles on the market, most of which are similar in principle to

the scheme of Fig. 58. Some have one rubber support at the

rear of the engine and two rubber supports close together at the

same height in the front. These two are virtually a combination

of the single bearing A and the restoring spring B of Fig. 58.

Example: A four-cylinder automobile engine weighing 400 Ib. is supported
as indicated in Fig. 58. The radius of gyration of the engine about the axis

AA is 6 in., the distance a is 18 in., and the length / of the cantilever is 4 in.

The diameter of the rear wheels is 30 in. and in high gear the engine makes
three revolutions per revolution of the rear wheels. It is desired that the

engine be in resonance at a speed corresponding to 3J- m.p.h. in high gear.

a. What should be the spring constant of the centilever?

6. If one of the four cylinders does not spark properly, at what other speed

is trouble to be expected?
Solution: a. 3% m.p.h. = 61 in. per second. The circumference of the

wheel is 307r = 94.2. At the critical speed the wheel makes 61/94.2 =

0.65 r.p.s. and the engine therefore runs at 3 X 0.65 = 1.95 r.p.s. The

torque curve of the engine goes through a full cycle for every firing. Since

there are two firings per revolution in a four-cylinder, four-cycle engine,

there are 3.9 firings per second. The natural frequency of the engine is

desired to be/n = 3.9 cycles per second or co = 47r2 (3.9)
2 = 600 rad. 2

/sec.
2

= k/I. Here k is the torque caused by the cantilever per radian twist.

The deflection at the end of the cantilever for a twist of <f> radians is 18^ in.



PROBLEMS 99

If ki be the linear stiffness of the cantilever in lb./in., the spring force is

I8ki<f> lb., acting on a moment arm of 18 in., so that the torque is 18 X 18ki<p.

Thus

Further

/ =
|^ (6)

2 = 37 lb. in. sec. 2

so that

and

W 2 = 600 =
o/

fcl _?Zx. OTlb .

. ,m

b. If one cylinder fires inadequately, there is another periodicity in tho

torque curve for each two revolutions of the engine. Since this disturbance

is four times as slow as the one discussed, it comes to resonance with tlio

natural frequency* of the engine at a speed of 4 X 3.5 = 14 m.p.h.

Problems

10. Derive the results (32a) and (326) in the manner indicated directly

below Eq. (31).

11. Derive Eq. (28) by an energy method.

12. A rotor of weight W and of moment of inertia /

about its axis of symmetry is laid with its journals on

two guides with radius of curvature R (Fig. 60). The
radius of the journals is r. When the rotor rolls with-

out sliding, it executes small harmonic vibrations about

the deepest point of the track. Find the frequency

(energy method, see pages 46 and 50).

13. The same problem as 12,

f
l

"j except that the track is straight
'

S' ^ '

x^'^v 1 (ft
=

) and the rotor is unbal-
/>TN\ anccd by a small weight w attached

to it at a distance r\ from the axis.

14. Two cylindrical rolls are

located at a distance 2a apart; their

bearings are anchored and they
rotate with a great speed o> in opposite directions (Fig.

61). On their tops rests a bar of length / and weight
W. Assuming dry friction of coefficient / between the

rolls and the bar, the bar will oscillate back and forth

longitudinally, (a) Calculate its frequency, (b) If

one end of the bar A is pushed into the paper somewhat
and B is pulled out, is the equilibrium stable or

unstable?

16. A pendulum consists of a stiff weightless bar of

length / carrying a mass m on its end (Fig. 62). At a

distance a from the upper end two springs k are at-

tached to the bar. Calculate the frequency of the

vibrations with small amplitude. FIG. 62.

WW
k

11
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FIG. 63.

-A/W- T
*a \

LA-u^U

A/VW-

16. Turn Fig. 62 upside down, (a) Find the relation between a, m, and /

for which the equilibrium is stable. (6) Find the frequency.

17. Calculate the frequency of the stator of Fig. 54. The linear stiffness

of each of the four springs is k, their average distance from the center of the

rotor is a, and the moment of inertia of the stator is /.

18. Calculate the frequency of Problem 17 for the spring system of Fig. 55.

The beams c are made of steel with

a modulus of elasticity E\ their

dimensions are /i, Z 2
, w, and t as in-

dicated in the figure.

19. A stiff weightless horizontal

bar of length / is pivoted at one end

and carries a mass m at its other end

(Fig. 63). It is held by an inexten-

sible string of length h. If the mass

is pulled perpendicularly out of the

paper and then released, it will oscil-

late. Calculate the frequency.
20. A mass m is attached to the center of a thin wire of cross section A

and total length I which is stretched with a large tension of T Ib. between

two immovable supports. The modulus of elasticity of the wire is E.

Calculate the frequency of the vibrations of the mass in a plane perpendicu-
lar to the wire.

21. A heavy solid cylinder of diameter D,

length I, and mass m can roll over a hori-

zontal surface. Two springs k are attached

to the middle of / at a distance a above the
y
^///^///////////^

center (Fig. 64). Calculate the frequency.

22. Find an expression for the linear

spring constant k of a steel coil spring of wire diameter d, coil diameter D,
and having n turns. Calculate k numerically for d = 0.1 in., D = 1J^ in.,

and n = 10.

23. Find the torsional-spring constant of a coil spring, i.e., a coil spring

of which the ends are subjected to torques about the longitudinal axis of

the spring. Calculate this k numerically for the spring of Problem 22.

24. Find the spring constant k in bending of a coil spring, i.e., the bending
moment to be applied to the ends of the spring divided by the angle through
which the two ends turn with respect to each other. Calculate this k

numerically for the spring of Problem 22.

25. What are the expressions for the linear-spring constants of

m a. A cantilever beam of bending stiffness El with

the mass attached to the end /?

6. A beam of total length / on two supports with the

mass in the center?

c. A beam of total length I built in at both ends

with the mass in the center?

26. Calculate the frequency of the small vertical

vibrations of the mass m of Fig. 65. The two bars arc

supposed to be stiff and weightless. The mass is in the center between k 3

FIG. 64.

FIG. 65.
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IMG. lift.

and k 4 ,
and & 3 is midway between ki and 2 . The mass is guided so that it can

move up and down only. It can rotate freely and has no moment of inertia.

27. A point on a machine executes simultaneously a horizontal and a
vertical vibration of the same frequency. Viewed with the seismic micro-

scope described on page 87 the point will be seen as

an ellipse (Fig. 66). By observation, the lengths h

and AB are found, (a) Calculate from these the

phase angle between the horizontal and vertical mo-
tions. What shapes does the ellipse assume for (b)

<p
=

zero, and (c) v = 90 deg.?
28. A damped vibrating system consists of a spring

of k = 20 Ib. per inch and a weight of 10 Ib. It is

damped so that each amplitude is 99 per cent of its

previous one (i.e., 1 per cent loss in amplitude per full cycle).

a. Find the frequency by formula and from Fig. 29.

b. Find the damping constant.

c. Find the amplitude of the force of resonant frequency necessary to keep
the system vibrating at 1 in. amplitude.

d. What is the rate of increase in amplitude if at 1 in. amplitude the

exciting force (at resonant frequency) is doubled?

e. What is the final amplitude to which the system tends under the

influence of this doubled force?

/. Find the amplitude-time relation of this growing vibration.

29. Find the expression for the steady-state torque, assuming no damping,
. In shaft k of Fig. 26, page 40.

6. In shaft /c 2 of Fig. 27.

30. A "static balancing machine" (page 293) consists of a bearing B
inclined at an angle a with the vertical (Fig. 67). A
rotor placed in this bearing has a moment of inertia

7 and an unbalance m at a distance r from the center.

Write the differential equation of the vibrations of the

rotor in terms of its angle of rotation <p. Find the

natural frequency for small vibrations <p.

31. Find the natural frequency of the small oscilla-

tions of a solid half cylinder (the contour consisting

of a half circle and a diameter), which rolls without

sliding on a horizontal plane.

/, / 32. A simple k-m system is at rest. A constant

/I force P is applied to the mass during a stated time

/^l interval to, after which the force is removed. Find

the motion of the mass after removal.FIG. 67.

33. Set up the differential equations of motion of the system of Fig. 27;

len, by elimination, reduce them to a single differential equation in terms

<PI <f>i/n, which is an angle that becomes zero if the

In this manner verify the statements made on

then,

of the variable

shafts are not twisted.

page 42.

34. A weightless, stiff bar is hinged at one end. At a distance I from the

hinge there is a mass m, at a distance 21 there is a dashpot c, and at a dis-

tance 3f there is a spring k and an alternating force P sin <*t. Set up the
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differential equation. Assuming small damping c (but not zero damping),
calculate the natural frequency; the amplitude of forced vibration at the

spring at the natural frequency and at half natural frequency.

36. A circular solid disk of mass M and radius r is suspended in a hori-

zontal plane from a fixed ceiling by three vertical wires of length /,
attached

to three equally spaced points on the periphery of the disk.

a. The disk is turned through a small angle about its vertical center

line and let go. Calculate the frequency of rotational vibration.

6. The disk is displaced sidewise through a small distance without rota-

tion and let go. Calculate the frequency of the ensuing swinging motion.

36. Prove the statement made on page 77 that there is no phase dis-

tortion in a seismographic instrument if the phase-angle diagram Fig. 426

is a straight diagonal line passing through the origin.

37. A mass m is suspended from a ceiling by a spring k and a dashpot
c. The ceiling has a forced motion ao sin ut. Calculate the work done by
the ceiling on the system per cycle of vibration in the steady state. Write

the answer in dimensionless form.

38. In the system of Fig. 23 and Fig. 42er, the maximum work input by the

force as a function of frequency is only approximately equal to vPoXQ, where

Xn is the amplitude at co/con
= 1. The actual maximum work is at a slightly

different frequency. Prove that this maximum work can be computed from

TrPoXo by multiplying that quantity by the correction factor

and show that this error is less than 0.1 per cent for a damping as high as

c/Cc
= 20 per cent.

39. In 1940 a large two-bladed windmill, capable of generating 1,250 kw.

of electric power was built on Grandpa's Knob near Rutland, Vt. The

diameter of the blade circle is 175 ft, the blades rotate at 30 r.p.m. in a plane

which is considered vertical for our purpose. The blades are mounted on the

"pintle" or cap, which itself can rotate slowly about a vertical axis in order

to make the blades face the wind. Since there are only two blades in the

rotor, the moment of inertia of the rotor about the vertical pintle axis is very
much greater when the blades are pointing horizontally than when they
are vertical, 90 deg. further. Let ft be the constant angular speed of the

rotor, u> the very much smaller angular speed of the pintle, and 7max and 7min

the extreme values of inertia about the vertical axis.

a. Assuming the driving mechanism of the pintle motion to be extremely
soft torsionally, so that no torque acts on the pintle (except friction, which

is to be neglected), find the ratio between the maximum and mimimum
values of w.

b. Assuming the pintle drive to be extremely stiff torsionally, so that the

pintle motion co is forcibly uniform, find an expression for the torque in the

pintle drive.



CHAPTER III

TWO DEGREES OF FREEDOM

22. Free Vibrations, Natural Modes. In the preceding

chapter there was discussed the theory of the vibrations of a

system with a single degree of freedom with viscous damping.

Though the exact idealized system with which the theory dealt

occurs rarely, it was seen that a number of actual cases are suffi-

ciently close to the ideal to permit conclusions of practical

importance. The theory of the single-degree-of-freedom system

enabled us to explain the resonance phenomenon in many

machines, to calculate natural frequencies of a number of struc-

tures, to explain the action of most vibration-measuring instru-

ments, and to discuss spring suspension and vibration isolation.

This exhausts the possibilities of applica-

tion pretty thoroughly, and in order to ex-

plain additional phenomena it is necessary

to develop the theory of more complicated

systems. As a first step consider two degrees

of freedom, which will yield the explanation

of most "
vibration dampers," of the action

of a number of contrivances for stabilizing

ships against rolling motions in a rough sea,

and of the operation of automobile shock

absorbers.
m

The most general undamped two-degree-

of-freedom system can be reduced to that of

Fig. 68 and consists of two masses mi and m2

, , . 7 IT i ' i FKJ. 68. Undamped
suspended from springs fci and fc 2 and tied two_degroe-of-frecdom

together by a
"
coupling spring

"
fc 3 . Assum- system with spring

ing that the masses are guided so as to be coup mg>

capable of purely vertical motions only, there are evidently two

degrees of freedom, since the two masses can move independently

of each other. By specifying their vertical positions x\ and x2

the configuration is entirely determined.

103
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As in the single-degree-of-freedom case, there are a number of

torsional, electrical, etc., two-degree-of-freedom systems which

are completely equivalent to Fig. 68.

Proceeding now to a calculation of the free vibrations, we notice

that there are two distinct forces acting on the mass Wi, namely
the force of the main spring ki and that of the coupling Spring & 3 .

The main force is k\xi acting downward (in the +Xi-direction).

The shortening of the coupling spring is Xi x 2y so that its com-

pressive force is k s (xi x 2 ). A compressed coupling spring

pushes mi upward, so that the force has to be taken with the

negative sign. These two are the only tangible forces acting on

Wi, so that its equation of motion is

or

+ (ki + k-^Xi k& 2
=

(37)

The equation of motion for the second mass can be derived in the

same manner. But by turning Fig. 68 upside down and reversing

the directions of Xi and # 2 , ^2 and k 2 assume the positions of

mi and ki and

^2^2 + (&2 + k :^x 2 k&i = (38)

Assume now that the masses mi and w 2 execute harmonic

motions with the same frequency co (as yet unknown) and differ-

ent amplitudes ai and a 2 (also unknown) .

= ai sin co^

2 sin
wt)

, s

This is a mere guess; we do not know whether such a motion is

possible. By substituting in the differential equations we shall

soon find out if it is possible.

[ Wiaio;
2 + (ki + ksjcii k sa 2 ] sin ut =

[
7tt 2a 2o)

2 + (k 2 + kx)a 2 k^di] sin ut =

These equations must be satisfied at any instant of time. They
represent sine waves, so that in order to make them zero at all

times the amplitudes in the brackets have to be zero .

a2 ( m 2co
2 + k 2 + & 3)

= O
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If the assumption (39) is correct, it is necessary that Eqs. (40)
be satisfied. In general this is not true, but we must remember
that in (39) nothing was specified about the amplitudes ai and
a2 or about the frequency co. It will be possible to choose ai/ 2

and co so that (40) is satisfied, and with these values of ai/a 2

and co Eq. (39) becomes a solution. In order to find the correct

values we have only to solve them from (40). Thus from (40)

From (406), also, the amplitude ratio can be solved:

oi __ ra 2co
2 & 2

-
A; 3

In order to have agreement, it is necessary that

&3 _ ra 2co
2

A; 2

or

4.

This equation, known as the
"
frequency equation," leads to two

values for co
2

. Each one of these, when substituted in either

(41) or (42), gives a definite value for ai/a2 . This means that

(39) can be a solution of the problem and that there are two

such solutions.

For readers familiar with Mohr's circle diagram in two-dimensional

elasticity, the following construction is of interest. Let in Fig. 68

The quantities coo and co& are the frequencies of the system in which one

of the masses is held clamped, while uab expresses the strength of the cou-

pling. With this notation, Eq. (43) can be written as

Lay off in the diagram of Fig. 69 the following distances:

OA =
<*l OB =

o>? BC = o>26

Then draw a circle through C about the mid-point between A and B as

center. The new points D and E thus found determine the natural fre-

quencies of the system:

w = op an(j W2 = Q#
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which can be verified from the equation. In particular, when there is no

coupling (BC =
0), the points D and E coincide with A and B, so that then

coa and (^b are the natural frequencies.

For further discussion, let us simplify the system somewhat by
making it symmetrical. Let ki = & 2

= k and m\ ra 2
= m.

The frequency equation then reduces to

m

with the solutions

. *k +k 3 +
l/k

m "~

\y

(43d)

2*,)

or

m and m

which are the two natural frequencies of the system. Substituting
these frequencies in (41) or (42),

a2

= +1 and
a 2

The physical significance of these results is obvious. The fact

that ai/a 2
= +1 means (Eq. 39) that the two masses move in

the same direction through
the same distance. The cou-

pling spring is not stretched or

compressed in this process.

Naturally the frequency of this

motion is w 2 = k/m, since the

system reduces to two inde-

pendent single-degree-of-free-

Systems. The fact that

mining the natural frequencies of Fig. a\/CL<i
= 1 means that the

two masses move through the

same distance but in opposition to each other. This motion is

wholly symmetrical, so that the mid-point of the coupling spring

fc 3 does not move. If this mid-point were held clamped, no

change in the motion would take place. Thus the system is

again split up into two independent single-degree-of-freedom

systems. This time, however, the mass is connected to ground

FIG. 69. Mohr's circle for deter-
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by two springs, one of stiffness k and another of stiffness 2&3

(see page 47), so the frequency is co
2 = (k + 2fc 3)/m.

Thus there are two "natural modes of motion" each with its

corresponding natural frequency. The solution shows that if

the system is given an initial disturbance of Xi = +1 and
x2

= +1 (Fig. 68) and then released, the ensuing motion will be

purely sinusoidal with the frequency co?
= k/m; it swings in the

first natural mode. On the other hand, if the initial displace-

ment is Xi = +1 and # 2
=

-"1, again a purely sinusoidal motion

follows with the frequency u>\
=

(k + 2fc 3)/m, the second mode.

Assume next that the initial displacement is x\ = 1 and x 2
=

0,

from which position the system is released. As yet we have no

solution for this case. But this initial displacement can be

considered as the sum of two parts: first x* = J^, x% = J^ and

second Xi J^, x2
= H, for each of which a solution is known.

Assume now that the ensuing motion is the "
superposition

"

of these two partial motions as follows :

Xi = Yi COS Uit + \^ COS 0) 2^
#2 = M cos <*>i K cos co 2

j

'
'

That this is the correct solution can be concluded from the fact

that on substitution in (37) and (38) the differential equations

are satisfied. Moreover at t = 0, the initial conditions are

satisfied.

Equation (44) shows that the ensuing motion will be one in

the first mode with amplitude J^ and frequency o>i, superposed

on a motion with amplitude % an(i frequency co 2 . As long as

there is a coupling spring fc 3 ,
it is seen that wi and co 2 are different.

Thus the combined motion of either mass can not be sinusoidal

but must be composed of two frequencies. Naturally
" beats"

will occur if the two frequencies are close together (Fig. 8). This

happens if & 3 <<C k, or, in words, if the coupling spring is very soft

in comparison to the main springs. With an initial displace-

ment Xi = 1, #2 =
0, first mi will vibrate with amplitude 1 and

w2 will stand practically still. After a time, however, the differ-

ence in the two frequencies will have changed the phase between

the two vibrations by 180 deg. (see Fig. 7). Then instead of

zi H> 2
= Y^ (first mode) and

#1 =
HJ> #2 = ~H (second mode)

we have
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2
= H (first mode) and

(second mode)

Thus the first mass stands still and the second one executes vibra-

tions of amplitude 1. The phenomenon is periodic so that all

motion travels from one mass to the other continuously.

This very interesting experiment can be shown in a number
of variations, of which Fig. 70 gives five possibilities. The first

case consists of two pendulums capable of swinging in the plane

//? 2^5 7777

AA/VW\A-/^

psa

oQffl 4>

(b) (d)

'C
(

FIG. 70. Five experiments in which we can observe a periodic wandering of the

energy from one part to another.

of the paper. The main springs have been replaced here by
gravity, but the coupling spring exists in the form of a very soft

coil spring. For "small" vibrations (say below 30-deg. ampli-

tude) a gravity pendulum behaves like the fundamental mass-

spring system. The spring constant /c, which is the restoring

force for unit displacement, is mg/l, so that for a simple pendulum
co

2 = k/m =
g/l. In further reducing Fig. 70a to Fig. 68, it is

seen that the coupling-spring constant & 3 in Fig. 68 is the force

at the masses caused by the coupling spring if the masses are

pulled one unit apart. Applying this experimental definition to

Fig. 70a, we find that^ in the absence of gravity, a force of &~ at
I



NATURAL MODES 109

one of the masses pulls those masses 1 in. apart (see also page 48).

Thus the equivalent of & 3 is ka^/l
2

.

The two natural modes of motion are easily recognized. The

pendulums swing either with each other or against each other,

= * &
\ i

and co 2
= + 2 ~*

I m L
z

the frequencies being

Pulling the left pendulum 1 in. to the left and keeping the right

pendulum in its place is equivalent to the sum of the two dis-

placements shown in Fig. 716 and c. Upon releasing the left

pendulum, it will perform vibrations as indicated by Fig. 7la

(the right-hand pendulum stands still). This motion can be

(b)

FIG. 71. Any motion can be broken up into the sum of two natural motions

having the two different natural frequencies coi and 0*2.

regarded as the sum of two others with frequencies i and o>2

as shown in the diagram. For the first few cycles this motion

of one pendulum only will persist, because the two natural fre-

quencies are sufficiently close together to keep in step for a short

time. However, the second mode actually goes somewhat faster

than the first one and gains on it since o> 2 > WL After a sufficient

time interval (say 20 cycles), it will be 180 deg. in advance of the

first mode, which is indicated in Fig. 71d and e. Performing the

addition shown in the figure, it is seen that the left pendulum
now stands still, while the right pendulum swings with the full

amplitude. Then the phenomenon repeats itself; the amplitude
wanders from one pendulum to the other continuously, until the

inevitable damping brings everything to rest.

In Fig. 706 the pendulums swing perpendicular to the plane

of the paper. Two natural motions are possible: (1) the pendu-
lums swing together, or (2) they swing against each other, thereby

twisting the very slender connecting shaft, which causes some

increase in the frequency. Pulling out one of the pendulums
while keeping the other in place (thereby slightly twisting the

coupling rod) and then releasing leads to the same phenomenon
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of continuous transfer of all motion from one pendulum to the

other.

Figure 70c shows a system resembling in some respects an auto-

mobile chassis on its springs. Two natural motions of the mass

are possible: (1) a bobbing up and down parallel to itself with the

frequency co?
= 2k/m and (2) a rocking about the center of

gravityG in the plane of the drawing with a frequency co
2 = kl 2/2L

The derivation of these frequency formulas is left to the reader.

Now suppose the left-hand end of the chassis is pulled up
1 in. while the right-hand end is kept in place. From this position

the system is released. Again the motion is split up into two parts

(Fig. 72a reading from left to right).

If the quantities ra, 7, fc, and I are such that wi and w2 are nearly

the same, the motion of Fig. 72a will keep on for the first few

<jJ
{

Ci>2

. + -^>><^ (a)

Fia. 72. Illustrates the energy transfer of the experiment of Fig. 70c.

cycles without marked change. But after a larger number of

cycles one of the motions (say the rocking one) gains 180 deg. on

the other. Read now Fig. 726 from right to left and it is seen

that the body vibrates with the Ze/Y-hand end stationary. Of

course, after an equal interval of time the first motion occurs

again and so on until everything dies out on account of damping.
While in Fig. 70a and b the coupling spring could be easily

seen as a separate part of the system, this is not the case in 70c.

But the essential requirement for the experiment is that the sys-

tem have two degrees of freedom with slightly different natural

frequencies, and it does not matter whether the "
coupling

spring" can be recognized or not.

A. striking experiment is shown in Fig. 70d known as Wilber-

force's spring. A mass, suspended from a coil spring, has two

protruding screws with adjustable nuts. The two degrees of

freedom consist of an up-and-down motion and of a twisting
motion. The "

coupling" exists due to the fact that a coil

spring when pulled out causes a slight torque and when twisted

gives a slight pull. By changing the position of the nuts the

moment of inertia I is changed while the mass m remains con-

stant. Thus by a proper adjustment of the nuts the two natural
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frequencies can be brought to nearly the same value. Then by
pulling down and releasing, an up-and-down motion of the mass
without twist is initiated. After a while only twisting occurs

without vertical motion, and so on.

The last case, illustrated in Fig. 70e, is the electrical analogue
of this phenomenon (see pages 39, 40) . Two equal masses (induc-

tances) L connected to equal main springs (condensers) C are

coupled with a weak coupling spring (large coupling condenser Ca

since k is equivalent to 1/C). A current initiated in one mesh
will after a time be completely transferred to the other mesh,
and so on. Electrically minded readers may reason out how the

currents flow in each of the two " natural modes" and what the

frequencies are, and may also construct a figure similar to 71 or

72 for this case.

Example: A uniform bar of mass ra and length 21 is supported by two

springs, one on each end (Fig. 70c). The springs are not equally stiff, their

constants being k (left) and 2k (right), respectively. Find the two natural

frequencies and the shapes of the corresponding modes of vibration.

Solution: Let x be the upward displacement of the center of the bar and <?

its (clockwise) angle of rotation. Then the displacement of the left end

is x + l<? and that of the right end x l<f>. The spring forces are k(x + l<p)

and 2k(x
-

l<t>), respectively. Thus

mx + k(x + IP) + 2k(x -
l<p)

=

and
+ kl (* + W - 2^0* - W =

are the differential equations. With the assumption of Eq. (39) we obtain

( TTico 2 -J- 3/b)#o kl<pQ =

from which follows the frequency equation

or

with the solutions

W4_ 12^W 2 + 24(~) =0.m * '

*1
= 2.54-^ and o>

2
2
= 9.46^m * m

The shapes of the motion corresponding to these frequencies are found

from the second differential equation, which can be written as

XQ 1 m__= - o,'+3

Substituting the values for w2
just found, this becomes
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=+2.16 - = -0.15
'>o/i

This means a rotary vibration of the bar about a point which lies at a dis-

tance of 2.16Z to the right of the center of the bar for the first natural fre-

quency and about a point at 0.15J to the left of the center for the second

natural frequency.

23. The Undamped Dynamic Vibration Absorber. A machine
or machine part on which a steady alternating force of constant

frequency is acting may take up obnoxious

vibrations, especially when it is close to

resonance. In order to improve such a situa-

tion, we might first attempt to eliminate the

force. Quite often this is not practical or even

possible. Then we may change the mass or the

spring constant of the system in an attempt to

tx 2 get away from the resonance condition, but in

FIG. 73. The ad- some cases this also is impractical. A third possi-

k^m-aystem* to*!! bility lies in the application of the dynamic
large machine K-M vibration absorber, invented by Frahm in
prevents vibration i

(\r\(\
of that machine in

iyuy -

spite of the aitemat- In Fig. 73 let the combination K, M be the
mg orce P sm <*>t.

gchema^c representation of the machine under

consideration, with the force P sin ut acting on it. The
vibration absorber consists of a comparatively small vibratory
system k, m attached to the main mass M. The natural

frequency \/k/m of the attached absorber is chosen to be equal to

the frequency co of the disturbing force. It will be shown that then
the main mass M does not vibrate at all, and that the small

system fc, m vibrates in such a way that its spring force is at
all instants equal and opposite to P sin ut. Thus there is no
net force acting on M and therefore that mass does not vibrate.

To prove this statement, write down the equations of motion.
This is a simple matter since Fig. 73 is a special case of Fig. 68
in which k2 is made zero. Moreover, there is the external force

Po sin ut on the first mass M. Equations (37) and (38) are thus
modified to

i + (K + k)xi - kx 2
= Po sin co

mx* + k(x, - xi) = (45)
/

The forced vibration of this system will be of the form
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ai sin

#2 sin
(46)

This is evident since (45) contains only x\, Xi and x z ,
# 2 ,

but not

the first derivatives i and #2 . A sine function remains a sine

function after two differentiations, and consequently, with the

assumption (46), all terms in (45) will be proportional to sin at.

Division by sin ut transforms the differential equations into

algebraic equations as was seen before with Eqs. (37) to (40).

The result is that

a 2 (

k)
-

k)
= (47)

For simplification we want to bring these into a dimensionless

form and for that purpose we introduce the following symbols :

%st = PU/K = static deflection of main system
co

2 = k/m = natural frequency of absorber

12
2 = K/M = natural frequency of main system

n = m/M = mass ratio = absorber mass/main mass

Then Eq. (47) becomes

0/1
k

K
k

/i= a 2
[
1

V

(47a)

or, solving for ai and a2 ,

1 -

Xst

(48)

From the first of these equations the truth of our contention

can be seen immediately. The amplitude ai of the main mass is
n

zero when the numerator 1
^

*s zero
>
and this occurs when the

frequency of the force is the same as the natural frequency of the

absorber.
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Let us now examine the second equation (48) for the case that

w = wa . The first factor of the denominator is then zero, so that

this equation reduces to

K Po

With the main mass standing still and the damper mass having

a motion Po/k sin ut the force in the damper spring varies as

Po sin co, which is actually equal and opposite to the external

force.

These relations are true for any value of the ratio co/0n . It

was seen, however, that the addition of an absorber has not

much reason unless the original system is in resonance or at least

near it. We therefore consider, in what follows, the case for

which

^ k K km
co = On or =

-T? or
-^

=
j-j.

The ratio

then defines the size of the damper as compared to the size of

the main system. For this special case, (48) becomes

Sin
X.t

(

M - 73 )- M

sin wt
,
1

2 )( 1 + /* 2)"

A striking peculiarity of this result and of Eq. (48) is that the

two denominators are equal. This is no coincidence but has a

definite physical reason. When multiplied out, it is seen that the

denominator contains a term proportional to (co
2
/<*>a)

2
>
a term

proportional to (w
2
/^)

1 and a term independent of this ratio.

When equated to zero, the denominator is a quadratic equation
in w 2

/w^ which necessarily has two roots. Thus for two values

of the external frequency o> both denominators of (49) become

zero, and consequently xi as well as z 2 becomes infinitely large.

These two frequencies are the resonant or natural frequencies of
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the system. If the two denominators of (49) were not equal to

each other, it could occur that one of them was zero at a certain

co and the other one not zero. This would mean that Xi would

be infinite and xz would not. But, if x\ is infinite, the extensions

and compressions of the damper spring k become infinite and

necessarily the force in that spring also. Thus we have the

impossible case that the amplitude 2 of the damper mass ra is

finite while an infinite force k(x\ x%) is acting on it. Clearly,

therefore, if one of the amplitudes becomes infinite, so must the

other, and consequently the two denominators in (49) must be

the same.

1.5

1.0

0.5

--izs

0.1 0.3 0.4 0.50.2

m/M - P *-*

Fia. 74. The two natural or resonant frequencies of Fig. 73 as a function of tho
mass ratio m/M, expressed by Eq. (50).

The natural frequencies are determined by setting the denomi-

nators equal to zero :

or

/v - /^
\w / \<

(2 + ) + 1 =

with the solutions

(50)

This relation is shown graphically in Fig. 74, from which we

find, for example, that an absorber of one-tenth the mass of the

main system causes two natural frequencies of the combined
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system at 1.17 and 0.85 times the natural frequency of the original

system.
The main result (49) is shown in Figs. 75a and b for M = %,

i.e., for an absorber of one-fifth the mass of the main system.

Follow the diagram 75a for an increasing frequency ratio

o)/12n
=

tt/coa . It is seen that Xi/xat
= 1 for w =

0, while for

values somewhat larger than zero x\ is necessarily positive, since

both the numerator and the denominator of Eq. (49a) are posi-

-4

-6

IL

CO -ft

05 08 10 125 15 2.0

and of the absorber
The absorber mass is

FIG. 75a and b. Amplitudes of the main mass (xi)

mass (#2) of Fig. 73 for various disturbing frequencies o>.

one-fifth of the main mass.

tive. At the first resonance the denominator passes through zero

from positive to negative, hence x\/x9t becomes negative. Still

later, at co = S2n = wa ,
the numerator becomes negative and

Xi/xat becomes positive again, since both numerator and denomi-

nator are negative. At the second resonance the denominator

changes sign once more with negative x\ as a result.

The Xz/x8t diagram passes through similar changes, only here

the numerator remains positive throughout, so that changes in

sign occur only at the resonance points. It was seen in the dis-

cussion of Fig. 38 that such changes in sign merely mean a change,

of 180 deg. in the phase angle, which is of no particular impor-
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tance to us. Therefore we draw the dotted lines in Figs. 75a and

b and consider these lines as determining the amplitude, eliminat-

ing from further consideration the parts of the diagrams below the

horizontal axes.

The results obtained thus far may be interpreted in another

manner, which is useful in certain applications. In Fig. 73 let

the Frahm absorber k, m be replaced by a mass weauiv attached

solidly to the main mass M, and let this equivalent mass be so

chosen that the motion x\ is the same as with the absorber.

Since the absorber is more complicated than just a mass, it is

clear that meqmv cannot be constant but must be different for

each disturbing frequency <o. The downward force trans-

mitted by the absorber to the main system M is the spring force

k(xz #1), which, by Eq. 45, is equal to mxz. If a mass

#Wiv were solidly attached to M, its downward reaction force

on M would be the pure inertia force ra^m^i. For equivalence
these two reactions must be equal, so that, by Eq. 46 and the

second Eq. 47a, we have

raeauiv 2 2 #2 1

m Xi Xi a\ . co
2

^
which is the well-known resonance relation, shown in Fig. 38,

page 59. Thus it is seen that the Frahm dynamic-absorber sys-

tem can be replaced by an equivalent mass attached to the main

system, so that the equivalent mass is positive for slow disturbing

frequencies, is infinitely large for excitation at the absorber

resonant frequency, and is negative for high frequency excitation.

This way of looking at the operation of the absorber will be

found useful on page 274.

From an inspection of Fig. 75a, which represents the vibrations

of the main mass, it is clear that the undamped dynamic absorber

is useful only in cases where the frequency of the disturbing force

is nearly constant. Then we can operate at u/ua = o?/12n
= 1

with a very small (zero) amplitude. This is the case with all

machinery directly coupled to synchronous electric motors or

generators. In variable-speed machines, however, such as

internal-combustion engines for automotive or aeronautical

applications, the device is entirely useless, since we merely replace

the original system of one resonant speed (at co/Qn = 1) by
another system with two resonant speeds. But even then the
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absorber can be made to work to advantage by the introduction

of a certain amount of damping in the absorber spring, as will be

discussed in the next section.

An interesting application of the absorber is made in an electric

hair clipper which was recently put on the market. It is shown
in Fig. 76 and consists of a GO-cyclo alternating-current magnet a

which exerts a 120-cycle alternating force on a vibrating system b.

System b is tuned to a frequency near 120 cycles but sufficiently

far removed from it (20 per cent) to insure an amplitude of the

cutter d, which is not dependent too much on damping. Thus
the cutter blade d will vibrate at about the same amplitude inde-

pendent of whether it is cutting much hair or no hair at all.

/ 60 cycle*

PIG. 70. Klectru' hair clipper with vibration absorber, a -- magnet, '* =
urinatuie tongue, c = pivot, d = cutter, c = guide for cutter, / = vibration

ubsoi ber.

The whole mechanism, being a free body in space without

external forces, must have its center of gravity, as well as its

principal axes of inertia, at rest. Since the parts b, d arc in

motion, the housing must move in the opposite direction to

satisfy theso two conditions. The housing vibration is unpleasant

for the barber's hands and creates a new kind of resistance,

known as sales resistance. This is overcome to a groat extent

by the dynamic vibration absorber/, tuned exactly to 120 cycles

per second, since it prevents all motion of the housing at the loca-

tion of the mass/. With stroboscopic illumination the masses

d and/ are clearly seen to vibrate in phase opposition.

The device as sketched is not perfect, for the mass / is not

located correctly. At a certain instant during the vibration,

the cutter d will have a large inertia force upward, while the

overhung end 6 will have a small inertia force downward. The

resultant of the inertia forces of the moving parts 6, d therefore

is an alternating force located to the left of the cutter d in Fig. 76.

The effect of the absorber is to completely eliminate 120-cycle motion

of a point of the housing right under the absorber mass /, but it does not

prevent the housing from rotating about that motionless point. Complete
elimination of all 120-cycle motion of the housing can be accomplished by

mounting two absorbers /in the device with a certain distance (perpendicular
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to the direction of the cutter motion) between their two masses. The two
masses will then automatically assume such amplitudes as to cause two
inertia forces which will counteract the force as well as the moment of the

inertia action of the cutter assembly d, 6, or in diiferent words the two masses

will enforce two motionless points of the housing.

For a torsional system, such as the crank shaft of an internal-

combustion engine, the Frahm dynamic vibration absorber takes

the shape of a flywheel A that can rotate freely on the shaft on

bearings B and is held to it by mechanical springs k only (Fig.

77a). Since the torsional impulses on such an engine are har-

monics of the firing frequency, i.e., have a frequency proportional
to the engine speed, the device

will work for one engine speed

only, while there are two neigh-

boring speeds at which the shaft

goes to resonance (Fig. 75a).

In order to overcome this, it

has been proposed recently to

replace the mechanical springs of

Fig. 77a by the "centrifugal bratiou

spring" of Fig. lib. The pendu-
lum in the centrifugal field of that

figure acts in the same manner as an ordinary gravity pendulum
in which the field g is replaced by the centrifugal field rco

2
. Since

the frequency of a gravity pendulum is -\/g~/i, the frequency of a

centrifugal pendulum becomes u\/r/l, i.e., proportional to the

engine speed. Thus a centrifugal pendulum will act as a Frahm

dynamic absorber that is tuned correctly at all engine speeds.

Further details of this device are discussed on page 273.

24. The Damped Vibration Absorber. Consider the system of

Fig. 73 in which a dashpot is arranged parallel to the damper

spring k, between the masses M and m. The main spring K
remains without dashpot across itself. Newton's law applied to

the mass M gives

77. Torsjonal dynamic vi-

absorbor with mechanical

(a) and with centrifugal

springs

+ + k(xi #2) + c(x\ 2) Po sin

and applied to the small mass m

mx 2 + k(x 2 Xi) + c(2 Xi)
=

(51)

(52)

The reader should derive these equations and be perfectly clear

on the various algebraic signs. The argument followed is

analogous to that of page 37 and of page 104. The four terms
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on the left-hand side of (51) signify the "inertia force" of M,
the main-spring force, the damper-spring force, and the dashpot
force. We are interested in a solution for the forced vibrations

only and do not consider the transient free vibration. Then both

Xi and x% are harmonic motions of the frequency co and can be

represented by vectors. Any term in either (51) or (52) is

representable by such a vector rotating with velocity w. The
easiest manner of solving these equations is by writing the vectors

as complex numbers. The equations then are

racu
2x 2 + k(x 2 x\) + juc(x 2 x\)

=

where Xi and x 2 are (unknown) complex numbers, the other quan-
tities being real.

Bringing the terms with xi and x 2 together:

[- Afu 2 + K + k + jcoc]xi
-

[k + jfwc]x 2
= Pol

[k + JMC]XI + [ mco 2 + k + juc]x 2
=

/
(53)

These can be solved for x\ and x 2 . We are primarily interested

in the motion of the main mass x\ y and, in order to solve for it, we

express x 2 in terms of Xi by means of the second equation of (53)

and then substitute in the first one. This gives

(k raw2
) + jwc

(54)

For readers somewhat familiar with

alternating electric currents this result

will also be derived by means of the

equivalent electric circuit shown in Fig.

78. The equivalence can be established

by setting up the voltage equations

and comparing them with (51) and (52)

or directly by inspection as follows.

The extension (or velocity) of the spring

K, the displacement (or velocity) of M,
and the displacement (or velocity) of

the force Po are all equal to x\ (or i).

Fio. 78. Equivalent elertiic cir-
Consequently the corresponding electri-

cuit. The small l-c-r "wa^ trap" , , , ,, Ir. T , .

corresponds to the absorber.
cal elements 1/C, L, and o must carry
the same current (i\) and thus must be

connected in series. The velocities

across k or across the dashpot (Ji 2 ) are also equal among them-

selves, so that 1/c and r electrically must be in series but must carry
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a different current from that in the main elements L, C, and EQ.

The velocity of m is x 2 , equal to the difference of the velocity of M(x\) and

the velocity across the damper spring (i J 2). Hence the current i ?

through I must be equal to the difference of i\ and (i'i z' 2 ). The equiva-
lence of the electrical circuit and the mechanical system is thus established.

We are interested in the main current ii. The impedance of a coil isjwL,

that of a condenser is 1/jwC, that of a resistance simply R. Impedances in

series, when expressed in complex, add directly, and impedances in parallel

add reciprocally. Thus the impedance of the c, r branch is r -f - and that
JcoC

of the I branch is jul. The two brandies in parallel have an impedance

__ ____ l__L +JL
r + 1/juc, jul

To this has to be added the impedance of the other elements in series, giving

Z - jL +
' --- - -

JcoC 1__ .__1_ l\

r -\- 1 /juc jw/

By performing some algebra on this expression and translating back into

mechanics, the result (54) follows.

The complex expression (54) can be reduced to tbe form

where AI and BI are real and do not contain j. The meaning
which has to be attached to (54) is then that in vector representa-

tion the displacement x\ consists of two components, one in phase

with the force P and another a quarter turn ahead of it (compare

Fig. 4 la on page 70). Adding these two vectors geometrically,

the magnitude of x i is expressed by

x, = 7WATFBI
But (54) is not yet in the form (54a) ;

it is rather of the form

which can be transformed as follows:

_ (A+jB)(C-jD) _ p (AC + BD) + j(BC - AD)
Xl ~^'

(C+jD)(C -jD)
~ '

C2 + I>2
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Hence the length of the x\ vector is

BC - AD\*
D*

(BC
- AD

\C 2 + D*

IA *C* +"&& ~+~B*C*~+~A*D* = j(A
r+ 'Bl

)(C
r+ ~D*)

V
.....~~

(C
2 + Z) 2

)
2 V" (C

2 + Z>2
)
2

M 2

\C'
2

+ B*

+ Z> 2

Applying this to (54), wo may write

I*
-

f/ICO*)' + V _
V ^

which is the amplitude of the motion of the main mass M.
It is instructive to verify this result for several particular cases

and see that it reduces to known results as previously obtained.

The reader is advised to do this for some of the following cases:

1. k = oo

2. k = 0; c =

3. c = oo

4. c =
(); w = 12, = \f~K/M = Vk/m

5. m =

Thus we are in a position to calculate the amplitude in all

cases. In Kq. (55) .r t is a function of seven variables: P
, co, r,

K, k
y M, and m. However, the number of variables can be

reduced, as the following consideration shows. For example,
if PO is doubled and everything else is kept the same, we should

expect to see x\_ doubled, and there are several relations of this

same character. In order to reveal them, it is useful to write

Kq. (55) in a dimensionless form, for which purpose the following

symbols are introduced:

JJL
= m/M mass ratio = absorber mass/main mass

o>
2 = k/m = natural frequency of absorber

12
2 = K/M = natural frequency of main system
f = w/fin = frequency ratio (natural frequencies)

g =
o>/!2n

== forced frequency ratio

xt = PO/K = static deflection of system
ce
= 2mttn = "critical" damping (see page 52)
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After performing some algebra Eq. (55) is transformed into

+ (g
2 - P)'

^g) (g
2 - 1 + Mg

2
)
2 + [M*

2
g

2 -
(g

2 - D(g*

(57)

This is the amplitude ratio x\/xat of the main mass as a function

of the four essential variables /x, c/cc ,
f

,
and g. Figure 79 shows a

plot of xi/xat as a function of the frequency ratio g for the definite

FIG. 79. Amplitudes of the main mass of Fig. 73 for various values of absorber

damping. The absorber is twenty times as small as the main machine and is

tuned to the same frequency. All curves pass through the fixed points P and Q.

system: f = 1, p = ^20? an(l f r various values of the damping

c/cc . In other words, the figure describes the behavior of a

system in which the main mass is 20 times as great as the damper
mass, while the frequency of the damper is equal to the frequency
of the main system (f

=
1).

It is interesting to follow what happens for increasing damping.
For c = we have the same case as Fig. 75a, a known result.

When the damping becomes infinite, the two masses are virtually

clamped together and we have a single-degree-of-freedom system
with a mass ^Y^M. Two other curves are drawn in Fig. 79,

for c/Cc = 0.10 and 0.32.

In adding the absorber to the system, the object is to bring

the resonant peak of the amplitude down to its lowest possible

value. With c = the peak is infinite; with c = oc it is again
infinite. Somewhere in between there must be a value of c for

which the peak becomes a minimum.
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This situation also can be understood physically as follows.

It was learned on page 62 that the amplitude at resonance of

a single-degree-of-freedom system is limited by damping only.

It was seen that damping energy is dissipated, i.e., converted

into heat. When the damping force does considerable work,

the amplitude remains small at resonance. This is a relation

that holds for more complicated systems also. The work done

by the damping force is given by the force times the displace-

ment through which it operates. In our case the displacement
is the relative motion between the two masses or also the exten-

sion of the damper spring. If c 0, the damping force is

zero, no work is done, and hence the resonant amplitude is

infinite. But when c <x>
t
the two masses are locked to each

other so that their relative displacement is zero and again no work
is done. Somewhere in between and & there is a damping for

which the product of damping force and displacement becomes a

maximum, and then the resonant amplitude will be small.

Before proceeding to a calculation of this "optimum damping,"
we observe a remarkable peculiarity in Fig. 79, viz., that all four

curves intersect at the two points P and Q. (See Fig. 52, p. 91.)

This, we shall presently prove, is no accident; all curves pass

through these two points independent of the damping. If we can

calculate their location, our problem is practically solved, because

the most favorable curve is the one which passes with a horizontal

tangent through the highest of the two fixed points P or Q. The best

obtainable "resonant amplitude" (at optimum damping) is the

ordinate of that point.

Even this is not all that can be done. By changing the relative
"
tuning

"
f = wtl/tt n of the damper with respect to the main

system, the two fixed points P and Q can be shifted up and down
the curve for c = 0. By changing f, one point goes up and the

other down. Clearly the most favorable case is such that first

by a proper choice of f the two fixed points are adjusted to equal

heights, and second by a proper choice of c/cc the curve is adjusted

to pass with a horizontal tangent through one of them. It will

be seen later (Fig. 80) that it makes practically no difference

which one of the two (P or Q) we choose.

Now return to Eq. (57) to see if there are any values of g for

which x\lxt becomes independent of c/cc . The formula is of

the form
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Xi

This is independent of damping if A/C = B/D, or written out

fully, if

/__ i y = / g
2 - ' v

\g
2 - 1 + Mgy \4V -

(g
2 - D(g 2 - f

2

)/

We can obliterate the square sign on both sides but then have

to add a in front of the right-hand side. With the minus

sign, after cross-multiplication,

Mf2g2
_

(g
2 _

1)(g2
_

f2)
= _

(g2
_

f2)(g
2 _ ! + ^2) (gg)

It is seen that the whole of the second term on the left-hand side

cancels a part of the right-hand side, so that

or

f2 = _g2 _|_ f2 SQ tnat g
2 =

This is a trivial (but true) result. At g = or w = the ampli-
tude is x8t , independent of the damping, simply because things

move so slowly that there is no chance for a damping force to

build up (damping is proportional to velocity).

The other alternative is the plus sign before the right-hand side

of (58). After a short calculation the equation then becomes

g
, _

2g2
l +^ + *_, (59)

2 + JJL
2 + /z

This is a quadratic equation in g
2
, giving two values, the

"
fixed

points
" we are seeking. Let the two roots of this equation be

g\ and g\. It is seen that gi and g 2 (i.e., the horizontal coordi-

nates of the fixed points P and Q) are still functions of /* and f.

Our next objective is to adjust the tuning f so that the ordinates

x/xa t of P and Q are equal. To solve Eq. (59) for gi and g 2 , to

substitute these values in (57), and then to equate the two expres-

sions so obtained is very time consuming. Fortunately, it is not

necessary. In the first place, we remember that at P and Q the

value of x/x8t is independent of the damping, so we may as well

select such a value of c/cc that (57) reduces to its simplest possible

form. This happens for c = <*>
,
when (57) becomes
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x. t 1 - g(l + M)

Substituting gi and g 2 in this equation gives

However, this is not quite correct for the following reason.

Equation (60) is really not represented by the curve c = co of

Fig. 79 but rather by a curve which is negative for values of g

larger than l/\/l + M (see also Fig. 38). Since P and Q lie on

different sides of this value of g, the ordinate of P is positive and

that of Q negative, so that Eq. (61) should be corrected by a

minus sign on one side or the other. By simple algebra the equa-

tion, thus corrected, becomes

g? + g|
= -

(62)

Now it is not even necessary to solve Eq. (59) for gi and g 2 ,
if

we remember that the negative coefficient of the middle term in a

quadratic equation is equal to the sum of the roots. In Eq. (59)

that sum is

g2
,

g2
- 2d + 1* + Mf

2
)

gi + g2
-

2 + M

Substitute this in Eq. (62) with the result that

This very simple formula gives the correct "tuning" for each

absorber size. For a very small absorber (/* 0) the tuning

f 1, or the damper frequency should be the same as the main-

system frequency. For a damper one-fifth as large as the main

mass, f = ?G or the damper has to be made 17 per cent slower

than the main system.

Now we know how to tune, but we do not know yet what

amplitude x/x st we shall finally get. Figure 80 is a case of such

tuning for n = }. Two curves are drawn. One passes hori-

zontally through P and then is not horizontal at Q; the other

is horizontal at Q and not at P. It is seen that practically no

error is made by taking the amplitude of either point as the

maximum amplitude of the curve. This amplitude is easily
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calculated. Merely substitute a root of (59) in the expression
for Xi/x 9 t,

and since at this point, (P or Q) xi/x, t is independent
of damping, take for it form (60). The result is

(64)

This represents the most favorable possibility, if the natural

frequency of the damper differs from that of the main system in

the manner prescribed by (63).

FIG. 80. Resonance curves for the motion of the main mass fitted with the

most favorably tuned vibration absorber system of one-fourth of the size of the

main machine.

It is interesting to compare the result (64) with some other

cases which are sometimes encountered in actual machines

(Fig. 81).

First, consider the vibration absorber with constant tuning,

f = 1, wrhere the small damper is tuned to the same frequency as

the main system, independent of the size of the damper. The

equation for the two fixed points (59) becomes

g
4 - 2g

2 '
2~

2 +
- =

or

i *L-v

For the usual damper sizes, the peak for the smaller g is higher
than for the larger g (see Fig. 79; also check the location of
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the fixed points with the formula). Thus we substitute

g
2 = 1 - A /o~~ in (6 )> witn the result that

1

(65)

Next, consider the apparatus known as the "Lanchester

damper" (see page 255) with viscous friction, consisting of the

system of Fig. 73, in which the damper spring has been replaced

27
1

4 10 12 18 20

FIG. 81a. Peak amplitudes of the main mass as a function of the ratio m/M
for various absorbers attached to the main mass: curve 1 for the most favorably
tuned and damped absorber; curve 2 for the most favorably damped absorber

tuned to the frequency of the main system; curve 3 for the most favorably

damped viscous Lanchester damper; curve 4 for the most favorably damped
Coulomb Lanchester damper.

by a linear dashpot. Thus k = and it is seen from Eq. (56) that

wa and f also are zero. The fixed-point equation (59) becomes

so that one of the fixed points is permanently at gj>
=

0, and the

other is given by

2_
2"+M (66)

The undamped and the infinitely damped constructions are

single-degree-of-freedom systems, because in the first case the

damper mass is completely loose and in the second case it is rigidly
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coupled to the main mass. This is shown clearly in Fig. 82, from

which we also can conclude that the most favorable resonant

amplitude is that of the fixed point Q. Substitute (66) in (60)

FIG. 816. Peak relative amplitudes between the masses M and m for various

absorbers: curve 1 for the most favorably tuned and damped absorber; curve 2

for the most favorably damped absorber tuned to the frequency of the main

system; curve 3 for the viscous Lanchester damper.

FIG. 81c. Damping constants, required for most favorable operation of the

absorber, i.e., for obtaining the results of Figs. 81a and 816: curve 1 for the most
favorably tuned absorber; curve 2 for the absorber tuned to the frequency of

the main system; curve 3 for the viscous Lanchester damper (see Problem 53).

and find, for the optimum amplitude,

(67)

The usual construction of the Lanchester damper, however,
does not have viscous friction but rather

" Coulomb" or dry
friction. The analysis of that case is more complicated and will
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be discussed on page 257. The result for the most favorable

resonant amplitude with such a damper is approximately

2.46
(68)

The four cases already treated are shown in the curves of

Fig. 81a. A damper of M = 3io or M2 is a practical size. It

is seen that the springlcss or Lanchester dampers are much
less efficient than the spring dampers or "damped dynamic
absorbers." However, the design of the correct spring in the

dynamic absorber is often difficult, because the small amplitudes

Fio. 82. Resonance curves of a simple system equipped with a Lanchcster

damper with viscous fiiction for zero damping, infinite damping and optimum
damping. All curves pass through the fixed points P and Q.

of the main mass are obtained at the expense of large deflections

and stresses in the damper spring.

Before proceeding with the calculation of the stress in the damper spring,

it is necessary to find the optimum damping; (r/cr )opt . The optimum ampli-

tude was found merely by stating that there must be a value of c/cc for which

the curve passes horizontally through either P or Q in Fig. 80. The damping
at which this occurs has not been determined as yet, and now for the first

time complications arise.

Start from Eq. (57) and substitute Kq. (63) into it in order to make it

apply to the case of "optimum tuning." Differentiate the so modified

Eq. (57) with respect to g, thus finding the slope, and equate that slope to

zero for the point P. From the equation thus obtained c/cc can be calcu-

lated. This is a long and tedious job which leads to the result

8(1 +
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as shown in the paper by Brock, quoted in the Bibliography. On the other

hand, if dx/dg is set equal to zero, not at point 7
J

, but rather at point Q, and
the resulting equation is solved for c/cf ,

we get

8(1 -f ~/0'
'

A useful average value between the two gives ?/?r optimum dumping for the

case, (/. (63), of optimum tuning:

'-sir-f a*

The same procedure applied to the ease of the constantly tuned absorber

f =
1, for zero slope at 7

J

, gives

= M .^__
3HL
~8(i -T My

Similarly, for the Lanchcster damper f =
(Fig. 82), zero damping at Q is

attained for

2(2 -

These results are shown graphically in Fig. Sic.

Now we are ready to find the relative motion between the two mnsses

M and m, determining the stress in the damper spring. An exact calcula-

tion of this quantity would be very laborious, because it would be necessary

to go back to the original differential equations. Therefore ue are satisfied

with an approximation and make use of the relation found on page 03,

stating that near a maximum or resonant amplitude the phase angle between

force and motion is 90 deg.

Thus the work done per cycle by the force P is [see Kq. (9), page 14]

}\
r = TrPoJi Sin 90 = TrPoZi

This is approximate, but the approximation is rather good because, even if y

differs considerably from 90 deg., sin <p does not differ much from unity.

On the other hand, the work dissipated per cycle by damping is, by tho

same formula, TT X damping force X relative amplitude x, i,
since the

damping force being in phase with the velocity has exactly 90-deg. phase angle

with the displacement amplitude. Thus

Equating the two,

or
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Written in a dimensionless form this becomes

_ Xi 1

This formula determines the relative motion and consequently the stress

in the damper spring. Upon substitution of the proper values for /z, g, etc.,

this formula is applicable to the viscous Lanchester damper, as well as to the

two kinds of dynamic absorbers.

The curves of Fig. 816 show the results of these calculations.

It is seen that the relative motions or spring extensions are

quite large, three or four times as large as the motion of the

main system. If springs can be designed to withstand such

stresses in fatigue, all is well, but this quite often will prove to

be very difficult, if not impossible, within the space available

for the springs. This is the reason why the Lanchester damper,

though very much less effective than the spring absorber, enjoys
a wide practical use.

Example: It is desired to design a damper for the system of Fig. 73, in

which Mg = 10 lb.; nig
= 1 lb.; PQ

= 1 lb., and K = 102 lb./in., which

will operate for all frequencies of the disturbing force. If first the absorber

spring is taken as k = 10.2 lb. in.,

a. What is the best damping coefficient across the absorber?

b. What is the maximum amplitude of the main mass?

c. What is the maximum stress in the absorber spring?

Further, if we drop the requirement k/K m/Mj
d. For what k is the best over-all effect obtained?

e. Same question as a but now for the new value of k.

f. Same question as b but now for the new value of fc.

g. Same question as c but now for the new value of k.

Solution: The answers are all contained in Figs. 8 la, 6, and c.

a. From Fig. 81c we find: c/2mi2n = 0.205 or

c = 0.4bntt = 0.41H 86 207T = 0.067 Ib./in./sec.

b. Figure 81 a or Eq. (65) gives x/xtt 7.2,

x t
= Po/K = Ko2> so that x = 7.2/102 = 0.071 in.

c. Figure 816 gives for the relative motion across the absorber spring

Srd/3.1 = 12.8 so that zroi
= 12.8/102 = 0.126 in. The force is fczrci =

10.2 X 0.126 = 1.28 lb.

d. The most favorable tuning follows from Eq. (63):
~ =*= -z r- = -

,

"n 1 -J- /i 11

so that
( -)

~ Tot* Since m, M, and K are the same now as in all pre-

vious questions, (wa /ftn)
2 is proportional to k. Thus the new absorber

spring should be

k = 10
?{ 2 i X 10.2 = 8.4 Ib./ia.
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e. Figure 81c gives c/2mQn

question a, we have

0.166. Since 2mttn is the same as in

0166
:

0.205
X 0.067 = 0.054 Ib. in.- 1 sec.

/. From Fig. 81a or Eq. (64) we find x/xai
= 4.6. Since from b we have

xat
= Ko2> the maximum amplitude is

4.6

102
0.045 in.

g. Figure 816 gives xre\/xat
~

19.5, so that jrd = 19.5/102 = 0.191 in.

With A; = 8.4 lb./in., this leads to a maximum force in the ppring of 8.4 X
0.191 = 1.60 Ib.

The principal applications of dampers and absorbers of this

type are in internal-combustion engines (page 266) and in ship

stabilization, which will be treated in the next

However, an "absorber" may be pre-

without

section.

sent in a construction

^

being very

conspicuous.
An example of this is found in the gears of

electric street cars which, in operation, may be

ringing like bells if no precautions are taken. In

fact a great part of the objectionable noise in

street cars is caused by their gears. It has been

found by experience that this noise ran be

eliminated to a great extent (the wheels "dead-

ened") by shrinking two steel or cast-iron rings

a, a (Fig. 83) on the inside of the rim. If the

shrink fit is too loose, no deadening occurs; if it

is shrunk very tight the effect is again very

small, but for some intermediate shrink pressure

the deadening effect is astonishingly complete.

Two identical gears, one with and the other with-

out rings, may be placed upright on the ground
and their rims struck with a hammer. The first

gear will sound like a piece of lead while the

second one will ring for ten or more seconds.

The cast-iron inserts evidently act as Lanchester dampers.
25. Ship Stabilization by Means of Frahm Tanks. One of

the most interesting applications of the rather lengthy theory
of the preceding section is the prevention of the "rolling" of

ships in a rough sea by means of certain devices installed on

board.

Fia. 83. Gear
with sound-dead-

ening rings in-

serted. These
should be either

shrunk or tack-
welded in a few

spots so as to

allow some rela-

tive rubbing dur-

ing the vibra-
tion.
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First consider the rolling of the ship itself without any damping
device. Imagine the ship to be floating in still water (Fig. 84a),

the weight W and the buoyancy B being two equal and opposite

forces both passing through the center of gravity G. Now hold

the ship at a slightly inclined position by some external couple

(Fig. 846). The weight W still acts through the point (?, but

the buoyancy force B is displaced slightly to the left. The line

of action of this force intersects the center line of the ship in

some point M, which is technically known as the metacenter.

It is clear that the location of this point is determined by the

geometry of the hull of the ship. The distance h between M
and G is called the metacentric height.

(a) (b)

FIG. 84. The buoyancy and weight forces acting on a ship.

the metacenter M has to be located above the center of gravity G.

MG is the metacentric height h.

For stability
The distance

The determination of this quantity from a drawing of the ship

is an important task of the designer, since upon it the rolling

stability depends. In Fig. 846 it is seen that the forces W and B
form a couple tending to restore the ship to its vertical position.

This is always the case when the metacenter is above the center

of gravity or when the metacentric height h is positive. In

case h were negative, the W-B couple of Fig. 846 would tend to

increase the inclination of the ship and the equilibrium would be

unstable.

Example: A ship has a rectangular cross section and the submerged part
has a square section of which the sides have a length 2a. The center of

gravity lies in the vertical line of symmetry at a height x above the bottom
of the ship. For small values of x the ship is stable, for large values of x

it is statically unstable. Find the value of x where the equilibrium is just

indifferent.
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Solution: Consider a submerged piece of the ship of dimensions 2a X
2a X 1 in. By taking such a slab of unit thickness we gain the advantage
that the submerged volumes become numerically equal to the corresponding
cross-sectional areas. By tilting through the angle v? the submerged figure

changes from a square to a square from which a small triangle has been

subtracted on the right side and to which a similar triangle has been added
at the left side. The area of such a triangle is a/2 X av = aV/2. Since

the center of gravity of these triangles is at one-third of the height from the

base, the shift of the triangle from right to left shifts the center of gravity
of an area aV/2 through a distance of 3 3 2. The product of these quanti-
ties equals the total area of the square 4a 2

multiplied by the horizontal shift y

of the center of gravity of the whole figure. Thus

4a 2
y = %aV or //

= ~

The center of gravity of the submerged figure is shifted to the left over this

distance from the original vertical axis of symmetry. A vertical line through
this new center of gravity intersects the symmetry axis at a distance a/6
above the original location of the center of gravity. Since this intersection

is the metacenter J\f. we find that M lies at a distance of a -f- ? = ,a above
b o

the bottom of the ship. This is also the desired position of the center of

gravity of the ship for indifferent equilibrium.

The ship is a vibratory system, since when it is displaced from

its equilibrium position it shows a tendency to come back. For

small angles <p the location of M is independent of <p. The

restoring couple is Wh sin tp or Wh(p for sufficiently small (p.

By the action of this couple the ship will roll back about some

longitudinal axis. Let the moment of inertia about that axis be

Ia (the subscript s stands for ship). Newton 's law can be written

or

+ y = o (71)

which we recognize as Eq. (13) of page 42 for the undamped

single-degree-of-freedom system. Consequently the ship rolls

with a natural frequency

'^ (72)

Of the quantities appearing in this equation, W and h can be

determined rather accurately from drawings before the ship

is built. This is not so for / which is somewhat open to conjee-
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ture because we do not know exactly about what axis the ship

rolls. It would be the axis through (?, if during the rolling the

water exerted no lateral forces on the hull. Since this is not

the case, the center of rotation is somewhat below G. The exact

location can best be determined by an experiment on a model

in which W and coa are measured in the test, h is calculated or

FIG. 85. Frahin antirolling tanks,
old type.

Fio. 86. Modern "blister" construc-
tion of Frahm's antirolling tanks.

/\

possibly measured by a static test, and /, is then calculated

from (72).

Imagine the ship to be in a rough sea. Waves will strike it

more or less periodically and exert a variable couple on it.

Though this action is not very regular, it may be regarded

approximately as a harmonic disturbing torque To sin ut to be

written on the right-hand side of Eq. (71). In case the wave

frequency a? is near to the

natural frequency o>, of the

ship's roll, the oscillations may
become very largo. In rough
seas the angle <p has been

observed to reach 20 deg.

Equations (71) and (72) tell

us that, as far as vibrational

properties go, the system of

Fig. 84 is equivalent to Fig.

24 or to the upper part of Fig.

73. Therefore the addition of

a damper of the type shown in Fig. 73 should help. This has

been done by Frahm, in 1902, who built into a ship a system of

two tanks (Fig. 85) half filled with water, communicating through
a water pipe below and through an air pipe with valve V above.

The secondary or "absorber" system corresponds approximately
to Fig. 31, page 48.

FIG. 87. Idealized Frahm tank showing
definition of R, <p, and ^.
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In more recent constructions the lower connecting pipe between

the tanks is omitted and is replaced by the open ocean as indi-

cated in Fig. 86. The "blisters" extend along two-thirds tho

length of the ship and are subdivided into three or more com-

partments by vertical partitions. Thus there are three or more

air pipes with valves. Both these constructions are really more

complicated than Fig. 77, though the older construction, Fig. 85,

comes quite close to it.

In order to derive the differential equations, let us idealize

Fig. 85 to such an extent that the tanks and the two connect-

ing pipes are arranged in a circle of radius R with the center of

rotation of the ship as center (Fig. 87). Moreover, there is so

much water in this circular pipe of constant cross section A that

just 180 deg. of it is filled. Further let

<p
= angle of the ship

\l/
= angle of tank-water level with respect to sea

^ tp
= angle of tank-water level with respect to ship

/, = moment of inertia of ship + tank water clamped
solid at \l/ v =

Iw = moment of inertia of tank water about center of

rotation

Ks <p
= static torque exerted on ship by ocean for a small

angle <^ with tank water clamped at
\f/ p =

kw \l/
= static torque exerted on ship for <p and a small

angle i/' (in radians)

c = friction torque on ship when <p, <, and ^ are zero

while
\l/

is 1 rad. per second

To sin ut = external torque on ship due to sea waves.

We shall now set up Newton's equation, first for the ship and

then for the tank water. On the ship four external torques are

acting: first, K8 <p due to the quiet ocean water trying to right

the ship; second, kw (\f/ ^) from the tank water which is dis-

placed from one tank to the other; third, c(<p \l/)
from the

friction of the tank water moving through the pipes (and from

the air through the throttle valve); and fourth, To sin o>, the dis-

turbing torque from the waves. The sum of these, being the

total torque on the ship, must be equal to /<. The equation
of motion of the tank water can be derived in a like manner:

iO = o sn
-

<p)
=
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It is well to consider how the various constants K9 ,
kw , etc.,

can be found from Fig. 87. The ship's "spring constant" K9

is WA, the product of the weight and the metacentric height.

The spring constant of the water kw should be calculated by the

reader to be 2/? 2
A7, where 7 is the weight of 1 cu. in. of water

and A is the cross-sectional area of the tube. The unit friction

torque c is caused not so much by the water flowing through the

pipes directly as by the air passing 'through the throttle valve.

Comparing Eqs. (73) with (51) and (52), it is seen that they

do not coincide completely, the difference being that the spring

torque in the secondary equation is proportional to x 2 x\ in

the first case and to ^ alone in the second case. Though this

means that the numerical results of Fig. 81 are not directly appli-

cable to the Frahm aritirolling tank, the general conclusions are

the same. These state that

1. When the throttle valve is completely closed (c
=

oo)^ the

roll of the ship is not diminished by the tank (Fig. 79).

2. When the throttle is completely open (c
=

0), the roll is

not diminished either; in fact, it becomes large for two different

sea-wave frequencies.

3. There exists a setting of the throttle between the two

extremes when; the roll is effectively diminished at all sea-wave

frequencies.

The foregoing analysis applies to Fig. 87, which is an idealiza-

tion of Fig. 85. In the case of the construction shown in Fig. 86

it is still more difficult to precalculate exactly what happens.

With the ship standing still, the water in the tanks is in itself a

two-degrce-of-freedom system. In Fig. 85 the water level in

one tank determines that in the other, so that everything is

described by giving the level in one of the tanks only. In Fig. 86,

however, the two water heights are independent of each other

and thus require two numbers to specify the configuration.

Consequently the ship-tank assembly has three degrees of free-

dom and three resonant frequencies. This makes it practically

impossible to make an exact calculation. But the three general

conclusions just mentioned still hold.

In practice the tanks in either construction are designed so

that the period of the water motion in them is approximately

equal to the natural period of roll of the ship (corresponding to

the absorber with "constant tuning" of Fig. 81). In a rough
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sea the valve in the air pipe is adjusted to give the best possible

operating condition.

Frahm antirolling tanks were installed on the large German
liners

" Bremen " and "Europa." For the more modern con-

struction of "activated" tanks, where the water is pumped from

one tank to the other, see page 142.

26. Gyroscopic Ship Stabilizers. Another method of reducing

ship roll, which apparently is entirely different from Frahm's

tanks but really operates on much the same principle, is the

gyroscope of Schlick (Fig. 88). This device consists of a heavy

gyroscope rotating at high speed about a vertical axis. The

gyroscope bearings A A are mounted in a frame which is sus-

pended in two bearings BB so that the frame is capable of rota-

tion about an axis across the ship. The axis BB lies above the

center of gravity of the gyroscope and its fiame. A brake drum

C is attached to BB, so that the swinging motion of the gyroscope

frame can be damped. The weight of the gyrorotor is of the

order of 1 per cent of the ship's weight. It is driven electrically

to the highest possible speed compatible with its bursting strength

under centrifugal stress.

For an understanding of the operation of this device, it is neces-

sary to know the main property of a gyroscope, namely that the

torque exerted on it is represented vectorially by the rate of

change of the angular momentum vector. For readers not

entirely familiar with this theorem, a short exposition of it is

given in Appendix I on page 453.

Let the direction of rotation of the rotor be counterclockwise

when viewed from above, so that the momentum vector W
points upward. When the ship is rolling clockwise (viewed from

the rear) with the angular velocity <p, the rate of change of 5R

is a vector of length 31t<p directed across the ship to the right.

This vector represents the torque exerted on the rotor by its

frame. The torque exerted by the rotor on its frame is directed

opposite to this, so that the frame is accelerated in the direction

of increasing \f/ (so that the lower part of the frame tends to go

to the rear of the ship).

On the other hand, if the rotor frame is swinging with a positive

angular velocity \l/,
the momentum vector W increases by an

amount SflZ^ each second in a direction pointing toward the front

of the ship. This vector is a torque tending to rotate the rotor
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clockwise, and consequently the ship counterclockwise, when
viewed from the rear.

Thus the ship is
"
coupled" to the gyroscope in much the same

sense as the ship is coupled to the Frahm water tanks, though the

mechanism is entirely different. Consequently the differential

equations will be different from (51), (52), but still it can be
shown that the same three general conclusions hold.

Without damping in the swinging motion of the rotor frame,

the presence of the gyroscope merely changes the one natural

Uft Right

(b) Seen from Righf

IcO Seen from Rear

FIG. 88 Scheme of Schlick's anti-ship-rolling gyioscope. It operates by virtue
of energy dissipation at the brake drum C.

rolling frequency of the ship into two other natural rolling fre-

quencies. A resonance with sea waves leads to infinite ampli-

tudes (p of the ship. An infinite amount of damping clamps the

rotor frame solidly in the ship. Then a roll of the ship merely
creates a pitching torque on the ship's frame and conversely the

clamped gyroscope will convert a pitching motion of the ship

into a rolling torque on it. At resonance of the sea waves with

the one natural rolling frequency again an infinite rolling ampli-

tude results. But at some intermediate damping the two reso-

nant peaks can be materially decreased.

In order to investigate more in detail the similarity and also the differ-

ences in behavior between the Schlick gyroscope and the Frahm tanks, we
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shall derive the differential equations. The torques aeting on the ship's
hull in the ^-direction are the sea-wave torque To sin cof, the spring torque of

the water K x <p, and the gyroscopic torque. It has been seen that this

last torque has the magnitude 371
i/',

its direction being such as to decrease

(f> when ^ is positive. Thus Newton's equation for the ship becomes

It* = -Kv -
9titf + TQ sin ut (51u)

In the same manner the equation for the rotary motion of the gyroscope
frame is

lot = -M' ~
nfr -f 9H* (52a)

In this the quantity k a ,
the spring constant of the gyroscope frame as a

pendulum, can be easily shown to be equal to Wrt, where w is the weight of

the frame and rotor combined and a is the distance between the center of

gravity of w and the axis of support. Tho equations have been labeled here

(51a) and (52a) in order to emphasize their similarity to (51) and (52) for the

case of Fig. 73. Though the two sets of equations ure not identical, the

whole argument of Sec. 2-1 can be repeated word for word and similar results

obtained. In particular, after going through the calculations corresponding
to those performed on page 122, we arrive at the analogue of (57).

(2
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g) + fg
2 - f 2

)
2

-
/ /

, -,

V Cr y
(57a)
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The various symbols used in this formula are not literally the same as those

defined by (56), because they pertain to a different problem, but the differ-

ence is not great. For instance, f in this case is the ratio between the

natural frequencies of the gyroscope and the ship:

Vr
f = ^ =.

r;~~
Also g = co/12. and c, = 27,12.

(56a)

Equation 57a can be interpreted by diagrams like Figs. 79 and 80. But

the fundamental difference lies in the definition of /*. In the; dynamic
absorber of Fig. 73, fj. was defined as m/M, and with the Schlick gyroscope.

3T1
2

M =
j-y-i (56a)
Uf/Uy

With the Frahm tank it is evident that M = m/M cannot be much greater

than %Q. On the other hand, it is easy to make the gyroscopic n con-

siderably greater than unity. (Schlick on his 8,500-ton experimental ship

"Silvana" had /*
= 20 approximately.) One would be tempted to conclude

from this relation in the values of n that a gyroscope is of the order of 400

times as effective as a Frahm tank. This, however, is not so, because when
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adjusting the damping c/cc on the brake drum of Fig. 88 to the "optimum
"

value (such as to make the curve of Fig. 80 pass horizontally through P and

Q), it is found that the "precessing" angle -fy
of the rotor frame becomes

many times 360 deg. This makes the analysis inapplicable, because in

practice ^ is limited to about 30 deg. by stops on each side. It is necessary,

therefore, to make the damping considerably greater than optimum to

prevent the gyroscope from swinging too far, and this fact makes the Schlick

gyroscope less effective than one would imagine from a comparison of the

values of /*.

26a. Activated Ship Stabilizers. The motion of the water in

the Frahm tank, as well as the precession of the Schlick gyroscope,
is brought about by the rolling of the ship itself, and in both

cases is impeded by a brake. This is not a perfect solution, since

the best brake adjustment is different for different frequencies
and other conditions. These systems are designated as "pas-
sive" systems to distinguish them from the more modern
"active" systems, where the Frahm water is pumped from one

tank to the other, where the Schlick gyro precession is forced.

There is no longer a brake, but there is a governor or device which

feels the roll of the ship and gives the proper signals controlling

the Frahm pump or the Schlick precession drive, so that the

phase of the counter torque is always correct.

The first of these activated devices reaching practical perfec-

tion was the Sperry gyroscopic ship's stabilizer, illustrated

schematically in Fig. 89. It consists of a main gyroscope, which

differs from Schlick's only in the fact that the axis BB passevS

through the center of gravity, and that the brake drum C is

replaced by a gear segment meshing with a pinion on the shaft of

a direct-current motor Z). Besides the main gyroscope there is

the pilot gyroscope (Fig. 896, c) which has an over-all dimension

of some 5 in. and is nearly an exact replica of the main one. The

only difference is that there is no gear (7, but instead of that

there are two electrical contacts di and e?2 ,
one in front and one

behind the rotor frame.

The operation is as follows. When the ship has a clockwise

rolling velocity <p (looking from the rear) the top of the pilot

rotor frame is accelerated toward the front of the ship and closes

the contact dz. This action sets certain electrical relays working
which start the precession motor D so as to turn the main frame

about the axis BB in the same direction as the pilot frame. In

other words, the top of the main frame moves to the front of the
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ship. This necessitates a clockwise ^-torque on the main rotor,
which has a counterclockwise reaction on the main-rotor frame
and thus on the ship. Therefore the main gyroscope creates a

torque on the ship which is in opposition to the velocity of roll and
in that manner most effectively counteracts the roll. As soon

as the velocity of roll of the ship becomes zero, the pilot torque

Left

(b) Seen from Rear (c) Seen from Right

FIG. 89. Sperry's gyroscope for diminishing ship roll. The precession is

forced by a motor /), which is controlled by a small pilot gyroscope shown in

(6) and (c).

disappears and the pilot rotor is pulled back to its neutral posi-

tion by two springs e as shown in Fig. 89c. Only when the roll

acquires a velocity in the opposite direction does the pilot go
out of its equilibrium position again closing the contact di, which

sets the precession motor going in the opposite direction. Thus

there is always a torque acting on the ship in opposition to the

instantaneous velocity of rolling. With the torque always
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against the angular velocity, a maximum amount of energy of

the rolling motion is destroyed. (See the three rules on pages 18

and 19.)

The direction of the desired ^-precession of the main gyro was

seen to be the same as that of the free pilot gyro, which means
that the motor D turns the main gyro in the direction in which

it would go by itself, if it were free to move in the bearings B.

However, it can be easily verified that, if such freedom existed,

the main gyro would process extremely fast in an accelerated

manner and would reach \(/
= 90 dog. in a very short fraction

of the roll period. At this position the roll would no longer

affect the gyro. Therefore the motor D does not push the main

gyro (except at the very beginning of the precession) but really

acts like a brake, holding the speed of precession down to a

proper value. Schemes have boon proposed to do away alto-

gether with the motor D, reverting to the old Schlick brake drum,
with the difference, however, that the tightness of the brake

would be controlled electrically by signals coming from the pilot

gyro.

In actual constructions the pilot gyroscope has its axis AA
horizontal and across the ship, while its frame axis BR is vertical.

The line connecting the contacts d\ and d% remains parallel to

the ship's longitudinal axis as before. The reader should reason

out for himself that with this arrangement the same action is

obtained as with the one shown in Fig. 89.

Sperry gyro stabilizers have been installed with success on

many yachts. An application to the Italian liner "Conte di

Savoia" showed that a largo roll was very effectively damped
down by the device. However, in the roughest Atlantic storms

single wavos wore found to tilt the ship 17 dog. ;
and since the

powor of the gyros was sufficient only to swing the ship 2 deg.

at one time, the greatest roll angles with and without stabilizer

did not differ materially. A gyroscope that would hold the ship

down ovon in the roughest weather would become prohibitively

largo, of the order of 5 per cent of the weight of the ship.

Another antiroll device that has been proposed but never

built utilizes the principle of lift on airplane wings. Imagine
an airplane of a wing span of say 20 ft., and swell the fuselage

of that plane to the size of an ocean liner, leaving the wing size

unchanged. The wings are located below the water line. While

the ship moves through the water, a lift will be developed on the

wings. The wings can be rotated through a small angle about



AUTOMOBILE SHOCK ABSORBERS 145

their longitudinal (athwartrhip) axis. If the rotation of the

wings (the leading edge downward, the sharp trailing edge

upward) is some 15 dog., the
"
angle of attack" of the water

on the wing is reversed and the "lift" is changed to a downpush-
During the ship's roll one wing always has an uplift, the other

one a downpush, giving a resulting torque opposite to the direc-

tion of roll. The angle of attack of the wings is continuously

changed by a motor which is operated from the contacts of a

pilot gyro. In order to obtain a sufficient torque, wings of

comparatively small size and weight arc adequate, but on the

other hand the resistance of the ship is increased by thorn.

Although the increase is of the order of only 1 per cent of the

entire resistance, this means that 1 per cent of the weight and
cost of the engines and fuel must be charged against the device.

Activated Frahm tanks with large contiifugal pumps trans-

ferring the water from one side to the other, governed by a pilot

gyroscope, were installed experimentally in vessels of the U. 8.

Navy.
Example: A Sperry gyroscope of moment of inertia 1

'

and angular speed Si

is mounted on a ship with a moment of inertia /, which is rolling according
to <f>

=
v? () sin co n t. The gyroscope processes in a damping sense all the time

at a constant speed of either -fto or w, depending on the direction of roll.

During this process the angle of precession ^ remains small, say between

+20 and 20 deg. Find the rate of decay of the rolling angle.

Solution: The momentum vector has the length I u il. Its increase per
second in the direction of the roll axis (longitudinal axis of the ship) is l a il -

to,

as is explained in Eq. (236) and Fig. 280 of Appendix I. Thus the roll-

damping torque acting on the ship is I^il
-

<*?. The angle through which this

torque operates for a full roll from left to right is 2v? ,
so that the work done

per swing (half cycle) is 2<^(i/ (7
12w.

The maximum angular velocity of roll in the middle of a swing is <poco rl and

thus the kinetic energy is J^/s^o^J- The decrease of this must be equal
to th^; damping work. Thus

from which

2/pl2u>
A^>0 "^7

2~~

This is the decrease in angle of roll per half cycle. The expression is

independent of <f> ,
so that the angle of roll diminishes as an arithmetic series

and not geometrically as in Fig. 35.

27. Automobile Shock Absorbers. An automobile of conven-

tional design on its springs and tires is a very complicated vibra-

tional system. There are three distinct "masses": the body,

the front axle, and the rear axle; and eight distinct
"
springs":
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the four springs proper and the four tires (Fig. 90). A solid

body free in space has six degrees of freedom: it can bob up
and down, sway back and forth, move forward and backward

(the three translations); and, moreover, it can have three rotations,

known under the technical names of:

1. Rolling about a longitudinal axis.

2. Pitching about a lateral axis.

3. Yawing or nosing about a vertical axis.

Since the automobile has three such bodies, it really has 18 degrees

of freedom. However, a good many of those 18 arc rather unim-

portant. For example, a sidc-

wise motion of any axle, with

the chassis fixed in space, is

Boo|y hardly possible on account of

the great lateral stiffness both

of the springs and of the tires.

The most important motions

are:

1. A bobbing up and down
of the body with the axles

Fia. 90. Idealized scheme of con- practically steady,
ventional automobile with front and rear 9 A

-

f _u- _. ~f +|10 K^rNr
axles and shock absorbers.

* A Pining OI tile DOdy
with the axles nearly steady.

3. A bobbing up and down of each axle on the tire elasticity

with the chassis practically undisturbed.

4. A rolling of the axles with little motion of the body.

The first two motions were discussed on page 110. For an

entirely symmetrical car (which naturally does not exist) the

two natural modes are a pure vertical parallel motion and a pure

pitching about the center of gravity, but in the actual unsym-
mctrical case each mode is a mixture of the two. In practice,

the natural frequencies for the first two modes are close together,

being somewhat slower than 1 cycle per second in modern cars.

The motions 3 and 4 have frequencies roughly equal to each other

but much faster than the body motions. With older cars the

axle natural frequency may be as high as 6 or 8 cycles per second;

with modern cars having balloon tires and heavier axles on

account of front wheel brakes, the frequency is lower. On
account of the fact that the body frequency and the axle fre-

quency are so far apart, the one motion (1 or 2) can exist prac-

tically independent of the other (3 or 4). For when the body
moves up and down at the rate of 1 cycle per second, the force
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variation in the main spring is six times as slow as the natural

frequency of the axle mass on the tire spring and thus the axle

ignores the alternating force. And similarly, while the axle

vibrates at the rate of 6 cycles per second, the main body springs

experience an alternating force at that rate, which, however, is

far too fast to make an appreciable impression on the car body

(Fig. 38, page 59).

Resonances with either frequency occur quite often and can be

observed easily on any old-model car or also on a modern car when

the shock absorbers (dampers) are removed. The pitching

motion of the body gets in resonance at medium speeds when

running over a road with unevennesses of long wave length. For

example, at some 30 m.p.h. on old concrete highways having

joints spaced regularly at aboi't 40 ft. apart, very violent pitching

usually occurs in cars with insufficient shock absorbers . The

other natural frequency often comes to resonance at rather low

speeds when running over cobblestones. The axles then may
vibrate so that the tires leave the ground at each cycle.

The worst of the evils just described

have been eliminated by introducing

shock absorbers across the body

springs, which introduce damping in
kgjg ^^

the same fashion as a dashpot would. x, '

Before starting a discussion of their Fiu.

^-Automobi^
ridin

action, it is well to consider first the

influence of the springs and tires themselves on the "riding

quality/' or "riding comfort."

Assuming that the car is moving forward at a constant speed,

what quantity should be considered to be a measure of comfort?

It might be the vertical displacement of the chassis or any of its

derivatives. It is not the displacement amplitude itself, for a

ride over a mountain, being a "vibration" of amplitude 3,000 ft.

at the rate of 1 cycle per hour, may be very comfortable. It is

not the vertical velocity, for there are no objections to a fast

ride up a steep slope. Nor is it the vertical acceleration, for a

steady acceleration is felt as a steady force, which amounts only

to an apparent change in g that cannot be felt. But sudden

shocks produce uncomfortable sensations. Therefore a criterion

for comfort is the rate of change of acceleration d*y/dt*9
a quan-

tity that has been called the "jerk."

Figure 91 represents a wheel or axle on its tire spring. The

wheel runs over a road of which the surface is a sinusoid. If the
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car moves at a constant speed, the bottom of the tire experiences

a motion a sin wt. Consider various wheels of the same mass m
running with the same speed over the same road a sin at but

differing among each other in the elasticity k of their tire springs.

The force F transmitted by the spring from the road to the wheel

or axle is k times the relative displacement, which by Eq. (30),

page 61, is

7 mco 2a
F = * -

or in a dimensionless form,

F
(74)

raa>a 1 _

If the dimensionless force F/m^ao is plotted vertically against the

dimensionless square root of the tire spring constant \//i;/\/wa)
2

,

Eq. (74) shows that the diagram Fig. 40 (page 61) is obtained.

We see that stiff springs (large k or steel-rimmed wheels) are

represented by points in the

right-hand part of the diagram,
which means considerable force

FIG. 92. A bump in the road. . .

transmission. Little force

transmission occurs for weak springs (i.e., balloon tires) repre-

sented by points close to the origin of Fig. 40.

This can be appreciated also from a somewhat different stand-

point. Consider a given "sinusoidal" road or a smooth road with

a single bump on it, and let the steel-tired wheel be completely

rigid. The vertical accelerations of the wheel now increase

with the square of the speed, which can be seen as follows. Let

the bump on the road be represented by y = f(x) as in Fig. 92-

For a car with speed v we have x = vt. Then the vertical

velocity is

-~~.

dt
~~

d(vt) dx

and the vertical acceleration is

. _

dt\dt

"
d(vt) \dt

"
dx\dx

Since d^y/dx* is a property of the shape of the bump only, inde-

pendent of the velocity, it is seen that the vertical acceleration

increases with the square of the speed. If the wheel is rigid
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(no tire), the forces acting on the wheel as well as on the road are

the product of the wheel mass and this acceleration. Thus the

force on the road also increases with the square of the speed,

making the rubber tire an absolute necessity even for moderate

speeds, which is a matter of common observation.

The tires are primarily there for a protection of the road and

of the wheels, whereas the main springs take care of riding com-

fort. With a given axle movement a
,
how do we have to design

the main springs for maximum riding comfort, i.e., for minimum

"jerk" d*y/dM From Eq. (30) we have

so that by differentiation

y
co

3a 1 a/2 /'
cos co (74a)

Again Fig. 40 represents this relation, and the springs have to

be made as soft as possible in the vertical direction. Then
most road shocks will be faster than the natural frequency
of the car and will not give it any appreciable acceleration.

The introduction of damping is undesirable at these high road

frequencies. But the case of resonance is not excluded, and

from that standpoint damping is very desirable.

There is still another viewpoint to the question. Figure 40

pertains to steady-state forced vibrations, i.e., to road shocks

following each other with great regularity. Practically this does

not occur very often as the bumps on actual roads are irregularly

spaced. Thus the motion will consist of a combination of forced

and free vibrations, and damping is desirable to destroy the free

vibrations quickly after the road is once again smooth.

The shock absorbers on most automobiles are hydraulic and

operate on the dashpot principle. Any relative motion between

the axle and the car body results in a piston moving in a cylinder

filled with oil. This oil has to leak through small openings,
or it has to pass through a valve which has been set up by a

spring so that it opens only when a certain pressure difference

exists on the two sides of the piston. In this manner a consider-

able force opposing the relative motion across the car body springs
is created, and this force is roughly proportional to the velocity

of the relative spring motion.
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The most desirable amount of damping in these shock absorb-

ers depends on the road condition. When running over a smooth

road with rolling hills and valleys which are taken at the rate

of approximately one hill per second, it is clear that critical

damping is wanted. On the other hand, if the road has short

quick bumps, a small damping is desirable. With this in mind,
some cars had a "dash control" system, whereby the leakage

openings in the shock absorbers could be adjusted from the dash-

board of the car to suit the driver. However, it appeared that

the variability in the types of road unevenness is too great for the

driver to make an intelligent use of his opportunity for changing
the damping constant.

Some shock absorbers have one-way valves in them, so that

for a spreading apart of the axle and the body a different damping
occurs than for their coming together. This is accomplished

by forcing the oil through different sets of openings by means of

check valves. Usually the arrangement is such that when the

body and axle are spreading apart the damping is great, while

when they are coming together a small force is applied by the

shock absorbers. The theories and arguments given by the

manufacturers as a justification of this practice do not seem to

be quite rational.

Problems

40. Calculate the abscissas and ordinatcs of the points A, P, and Q in

Fig. 80.

41. Calculate the natural frequency of the water in the tank system of

Fig. 87 (see page 136).

42. Find the metacentric height of a body made of solid material of

specific gravity J, floating in water, having the shape of a parallepiped with

a. Square cross section h X h, floating with one of its sides parallel to

the water.

b. Triangular cross section of base b and height h floating with the base

down and the point emerging from the water.

c. The same triangular section with the point down.

43. a. Calculate the two natural frequencies of the system of Fig. 93,
consisting of a weightless bar of length 2/, two masses ra, and two springs A\

6. Find the location of the "node" or center of rotation of the bar in

each of the two natural modes.

44. A weightless string is stretched with a large tension of T Ib. between
two solid immovable supports. The length of the string is 3/ and it carries

two masses m at distances / and 21 from one of the supports. Find the

shapes of the natural modes of motion by reasoning alone (without mathe-

matics), and then calculate the two natural frequencies (cf. Problem 20,

page 100).
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45. In the undamped vibration absorber of Fig. 73 let the mass ratio

M/m be 5, and let the damper be tuned to the main system so that also

K/k = 5. Further let the external force P be absent. Find the two natural

modes of motion, i.e., the ratio between the amplitudes of M and m at the

natural frequencies. Also calculate those frequencies.

FIG. 93a. Problem 43.

46. Let the system of Problem 45 be provided with a dashpot across the

damper spring, having a damping constant of 5 per cent of "critical"

(c
= V4&W/20). Assuming that the natural modes of motion calculated

in Problem 45 are not appreciably altered by this small amount of damping,
calculate the rate of decay in each of the two natural motions.

47. The period of roll of the "Conte di Savoia" (see page 144) is 25 sec.,

the metacentric height is 2.2 ft., and the weight of the ship is 45,000 tons.

Calculate

a. Its moment of inertia about the roll axis.

b. Its maximum angular momentum when rolling 10 deg. to either side.

The characteristics of each one of the three gyroscopes installed on board

the ship are:

Gyro moment of inertia, 4.7 10 6
/32.2 ft. Ib. sec. 2

Gyro speed, 800 r.p.m.

Let these three gyroscopes process from
\f/
= 30 dcg. to ^ = +30 dog.,

and let this happen during a time (say 2 sec.) which is short in comparison
with a half period of the ship's roll. Let this precession take place at the

middle of a roll always in a sense to cause positive damping.
c. Find the rate of decay of a rolling motion of the ship, assuming that no

damping action exists other than that of the gyroscopes.
48. An automobile has main springs which are compressed 4 in. under the

weight of the body. Assume the tires to be infinitely stiff. The car stands

on a platform which is first at rest and then is suddenly moved downward
with an acceleration 2g.

a. How far does the platform move before the tires leave it?

b. Assuming the car to have a speed of 30 m.p.h., draw the profile of the

road which would correspond to the 20-accelerated platform. This question
has meaning for front wheels only.

49. The car of Problem 48 runs over a road surface consisting of sine

waves of 1 in. amplitude (i.e., having 2 in. height difference between crests*

and valleys) and with distances of 42 ft. between consecutive crests. There

are no shock absorbers.

a. Find the critical speed of the car.

b. Find the amplitude of vertical vibration of the chassis at a forward

speed of 40 m.p.h.
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50. A double pendulum consists of two equal masses w, hanging on weight-
less strings of length / each (Fig. 936). In addition to gravity, there are

two mechanical springs of stiffness k. The equilibrium position is a vertical

line. Set up the differential equations of motion carefully and calculate the

two natural frequencies. (Small angles.)

FIG. 9:*&. Problem 50.

51. A weightless cantilever spring of length 21 and bending stiffness El car-

ries two concentrated weights, each of mass m, one at the free end 21 and
the other at the center /. Calculate the two natural frequencies.

52. In the centrifugal pendulum of Fig. 776 let ft be the speed of rotation

of the disk, a the distance from the disk center to the center of swing of the

pendulum, 6 the distance from the swing center to the center of gravity of the

pendulum, arid finally k the radius of gyration of the pendulum mass about

its swing center. Find the natural frequency and try to design a pendulum
that will swing back and forth three times per revolution.

63. Prove that the most favorable damping in the viscous Lanchester

damper (curve 3 of Fig. 81c, page 120) is given by

5-5 -Pd+iO<2 +*>]-*

64. A three-bladed airplane propeller is idealized as three flat massless

cantilever springs, spaced 120 deg. apart and carrying concentrated masses

m at their ends, at a distance R away from the shaft center. They are

built in at a distance r from the shaft center into a hub having a moment of

inertia /, with a definite angle a between the blade plane and the plane of the

entire propeller (Fig. 93c). Let the spring constant of each blade in its limber

direction be k2 arid let the blade be infinitely stiff against bending in its stiff

direction (90 deg. from the limber direction). Let the hub be mounted on a

shaft of torsional stiffness ki. Find the two natural frequencies of the non-

rotating system (the "blade frequency" and the "hub frequency"), as a

function of the blade angle a, and find in particular whether the blade fre-

quency is raised or lowered with increasing blade angle a.

55. The same as Problem 54; this time the shaft k\ is stiff against torsion,

but flexible against extension. The hub therefore can vibrate linearly

in the shaft direction. Let k\ mean the extensional spring constant of the

shaft and let the inertia of the hub be expressed by its mass M rather than

its moment of inertia.
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56. The same as Problem 54, but this time the blade stiffness in its own
plane is no longer considered infinite. Let the stiffness of one blade in its

stiff plane be k 2 and in its limber plane A:3 ;
let ki as before be the torsional

stiffness of the shaft. For simplicity let 7=0.

FIG. 93c,- -Problems 64 to 67.

67. A combination of Problems 55 and 56, the blade having stiffnesses

k* and 2, the shaft being stiff in torsion and having k\ in extension, and the

hub mass M being zero for simplicity.

68. A mass m is suspended at distance / bolow the ceiling by two equal

springs k arranged symmetrically at an angle (Fig. 93d). This angle a is

FIG. 93d. Problem. 58.

the angle under the static influence of gravity with the springs carrying the

weight. Find

a. The natural frequency of up-and-down motion.

b. The natural frequency of sidewise motion.

69. In Wilberforce's spring experiment (page 110) let m and rap
2 be the

mass and moment of inertia of the suspended mass, let further ku be the

linear spring constant (pounds per inch deflection), A:2 2 the torsional spring

constant (inch-pounds per radian twist), and k i2
= k z \ the coupling constant

(inch pounds torque per inch deflection or pounds pull per radian twist).

Note that fc ]2 fcn.

a. Set up the differential equations of motion in terms of the longitudinal

displacement x and the tangential displacement y =
p<f>, by the process of

page 104.

b. Find the two natural frequencies and the two configurations x/y.

c. Determine the condition imposed on these values for x/y in order to

insure good Wilberforce operation.

d. Find the two values for x/y numerically.
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e. Find the ratio of the beat frequency to the natural frequency in terms

of the spring constants, assuming the two natural frequencies to be so close

-together that their difference is negligible.

Fia. 93e. Problem 60.

60. A uniform disk of weight W and radius r rolls without sliding on a

plane table. At its center it carries a hinge with a weightless pendulum of

length 1 and a concentrated weight w at its end (Fig. 93e). Find the natural

frequencies for motion in the plane of the paper.



CHAPTER IV

MANY DEGREES OF FREEDOM

28. Free Vibration without Damping. When the number of

degrees of freedom becomes greater than two, no essential new

aspects enter into the problem. We obtain as many natural

frequencies and as many modes of motion as there are degrees of

freedom. The general process of analysis will be discussed in

the next few sections for a three-degree system; for four or more

degrees of freedom the calculations are analogous.

Consider for example Fig. 94, representing a weightless bar

on two rigid supports, carrying three masses m\ t
ra 2 ,

and w 3 .

If the upward deflections of

these masses be denoted by

Xi, x 2 ,
and x$, the first of the

equations of motion can be ^ _ 4
.

, , . , ,

I
1

.
FIG. 94. A round shaft with three

Obtained by equating miX\ to disks on stiff bearings is a system having

the elastic force on the first
three dc^rt;os of freedom in bending.

mass. This force is the difference between the lateral shear

forces in the bar to the left and to the right of Wi, a quantity

depending on all three deflections Xi, x 2 ,
and x 3 , complicated and

difficult to calculate.

It is more in the nature of this particular problem to describe

its elasticity by the influence numbers. The definition of an

influence number i 2 is "the deflection of mass 1 caused by a force

of 1 Ib. at the location of mass 2." We have three direct influence

numbers, n, 2 2, and a 33 where the unit force and the deflection

are measured at the same location, and six cross influence num-

bers, i 2 , <*2i, an, <*si, o: 2 3, and a32 ,
where the two locations are

different. By Maxwell's theorem of reciprocity,

or, in words : the deflection at one location caused by a unit load

at another location equals the deflection at this second location

caused by a unit load at the first location. These influence

numbers can be calculated for any system by the principles of

155
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and analogously for the second and third masses,
x 2

= a 2 imiXi <x 22m 2x 2
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strength of materials. The equations of motion can be written

with them as follows. In the position Xi 9
x 2 , x$ of maximum

deflection of the bar (Fig. 94), the masses have accelerations x\ y

x 2} 3 and consequently experience forces raiXi, ra 2x 2 , m&z.
These forces are exerted by the bar on the masses. By the princi-

ple of action and reaction, the masses exert the inertia forces

miXi, m 2x 2j mzx s on the bar. The deflection at the first

mass caused by these three forces is

(75)

Although these equations cannot be interpreted directly as the
Newton equation for each mass, nevertheless the three together
determine the three unknown motions x\, x 2 ,

and 3 .

As before, on page 104, in order to reduce them from differential

equations to algebraic equations, we put

Xi = ai sin a)t \

x 2
= a 2 sin tat \ (76)

Xz = a 3 sin ut
j

and substitute, with the result

i 2m 2co
2a 2 + a^m^az\

3> (76a)

These equations are homogeneous in a } ,
a 2 ,

and a 3 ,
which can be

seen better after rearranging and dividing by co
2

:

( miaii -r
2 Jai

+ m2ai 2a2 + m 3o:i 3a 3
=

+ ( m 2a22
--

-Ja
2 + m 3a 23a3

==

+ m 2a S2a2 + ( m 3a 33
--

^ Ja
3
=

(77)

If such homogeneous equations are divided by GI, for example,
we have three equations in two unknowns, a 2/ai and a 3/ai. If we
solve these unknowns from the first two equations of (77) and
substitute the answers in the third one, we usually find that
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the result is not zero. Only if a certain relation exists among the

coefficients of a\ 9
a 2 ,

and a 3 ,
can there be a solution. In the

theory of determinants it is shown that this relation is

1

1

CO
2 (78)

The argument is analogous to that given on page 105 for Ihe

two-degree-of-freedom system. The determinant expanded is

a cubic equation in terms of

1 /o>
2

,
known as the

' '

frequency

equation," which has three so-

lutions and hence three natural

frequencies. To each of these

solutions belongs a set of val-

ues for a 2/ai and a 3/ai, which

determines a configuration of

vibration. Thus there are

three natural modes of motion.

We shall carry out these calculations in detail for the sim-

plest possible example, obtained by making all masses equal

mi = m2 = m 3
= m and replacing the bar by a string of tension T

and length 4L It a load of 1 Ib. is placed on location 1, the defor-

mation will be as shown in Fig. 956. The tension in the string

is T and the vertical component of the tension in the part of the

(b)
Fi. 95. Showing

influence numbers for

three masses.

calculation of

a string with

string to the left of mi is yi while to the right of mi it is ^
The sum of these vertical components must be equal to the load

3 I

of 1 Ib. so that S = 7 =;. This is the deflection at 1 caused by4T
3 I

1 Ib. at 1, or an =
^.

The deflection at the masses 2 and 3 caused by the same load

can also be found from Fig. 956 :

1 3 I 1
j.

4T
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The other influence numbers can be found in a similar manner:

22
=

1 I
(79)

3 I

1 I

4T

and Maxwell's reciprocity relations are seen to be true. The

equations of motion are obtained by substituting these values

for the influence numbers in Eq. (75). However, since nearly

every term is proportional to mZ/T, we divide by this quantity
and introduce the abbreviation

= F (the frequency function) (80)

Then Eqs. (77) become

Dividing the first of these by ai, the second by 2ai, and sub-

tracting them from each other leads to

1

(82)

Substituting this in the first equation of (81) and solving for

aa/ai gives

&3 71 /IT? _l_
^ f^^\= _7_^ 4^_l_ {#)

Substituting both these ratios in the third equation of (81) gives

the following equation for F (the frequency equation) :

+ %F -
(84)

This result could have been found also by working out the deter-

minant (78). Evidently (84) has three roots for F. We note

that none of these can be negative since for a negative F all four
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terms on the left become negative and then their sum cannot be

zero. Since by (80) a negative F corresponds to an imaginary o>,

we see that our three-degree-of-freedom system must have three

real natural frequencies. This is true not only for the particular

system under consideration. In general it can be shown that an

n-degree-of-freedom vibrational system without damping has n

real natural frequencies, i.e., the roots of a frequency equation
such as (43), (78), or (84) are always real and positive.

The cubic (84) is solved by trial of some values for F. F =
makes the left-hand side } 4, while F = 2 makes it +%;
evidently at least one root must be between and 2. A few trials

will show that F = ^ is a root, so that Eq. (84) can be \vritten

(F- i)(F*-2F + M) =0

having the three roots

Fo = y2 FI.S = 1

v
(c)

FIG. 96. The three natural modes of a string with three equal and equidistant
masses.

With the relations (80), (82), and (83) the complete result

becomes

Ft = 1.707 co?
=

0.59-^
- = 1.41 - = 1

ml ai a\

F 2
= 0.500 coi

= 2
7

-2 = -3 = -1
ml i ai

F 3
= 0.293 ;

=
3.41-^

-2 = -1.41 -3 = 1
mi ai ai

This gives the shapes of the vibration, or the
" normal modes"

as shown in Fig. 96. These are the only three configurations in

which the system can be in equilibrium under the influence of

forces which are proportional to the displacements x (as the

inertia forces are). The second mode is of particular interest

because the middle mass does not move at all. If that fact had

been known in advance, the frequency could have been found

very easily by considering the left half of the system as one of
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P sin

a single degree of freedom with the spring constant k = 2T/Z

(see Problem 20, page 100).

29. Forced Vibration without Damping. Suppose an alter-

nating force Po sin co to be

acting on the first mass of

the previous example (Fig.

97a). The force P sin coZ

,

T by itself would cause "static"

deflections at 1, 2, and 3 of

iiPo sin co, 2iPo sin co,
>l " 5Fn and asiPo sin co. The equa-

Fio. 07.-Forcod vibrations of a string
tionS f f rced motion are

with three masses. There are two fre- obtained from (75) by add-
quencies at which the disturbed mass does x r A i ,1

not move; thoso arc the frequencies of the
mg these termS t() the

generalized-dynamic-vibration-absorber right-hand sides. With the
effect '

assumption (76) the equa-

tions then are reduced to the algebraic form

Po
-o
CO

2

Po

With the influence numbers (79) and with the definition of F

given in (80), they become

+

2

1

- F)a2

1
(3, _

2
2

\4

4 mco2

"2 mco"2

l_Po

(85)

These equations are no longer homogeneous in ai, a 2 ,
a 3 ,

as were

the corresponding ones (81) for free vibration. They are truly

a set of three equations with three unknowns and can be solved

by ordinary algebra. In the calculations, the cubic (84) appears

in the denominators and is broken up into its three linear factors,

with the result that
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Po %F2 F + }/

(F
-

1.707) (F - 0.500) (F
-

0.293)

mco 2
(F
-

1.707) (F
-

0.500) (F
-

0.293)

mco 2
(F
-

1.707)(F
-

0.500) (F
- 0.293)
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(86)

The physical meaning of these expressions is best disclosed by

plotting them as resonance diagrams corresponding to Fig. 38

on page 59 or to Figs. 75a and 6 on page 1 16. For that purpose
note that F, being proportional to 1/co

2
,
is not a suitable variable.

For the ordinate y of our diagrams we take the quantities

01,2,3

The denominator Pol/T would be the "static deflection" of the

middle of the string if the (constant) load P were placed there

( 22
=

Z/T), so that y is a "
dimensionless amplitude." For

the abscissa x we take

1

F T/ml

The denominator I/ml can be interpreted as the co
2 of a mass m

on a spring constant T/Z, so that \/x is a
" dimensionless fre-

quency." With these two new \ariables, Eqs. (86) are trans-

formed into

4x - 3

2/2
=

(x
-

0.59) (x
-

2)(x
-

3.41)

_ (x
-

2)

(x
-

0.59) (x
-

2)(x
-

3.41)

(x
-

0.50) (x
-

2)(x' -~3^4T)

(87)

plotted in Figs. 98, 99, and 100. The reader should satisfy

himself that for the static case x 0, all three expressions (87)

give the proper static deflections. An interesting property of

(87) is that the factor (x 2) can be divided out in the expression

for y<2. This means physically that the middle mass does not

get infinite amplitudes at the second resonance, while both the
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first and third masses do go to infinity. A glance at the second

normal mode of Fig. 96 shows that this should be so.

-2
'0 0.59 I 2 3 J.4/ 4

w2/X >
/ ml

Fio. 98. See legend under Fig. 100.

-2
0.59 I 3 3AI

FIG. 99. See legend under Fig. 100.

While the numerators of y% and 7/3 show no peculiarities, it is

seen that the numerator of y\ is a quadratic which necessarily
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becomes zero for two frequencies, viz., for x = 1 and x 3

(Fig. 98). At these frequencies the first mass, on which the force

is acting, does not move, whereas the two other masses do

vibrate. We have before us a generalization of the dynamic
vibration absorber of page 112. If the first mass does not move,

-2
\

059 I 3 3.41

ml

FIG. 100.

FIGS. 98-100. Resonance diagrams for the motion of mass 1 (Fig. 98), mass 2

(Fig. 99) and mass 3 (Fig. 100) of the system of Fig. 97a, excited at the first mass.

Only the first mass has two frequencies at which it does not move. The masses

2 or 3 move at all frequencies.

we can consider it clamped and the system reduces to one of two

degrees of freedom (Fig. 97). Such a system has two natural

frequencies which can easily be calculated to be x = 1 and x = 3.

The action can then be imagined as follows. At two resonant

frequencies the two-dimensional system can be excited to finite

amplitudes by an infinitely small excitation, in this case by an

infinitely small alternating motion of mass 1. On mass 1 in

Fig. 976 or c two alternating forces are acting, one being the

vertical component of the string tension from the right and the

other one being the external force P Q sin co. These two forces

must be always equal and opposite, because m\ does not move.

Generalizing, we thus might be tempted to make the following

statement : If an alternating force acts on a mass of an n-degree-
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of-freedom system, there will be n 1 frequencies at which that

mass will stand still while the rest of the system vibrates. Care

has to be exercised, however, in making such sweeping generaliza-

FIQ. 101. Resonance diagrams for the symmetrical string with three masses

of which the middle mass is excited by an alternating force.

tions. For example, an exception to the rule can be pointed out

immediately by exciting our system at the middle mass. On
account of this mass being a node at the second resonance

(Fig. 96), the force can per-

form no work on it at that

frequency so that no infinite

amplitudes can be built up.

The ' '

resonant frequency
' '

FIG. 102. Vibration absorber effect in and the
"
vibration absorber

string with three masses of which the - ,,, , . . i

middle one is excited. frequency happen to coincide

in this case. In reasoning

out the shape of the three resonance curves for excitation

at the middle mass, it should be borne in mind that the

system is completely sym-
metrical so that the yi and the

i/s diagrams must be alike.

Without carrying out the cal-

culations in detail, we can

conclude that the result must

have the general shape shown in Fig. 101. Below x = 2 all

three masses are in phase, somewhat like Fig. 96a; above that

frequency they are in opposite phase, somewhat like Fig. 96c.

At the second natural frequency, however, the configuration

FIG. 103. Damping at the central mass
of the string.
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must, for reasons of symmetry, be as shown in Fig. 102. The

amplitude of motion of the masses 1 and 3

must be determined by the value of the excit-

ing force, so that the sum of the vertical com-

ponents of the tensions in the two pieces of

string attached to w2 must be equal and

opposite to the exciting force.

30. Free and Forced Vibrations with Damp-
ing. If there is damping in a system of many

ffic
Fio. 105. Torsional equivalent of

system of Fig. 103 or Fig. 104.

the

S//S//////////

FIG. 104. The lon-

gitudinal vibrations of

this system are com-
.

pietely equivalent to degrees ot freedom, we are practically mter-
the vibration of either ested jn two questions: (a) in the rate of
Fig. 103 or Fig. 105. *

J

'

decay of amplitude of the free vibration;

(6) in the amplitude at resonance of the forced vibration. The

method of calculation employed in the exact classical theory

will be shown in the example of the string with three equal and

equidistant masses.

Let a damping force cx% be acting on the middle mass (Fig.

103). This force causes deflections of ai 2cx 2 ,
a22c 2 ,

and

a 32c 2 at the three masses. The differential equations (75)

for the free vibration become

= a\\mxi z}

2 >

i

(88)

where the various influence numbers have the values expressed by

(79). By algebraic manipulations these can be transformed into

+
7'

+
?<

. T,

7<

7<

T
(89)
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The first equation of (89) is found by subtracting the second of

(88) from twice the first of (88), i.e., by forming 2xi x%. The
second equation of (89) is obtained by calculating xi + x$ 2z 2

and the third one by forming x 2 2x 3 . The physical signifi-

cance of Eqs. (89) is apparent. They are the Newtonian equa-
tions for the various masses, the first term being the inertia force,

the second the vertical component of the string tension to the left

of the mass, the third that same component to the right, and the

fourth the damping force.

In this case it would have been possible and easier to write

the equations in the last form directly without using the influence

numbers. However, for the example of the beam with which

this chapter started (Fig. 94), influence numbers afford the

simplest manner of approach.
Before proceeding with the solution of (89), it may be well

to point out that these equations may represent two other sys-

tems as well, shown in Figs. 104 and 105. In Fig. 104 the masses

are restricted to vertical motion alone, and the spring constant k

has to be made equal to T/Z to give complete analogy with Fig.

103. The second example, Fig. 105
;

is a torsional one. The
reader will do well to interpret the results shown in Figs. 95 to 102

for these two cases.

In solving Eqs. (89), we know from the last two chapters that

an assumption of the form x = a sin co, which is perfectly

justifiable for the undamped case, will not lead to a result if

damping is present. The solution is rather expected to be of

the form x a e~pt sin qt. This is met by assuming

Q/f /An\
#2 = #20 ) WW
x, = a se

st

)

where s is a complex number, s = p + iq* The value p gives

the exponent of decay of amplitude and q is the natural frequency

(see page 51). Substituting (90) in (89),

/ T\ T
I ms2 + 2 )ai

- 4a* + =
\ I/ I

T\ T
s
8

-f- cs + 2-y Ja2 -ya 3
=

L j v

TO, -M ms2 + 24 a3
=

(
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This is a homogeneous set of equations in a
i;
a2 ,

and a 3 and can

have a solution only if the determinant vanishes:

ms2 +

_T
I

ms2 + rs

_T
I

T T
I

T
2y

6

or, written out,

(ms* +
2^ jl (

+ 2 + cs +
^J

-
2^j

= (91)

This equation of the sixth degree in 6- is known also as the
"
fre-

quency equation," though s in this case is not the frequency but

a complex number expressing frequency and rate of decay com-

bined. The quantity 5 is called the "complex frequency."
In this particular case the equation falls into two factors of

which the first one leads to

2T
ml

with a solution of the form

r

V2TIrf4e

which can be transformed to [see Eq. (8a), page 13]

/2T. . n . [2T .

Ci cos A rt + C 2 sm A ft
\ ml \ml

This solution therefore gives a frequency co
2 = 2T/mt, while

the rate of decay of amplitude is zero, since s does not contain

any real part. The frequency coincides with that of Fig. 96b

for the undamped case, in which the middle mass is a node.

Therefore the damping force can do no work, which is the reason

for the absence of a rate of decay in this second mode and also

the reason for the fact that the natural frequency is not affected

at all by the damping.
The other factor of (91), after multiplying out, becomes

+ m ?
3 + 4~s 2 + 2

7
-s

ml ml m mi
]
=
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having four roots for s, which we do expect to have real parts,

since in the modes of Figs. 96a and c the damping does perform
work. The roots of s will be of the form

4
=

Pi jq\

56 = Pz + jqz

6
= P2

-
jqz

because the complex roots of algebraic equations always occur

in conjugate pairs.

The numerical calculation of these roots from the numerical

values of m, c, T, and I is cumbersome even for the compara-

tively simple equation of the fourth degree.* Therefore this

classical method is unsuited to a practical solution of the problem.

It has been discussed here merely because in Chap. VII we shall

consider cases in which the real parts of s become positive, which

means a decay function of the form e+pt
,
which is not decay but

actually a building up of the vibration; the motion is then called

"self-excited."

In practical cases the damping is usually so small that the

natural frequency and the mode of motion are very little affected

by it (Fig. 36, page 54). Hence the rate of decay of the free

vibration may be calculated by assuming the configuration

and frequency which would occur if no damping existed, as follows.

If the amplitude of the middle mass be a2 and the frequency
be o>, Eq. (34), page 68, gives for the work dissipated per cycle

by the damping force ca2co:

W irc&al

The kinetic energy of the system when passing through its neutral

position is

y2mrf(a\ + a\ + aj)
= y2m^ia\ (92)

where the factor f depends on the configuration. This energy
is diminished by ircua\ each cycle, or

Hence,
da% ire

a% mcof

* The mathematical method by which this can be done is discussed in
1

'Mathematical Methods in Engineering" by Th. von Karmdn and M. A.

Biot, p. 246.
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If in a natural mode of motion one of the masses reduces its

amplitude to one-half, all other masses do the same, so that

ire

di d2 #3 mfco

In the first mode of motion, Fig. 96a, the factor f, as defined

f jC
by (92), is seen to be 2, whereas w = wi = A /0.59 -> so that

\ ml

the percentage decay per cycle is

^!
=
2.04r^X

In the third mode of motion f is also 2, but co 3
=

^/3.41- ^
so

that

rfa i n o

This method gives perfectly satisfactory results for the usual

damping values. Of course, when the damping becomes an appre-

ciable fraction of cc ,
the procedure ceases to be reliable.

For forced vibrations with damping, the "classical" method is

even more complicated than for free vibrations. It becomes so

cumbersome as to be entirely useless for practical numerical

purposes. However, for technically important values of the

damping the above energy method gives us a good approximation
for the amplitude at resonance in which we are most interested.

As before, we assume that at resonance the damping force and

exciting force are so small with respect to the inertia and elastic

forces (see Fig. 41, page 64, for the single-degree case) that the

mode of motion is practically undistorted. Then the damping

dissipation per cycle can be calculated in the same manner as

has just been done for the free vibration. In the steady-state

case this dissipation must be equal to the work per cycle done

on the system by the exciting force or forces. In general, there

is some phase angle between the force and the motion. At

"resonance," however, this phase angle becomes 90 deg., as

explained on page 68, at which value of the phase angle the

work input for a given force and motion becomes a maximum.
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As an example, take the combined Figs. 97a and 103. The
work input of the force per cycle is 7rP ai, and the resonant ampli-

tude is calculated from

or,

Hence

/ T"
In the first mode we have a 2/i = 1.41 and w =

^/0.59~-
-, (page

162), so that

- =
0.65?Jf

For the two other natural frequencies we find

re.
= (second mode)

re,
=

0.27^JY (third mode)

The most important technical application of this method is in

connection with torsional vibration in the crank shafts of Diesel

engines, as discussed in Chap.
V.

31. Strings, Organ Pipes,

Longitudinal and Torsional

Vibration of Uniform Bars.

These four types of problem
will be treated together be-

cause their mathematical and

physical interpretations are

identical.

In the last few sections

a string with three masses

has been investigated. The

FIG. 106.- Vertical components of the

tensions acting on an element dx of a

stretched string.

"string" itself was supposed to have no weight; the masses

were supposed to be concentrated at a few distinct points. By
imagining the number of masses to increase without limit we
arrive at the concept of a uniform string with distributed mass.

The equation of motion is derived by writing Newton's law

for a small element dx of the string, of which again the tension
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T is assumed to be constant. Let the deflection curve during
the vibration be y(x, t), where the ordinate varies both with the

location along the string and with the time. The vertical com-

ponent of the tension T pulling to the left at a certain point x

of the string is (Fig. 106)

-

negative because it pulls downward, whereas y is positive upward.
The differential coefficient is partial, because the string in con-

sidered at a certain instant, i.e.
t

t is a constant in the differentia-

tion. At the right-hand end of the element dx, the vertical

component of the tension is

?y
> fa i

dx

This quantity is positive because it, pulls upward. The factor

^dx expresses the increase in slope along dx. Since the two

vertical forces on the element dx are not equal (Fig. 1066), there

is an excess upward pull of

T~~-
9
dx

dx,

which must accelerate the element in the upward direction. If

we denote the mass per unit length of the string by MI, the mass

of dx is Mi^x and Newton's law gives

.. jJ 2
y _ Td*v^

Dividing by dx we obtain the partial differential equation of the

string:

The reader should compare the structure of this formula with

the first of the equations (89) and determine the physical

meaning of each term.

The problem of longitudinal vibrations in a bar is quite similar

to that of the string and is a generalization of Fig. 104 (without

damping) when we take more and smaller masses and more and
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shorter springs. Now the masses are not numbered 1, 2, 3 as

in Fig. 104 but designated by their position x along the bar

p
(Fig. 107). Let the longi-

"-.-.-I*"--- K tudinal displacement of each

point x be indicated by the

Greek equivalent of z, namely
. Thus the state of motion

FIG. 107. Longitudinal vibrations of / ,1 i i /? i

a bar; , determines the position of any
<>f the bar IS known if W6 know

point, and is the displacement during %(Xj t) , again a function of two
vibration of each point*.

variables.

The cross section x goes to x + ,
and the section x + dx

goes to (x + dx) + ( + d). At some instant t the length dx

becomes

dx +
-fi-dx

Thus d/dx is the unit elongation which causes at the section x

of the bar a tensile stress of

EA|^
E
dx

*~

where E is the modulus of elasticity. I \

If the bar were stretched with a constant FIG. 108. Longitudinal

^t elastic forces on an element

stress, E-^- would be constant along the of the beam of Fig. 107.
dx

length of the bar, and the element dx would be pulled to the left with

/) t

the same force as to the right. But if the stress E~ varies
dx

from point to point, there will be an excess force on the element to

accelerate it longitudinally.

In Fig. 108 let the element dx be represented with its two
forces which are the stresses multiplied by the cross-sectional

area A. The force to the left is AE--^> and that to the right
dx &

is AE plus the increment due to the increase dx in the abscissa.
ox

This increment of force is I AE-~\dx. Hence the excess force
dx\ dx)

to the right is
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Let the mass per unit length of the bar be MI, and Newton's law

becomes

or

*$ - Af& (93a)

where AE is the tension stiffness of the bar. This is the same

differential equation as (93).

A variant of this case is the organ pipe, where an air column

instead of a steel column executes longitudinal vibrations.

Equation (93a) evidently must be the same; jui signifies the mass

of air per unit length of pipe, and E is its modulus of elasticity.

Instead of the stress in the above derivation, we have here the

pressure and since the definition of E in elasticity is

stress _ elongation
E original length

we have correspondingly for the E in gases

increase in pressure _ decrease in volume

E
"~

original volume

or

n dpE =
v-f^dv

As in elasticity, the quantity E in gases is measured in pounds

per square inch.

Finally, an inspection of Figs. 103, 104, and 105 will make it

clear that the torsional vibration of a uniform shaft with dis-

tributed moment of inertia also leads to the same differential

equation. The variable in this case is the angle of twist <p(x, t),

and the differential equation is

where ni is the moment of inertia per inch length of shaft and
GIP is the torsional stiffness of the shaft. It is left as an exercise

to the reader to derive this result.

Proceeding to a solution of (93), (93a), or (936), we assume

that the string vibrates harmonically at some natural frequency
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and in some natural or normal configuration. It remains to be

seen whether such an assumption is correct. In mathematical

language this means that we assume

2/0, f)
= y(x) sin ut (94)

Substitute this in (93), which then becomes

d*y /ziw
2

dx*
+ T y =

(95)

which is an ordinary differential equation. Whereas in all pre-

vious problems this sort of assumption .simplified the ordinary
differential equations to algebraic ones, we have here the simplifi-

cation of a partial differential equation to an ordinary differential

equation.

It is seen that (95) has the same mathematical form as Eq. (13),

page 11, or in words: the amplitude of the string as a function

of space acts in the same manner as the amplitude of a single-

dogree-of-freedom system as a function of time.

Therefore the general solution of (95) is by Kq. (14)

y(x)
= C, sin .r^

- + C, cos r^- (96)

which determines the shape of the string at the instant of maxi-

mum deflection. The integration constants C\ and 2 can be

determined from the condition that at the ends of the string the

amplitudes must be zero, or

y = for j = and for x = I

Substituting x = gives

?y (o)
= o = d o + r, i

so that (\ = 0. With x =
/, we get

y(l)
= - Ci sin /J

M

^" (97)

This can be satisfied by making d =
0, which gives the correct

but uninteresting solution of the string remaining at rest. How-

ever, (97) can also be satisfied by making the argument of the

sine an integer multiple of v or 180 deg.
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(98)

This determines the natural frequencies, while the corresponding
normal modes can be found at once by substitution of Kq. (98)

in Eq. (96). The results are illustrated in Fig. 109.

There is an infinite number of normal elastic curves and corre-

spondingly an infinite number of natural frequencies. The

FKJ. 100. The* first three natural modos of motion of tho latoral vibration

of a uniform .string or of tho longitudinal or torsional \ibrat ion of a uniform

bar built in at both onds.

motion in each one of these modes is such that the; amplitude

of every point of the string varies harmonically with the time,

and consequently the normal curve remains similar to itself.

Therefore, if a string is deflected in one of the shapes of Fig. 109

and then released, it will return to

its original position in an interval of

time determined by the natural period

of the vibration. At that frequency
and shape the inertia force and spring

force of each element <7.r of tho string

are in equilibrium with each other at

any instant.

If the string is given an initial dis-

placement of a shape different from

any of those of Fig. 109, e.g., a dis-

placement such as is shown in Fig. 1 10,

the shape can be considered to be

composed of a (Fourier) series of the

normal shapes (see page 20). Each Fourier component then

will execute a motion conformal to itself, but each one will

do this at its own particular frequency. Thus after one-eighth

period of the fundamental mode, the amplitude of that

2nd

3rd

Fi<i. 110. Shape of a

"plwkod" Hiring with th<

first throe Fourier roinponontM
of that ahapo.
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fundamental component will have decreased to 0.707 of its

original value, the second component will have zero ampli-

tude, while the fourth mode will have reversed its amplitude.

Thus the compound shape of Fig. 110 is not preserved during the

motion. However, after ufull period of the fundamental motion

the original shape recurs.

(a)

Cantilever

Organ pipe

fel

M

(e)

Fu>. 111. Longitudinal Nitrations of Ji steel column or air <

end is fixed and one end free.

>lumn of which ono

The shapes of Fig. 109 pertain also to the longitudinal (or

torsional) vibrations of a bar with both ends built in or to the

vibrations of an "
organ pipe" with both ends closed. The ordi-

natos then signify displacements along the bar. The frequencies

are evidently the same, except for a substitution of the "tension

stiffness" AE instead of the tension T.

For the longitudinal (or torsionai) vibrations of a cantilever

bar or of an organ pipe with one open end, the general expression

(96) for the shape still holds, but the end conditions for deter-

mining C\ and Co are different.

At the closed end x =
0, we still have y 0, because the air

cannot penetrate the solid wall at the closed end of the pipe.

At the open end, however, there can be displacement but no

stress (in the bar) or no pressure excess (in the organ pipe). In
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the derivation of the different ial equation this stress was seen

to be proportional to d/d* (or dij/dx in the string notation).

The end conditions are therefore

x =
y =

x = / dy/dx =

The first of these makes C 2
= in (96), while the second one can

be satisfied by equating the length of the bar to } \,
'*

j,
5

|, etc.,

wave lengths, as shown in Fig. 111.

In conclusion, a number of results previously obtained are

assembled in Fig. 112. The first of these is half of Fig. {)(>/>;

FKJ. 112. By increasing tlio number of equidistant masses on the Hiring tho

uniform mass distribution is approached gradually. The convergence is too H|O\V

to have practical significance.

the second one is Fig. 97/>, and the third one is Fig. 9(u/. The

inscribed frequencies also have been taken from the same sources,

except that M now stands for all the masses combined and L for

the total length of the string.

In the right half of Fig. 112 two masses have been added at the

points of support. These masses do not affect the frequency

since they do not move. However, they do affect t he value of A/,

which is the total mass. By increasing the number of masses

from 1 to 2, 3, etc., we must finally approach the fundamental

frequency of the continuous string. In the left half of the figure

the frequency of the continuous string is approached from below,

because the masses are concentrated too close to the center where

their inertia is very effective. Conversely, in the right half of

the figure the mass is too close to the supports where it con-

tributes a very small amount of kinetic energy; hence the fre-

quencies are too large.
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It is seen that the exact factor ir
2 = 9.87 is approached very

slowly, and therefore that a quick approximate method for finding

the natural frequency based on such shifting of masses is rather

unsatisfactory.

32. Rayleigh's Method. The string problem is the simplest
one among all those having an infinite number of degrees of free-

dom. Though for this problem an exact solution of the natural

frequencies can be obtained, this is far from possible for the

general problem of a system with distributed mass and dis-

tributed flexibility. Therefore it is of great importance to have

an approximate method for finding the lowest or fundamental

frequency, a method which will always work. Such a procedure
has been developed by Rayleigh; it is a generalization of the

energy method discussed on page 46.

Briefly, a shape is assumed for the first normal elastic curve;

with this assumption the (maximum) potential and kinetic

energies are calculated and are equated. Of course, if the exact

shape had been taken as a basis for the calculation, the calculated

frequency would be exactly cor-

rect also; for a shape differing

somewhat from the exact curve a

very useful and close approxi-
Fio. 113. Calculation of the poten- mation for the frequency is ob-

tial energy of a string. . . . ~ . ., . , . .

tamed, oince the exact solution

for the string is known, we choose it as an example for the explana-

tion of Rayleigh's method, which will enable us to judge the error

of the approximate result.

For a calculation of the potential energy we observe that the

deflected string has a greater length than the straight one. It

is subjected to a tension T all the time, so that in going into

the deflected shape an amount of work TAZ has to be performed
on it. This is stored in the string in the form of potential

energy. For a calculation of the increase in length AZ, we observe

that the length of an element ds is (Fig. 113)

The increase in length of that element is

1 / j \ 2

j j I/ dy\ -,

as ax = T^l -r- J a
2\dx/
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so that
T rl/j\2

x (99)

This result can be derived somewhat differently as follows. In the deriva-

tion of Eq. (93), page 171, it was seen that the right-hand side T -^ signifiesuX

the downward force per unit length of the string. Imagine the string to be

brought into its deflected shape by a static loading q(#) which grows pro-

portional to the deflection y(x). The work done on an element dx by q(x)

in bringing it to the fully deflected position y(x) is Jiq(ic)2/(x)rfa;, and the

potential energy is

Pot =

Since q(x) = T- ;

Pot = -
7> I

y '

~d^
dx ^99a)

By a process of partial integration this can be shown to be equal to (99):

fl d*y , fl j(dy\ dy I fldy,
I y~r~i>fi'% I yd\ T- I ii~~r I "rdy
Jo

ydx 2 Jo
y

\dxj
Jdx Jo dx y

The first term is zero because y is zero at and I. The integral in the second

term can be written

The total kinetic energy is the sum of the kinetic energies
2 of the various elements:

Kin =
^ui"

2
I y*dx (100)

As in the case of a single degree of freedom (page 46), the

expressions (99) and (100) are the maximum energies; the maxi-

mum potential energy occurs in the most deflected position, and

the maximum kinetic energy occurs in the undeformed position

where the velocity is greatest. Equating the two energies we
find for the frequency:

o
^r-ldx

(101)

The value o>
2 obtained with this formula depends on the form

y(x) which we assume. First consider the exact shape:
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.

y =
?/o sm

TTX

By Kq. (99) the potential energy is

,
T fY 7T TTXV

,
T

' * =
2 J, V"'*

C 8

T/
'/X ~

"2
(see page 16)

,i
Similarly we find for the kinetic energy: Kin ^ y%-> so that

Zl <U

o _^x the frequency becomes

T 3.142 /T
^<

which is the exact value.

FIU. 114. A parabolic arc a the Next assume a parabolic arc

approximate (Rayieigh) shape of a for the shape of the string. The
vibrating Htring. .

equation of a parabola in the

xy system of Fig. 114 isy px*. The parabola can be made to

pass through the two points y = y Q and x 1/2 by giving p
x 2

the value 4# //
2

. The equation y = 4i/ io describes the shaded

ordinates of Fig. 114. The deflection of the string is

the shaded ordinate:

mnus

, -4 -
T)

Using this value for
// in (99) and (100), we have after a simple

integration:

Pot = !T
?

'

Kin =
r

and

/

3.162

/

which is only 0.7 per cent greater than the exact value. The
error is surprisingly small, since it can be seen physically that the

parabola cannot be the true shape. The spring effect driving a

particle dx of the string back to equilibrium lies in the curvature,

or d^y/dx*, of the string. At the ends the string particles do not
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move, so that there they have obviously neither inertia force

nor spring force. Therefore the exact shape must have no

curvature at the ends, which condition is violated by the parabola.
To test the power of Rayleigh's method we shall now apply

it to a most improbable shape of deflection curve (Fig. 115):

V =
2/0, .>'

for x = 1/2
L/2

We find successively,

Pot = 2Ty (V/
Kin =

juia>-/?/j;/6

and

A/F2 If __" "

'

"/Mi

r = 3.464 IT

ii

" "

/ Vm
which is 10 per cent greater than the exact value (102).

Rayleigh's approximation al-

ways gives for the lowest natural i|

frequency a value which z,s some-

what too high. Among a number

of approximate results found F<-
.

lir>- Another Kayi<.iKh nppr>x-
... ., 11 ,' iination for half a nine vvuvo.

in this manner the smallest is

always the best one. A proof for (his statement will IK* given

on page 200.

Finally, we shall solve the combination problem of a heavy

string of total mass M, in the middle of which is attached a singlo

concentrated weight of the same mass M. This problem is

again equivalent to that of the longitudinal (or torsional) vibra-

tions of a bar clamped at both ends and having a concentrated

disk in the middle with a mass (or moment of inertia) equal to

that of the bar itself.

Regarding the elastic curve, it can be said that, if the central

mass were absent, the curve would be sinusoidal, whereas if the

string mass were absent, it would be as shown in Fig. 115. The
actual shape will lie between these two. Assuming first a

sinusoid, we note that the potential energy is not affected by
the presence of the central mass. The kinetic energy, however,
is increased by i^Vw 2

?/

2
,,
which is twice as great as the kinetic

energy of the string itself, since M =
nil. Thus the total kinetic

energy is three times as large as without the central mass and

consequently the frequency is \/3 times as small :
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With the string deformed as shown in Fig. 115, again the potential

energy is not affected, and the kinetic energy becomes Mw*yl/2

larger, i.e., (^ + H)/H = * times as great as before. Thus

the frequency is

Since this last value is smaller than the one found before, it is

the better approximation. The exact solution for this problem is

/z
\Ml* - L721

This exact solution, though somewhat complicated, can be found from

the theory developed on page 174. Equation (96) gives the general shape of

a vibrating string, which we apply now to the left half of our string. The
condition that the left end is at rest gives Cz as before, so that the shape
of the left half of the string is determined by

y = C sin s\~ (103)

where C and co are unknown. The amplitude C is of no particular impor-

tance, but the frequency co deter-

mines the "wave length" of the

sine curve. In Fig. 116 the shape
is shown, with the right half of the

string as a mirrored image of the

left half. The central mass M
h8iVV r

and an elastic force 2T tan a and,

as these two forces must be in equilibrium,

2T tan a = Mrfy* (104)

The values 3/0 and tan a are the ordinate and the slope of (103) at the point

where x 1/2, or

Since /ui I = M, a substitution of these expressions in (104) gives

o>^ Ml . c** Ml
2 V-f-

= cot sVT-
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Thus we have to find an angle of which the magnitude in radians equals
the value of the cotangent. For zero degrees the angle is zero and the

cotangent infinite; for 90 deg. the angle is 1.6 radians and the cotangent is

zero. Clearly the equality must occur somewhere between and 90 deg.

From a trigonometric table we find that it occurs at 49.3 deg. - 0.8603

radian. Thus

= 0.8603

Since the smallest value obtained for the frequency is always
the best one, Rayleigh sometimes writes down a formula for the

shape which is not entirely determined but contains an arbitrary

parameter. With this formula the frequency is calculated in

the regular manner, giving a result which also contains the

parameter. By giving the parameter various values, the fre-

quency also assumes different values. The best value among
these is the smallest one, i.e., the minimum frequency as a func-

tion of the parameter. The approximation thus obtained is

very much better than with the normal Rayleigh method.

Ritz has generalized this procedure to more than one param-
eter. The Ritz method of finding natural frequencies is very
accurate but unfortunately requires rather elaborate calculations.

Example: A ship drive consists of an engine, a propeller shaft of 150 ft.

length and 10 in. diameter, and a propeller of which the moment of inertia

is the same as that of a solid steel disk of 4 in. thickness and 4 ft. diameter.

The inertia of the engine may be considered infinitely great. Find the

natural frequency of torsional vibration.

Solution: On account of the great engine inertia the engine end of the shaft

can be considered as built in, so that the system might be described as a
"torsional cantilever." The shape of the deflection curve (i.e., angle <p vs.

distance x from engine) would be a quarter sine wave if there were no pro-

peller, and it would be a straight line through the origin if the shaft inertia

were negligible with respect to that of the propeller. We choose the latter

straight line as our Rayleigh shape, thus: v = Cx.

From the strength of materials we take two results:

1. The relation between torque M and angle of twist <f>:

, TAdx
d<p

=
777
Cr/p

2. The potential energy stored in a slice dx of the shaft:

where GIV is the torsional stiffness of the shaft.
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Since our assumed Rayleigh curve has a constant slope d<p/dx =
C, it

follows from the first of these equations that the torque M = CGIP is con-

stant along the length of the shaft. The second equation can thus be

integrated immediately:

p ,
M'J

Pot =
2GTP

The kinetic energy of a shaft element dx is }$(Iidx)4>*, where /i is the

mass moment of inertia per unit length of the shaft. But <f> u<p = uCx =

<Mx/GI p .

The kinetic energy of the shaft becomes

The angular amplitude of the propeller (of which the inertia is /) is <pp

Cl = Ml/GIp,
and its kinetic energy:

Equating the sum of the two kinetic energies to the potential energy and

solving for o>
2

,
we find:

01.

from which it is seen that one-third of the shaft inertia is to be thought of as

concentrated at the propeller.

With the numerical data of the problem we find:

/ = lmr =
^(|f|^

2

4)r
2 - 1,510 in. Ib. sec. 2

1,1 = \mr *l =
\^^^i\ r ti = i )280 in. Ih. sec. 2

GIP GTT . 12.10"
-

T 2 F50XT2
'

2

so that

5 -
ljfil27

- 3
'
380

and

/ = ~ - ~\/p80 = 9.3 cycles /sec.

An exact solution can be found by a process very similar to that discussed

on page 182. In fact, Fig. 116 can be suitably interpreted for this

propeller shaft. The frequency equation becomes

where a is an abbreviation for
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By trial the solution of this transcendental equation is found to be

a = 46.3 deg. = 0.809 radian

from which

o>
2 = (0.809)

2

^-
r - 3,350 rad.Vscc. 1

which is 1 per cent smaller than the Ilayleigh result.

33. Bending Vibrations of Uniform Beams. In the various

textbooks on strength of materials the differential equation
of the static loading of a beam is usually given in the following
form:

M = 1
ax*

q = -v--
2

-
(105)

72

or combined q =
-, -(^ dx j

where q is the load per running inch and M is the bending
moment.

If the cross section of the beam is constant along its length,

the factor El does not depend on x and the equation simpli-

fies to

q -
EI^ (106)

The various diagrams for a beam on two supports under two

stretches of uniform loading are shown in Fig. 117, but Kqs.

(105) and (106) are generally true and hold just as well for other

manners of support, e.g., for cantilevers.

If a beam is in a state of sustained vibration at a certain

natural frequency, the "loading" acting on it is an alternating

inertia load. In order to get a physical conception of this state-

ment, note that in the position of maximum downward deflection

(Fig. 117e) each particle of the beam is subjected to a maximum

upward acceleration. Multiplied by the mass of the particle,

this gives an upward inertia force which the beam must exert

on the particle. By the principle of action and reaction the

particle in question must exert a downward force on the beam.
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All these downward forces of the various particles constituting
the beam form a loading q which is responsible for the deflection

and is related to it by (105) or (106). Naturally, while the beam
is passing through its equilibrium position, the accelerations and
therefore the loadings are zero, but then the deflections are also

zero.

Thus the differential equation of the vibrating bar of uniform
cross section is

(107)

I Rending
moment

1
.*(f - Ely"

Flo. 117. Illustrating the differential equations of a beam in bending.

where /zi is the mass of the beam per unit length. Assuming a

su. tained free vibration at a frequency o>, we have, as on page 174,

?/(**>
=

which gives to (107) the form

vjEl , .

dx {

(94)

(108)

The left side of this is the elastic expression for the loading

[Kq. (106)], while the right side is the maximum value of the

inertia load. From it we see that the physical characteristic

of any
" normal elastic curve" of the beam is that the q loading

diagram must have the same shape as the deflection diagram. Any
loading that can produce a deflection curve similar to the loading
curve can be regarded as an inertia loading during a vibration;
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the natural frequency appears merely in the numerical factor

/xiw
2
connecting the two.

The functions which satisfy (108) must have the property

that, when differentiated four times, they return to their original

form multiplied by a positive constant n\u-/EI. We may
remember four functions that will do this, viz.:

eal
,

c~ax
,

sin ax, and cos ax

where the coefficient a has to be so chosen that

fl =^ (109)

Thus the general solution of (108) containing four integration

constants can be written

y(x)
= Cif' + (\e- af + C-.i sin ax + C\ cos ax (110)

This expression determines the shape of the various "normal

elastic curves." The four integration constants C have to be

calculated from the end conditions. For each end of the beam

there are two such conditions, making the required four for the

two ends. They are for a

Simply supported end: y =
0, y"

~

(zero deflection and bending moment)
Free end: y" =

0, //'"
-

(zero bending moment and shear force)

Clamped end: y =
0, ?/

=

(zero deflection and slope)

wrhich will be clear from a considerat ion of the physical meaning

of the various derivatives as shown in Fig. 117. For any specific

case the four end conditions substituted in (110) give four

homogeneous algebraic equations in the four T's. The determi-

nant of that system equated to zero is an equation in <i, which

by (109) is the frequency equation. This process has been car-

ried out for the various kinds of beams (beam on two supports,

cantilever or "clampod-froc" beam, clampod-clamped beam,

etc.), but we prefer here to find approximate solutions by using

Rayleigh's method. Only for the beam on two simple supports

can the exact solution be recognized from (110) in a simple man-

ner. The end conditions are in this case

x = 0, //
= y" = and x =

I, y = y" =
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We see immediately that a sine-wave shape satisfies these con-

ditions, and that the cosine or e-functions violate them. Thus
for a beam on two supports (110) simplifies to

y(x) = C sin ax

so that the normal elastic curves of a uniform beam on two

supports are the same as those of the string shown in Fig. 109,

but the frequencies are different. They are found by making
the argument of the sine equal to an integer number times TT or

al = l
~ = m (n =

l} 2j 3
>

' ' '

}

El 47r 2
IEl

> C02
=

-JT\ '
' ' '

Mi I \ Ml

Whereas the consecutive natural frequencies of the string increase

as 1, 2, 3, 4, etc. (page 175), for the beam on two supports they
increase as 1, 4, 9, 10, etc.

We have seen that in a natural shape of the uniform beam the

inertia loading diagram is similar to the deflection diagram,
because the inertia load at each point is nidxu

2
y, proportional to

the deflection y. Thus to each natural shape there belongs a

natural loading curve Mi^
2
*/- This concept is useful for solving

a group of problems, of which the following is a typical example:
A beam on two supports is in a state of rest. A load P is

suddenly applied to the center and remains on it for ? seconds.

Then it is removed. What is the ensuing state of motion?

The concentrated load, being not one of the natural loadings,

will excite many of the natural motions. In order to see through
the situation, the applied loading is resolved into a series of

natural loadings, in this case into a Fourier series. A concen-

trated load P is hard to work with; we replace it by a distributed

load of intensity q acting over a short length 6, such that q8 = P.

Then, by Eq. (lla), page 21, the various Fourier coefficients

become

2 f
'

. vx TX 2q C ^
a- =

rJ
f(jr)8IllwT' dT =

7j ,

2 2

, 2^7 7r6
,

2P= 7'T == T
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where the + sign holds for n =
1, 5, 9 and the sign for

n =
3, 7, 11, . Thus a concentrated force P at the center

of a beam is equivalent to a series of sine loadings of the same

intensity 2P/1. The first few terms are illustrated in Fig. 118.

We investigate the influence on the motion of each of these

natural loadings individually. Any of thorn will influence only

the natural motion to which they belong, and under one of these

loadings the system acts as one of a single degree of freedom, to

J

Flu. 118tt.- Fourior components of i ronoontnitrd loud.

which the solution of problem 32 (page 101) may be applied.

Thus for the first loading

JJ
~

/A/[cos wi(t
~

tn} cos coi/J

The static deflection curve* under a loading (j
sin

'

is

found by integrating Kq. (100) four times:

, , 21>l* . mrx

The entire motion is the superposition of the individual motions

for each mode and can be written as

n =
,.

nirx

7r
4/^7^J n 4

i,-v>

where the values of un are to be found from Kq. (111).

Suppose the* load is applied during a time to which is a multiple
of a period of the first harmonic motion (and therefore* a multiple
of the period of any higher harmonic as well). Then cos u n (t to)

= cos con ,
and the whole solution y(x, t) reduces to zero. No

motion results after the load ceases to apply.
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Next consider the case where the load stays on for ^ period of

the first harmonic (and therefore for % period of the third

harmonic,
2% period of the fifth, etc.). Then cos un (t J )

=
cos o>n ,

and the square bracket becomes 2 cos con ,
so that

A f ivr v
x,

=
^El2ln"^~ ) sm "T COS Wn

1,3,5

All harmonics are present in the motion, but their amplitudes are

proportional to l/?i
4

. Thus, while the first harmonic has an

FIG. 118fr.- Potential energy of liexure in a beam element.

amplitude of 2,Pl*/n
4EI at the center of the span, the third

harmonic is only JM times as large, the fifth )o25> etc.

In applying Rayleigh's method, the expression (100) for the

kinetic energy holds for the bar as well as for the string. But
the expression (00) for the potential energy will be different since

tho spring effect in this case is due to the bending resistance El
rather than to the tension T. From strength of materials we
have the following formulas for the potential or elastic energy
stored in an element of length dx of the beam:

M 2

or

Thrse can br dorivod simply as follows. Consider an element dx under the

influence of the bonding moment M (Fig. 1186). The element is originally

straight and is bent through an angle d<? by the moment M. If the

left-hand end of the element be assumed to be clamped, the moment M at

the right-hand end turns through the angle d<p. The work done by M on

the beam is l-jM^v?, where the factor ^^ appears because both M and d*p

are increasing from zero together. This work is stored as potential energy
in the beam element.
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Now calculate the angle d^. If the slope at the left -hand end .r be dyfdx,

then the slope at the right-hand end is -~ -f- ( ~r^j
' d* anc ^ tho difference in

slope </v> is

so that

dPot =--

With the differential equation of bending M = Ely", the two forms given

above follow immediately.

Thus the total potential energy in the beam is

(112)

It is left as an exercise to the render to derive the first natural

frequency of a beam on two supports

by substituting in the expressions (100)

and (112) half a sine wave for t be shape y.

Let us now calculate the fundamental

frequency of a cantilever or ''clamped-

free" beam. We have to choose a curve y I0 . n<>. ^uarior cosine

(Fig. 119) which is horizontal at j =- w;ivo !ls Kyi<-Kh shapo
v ^ 7 if. ,

for Jl f!>tilvcr.
and has no curvature or bending moment

y" at the end Z. A quarter cosine wave has these properties:

/ *x\
y =

2/nl 1 - c ( >

2J-
) (113)

Since this expression cannot be forced into the form (110) by

manipulating the four C's, (113) is not the exact form of the

normal curve. Substituted in (112) and (100), we find with

the aid of the integral of page 16:

poi = ?L Hi 2

{<\ 2\/ o ^ \

\4 */

Equating these two expressions, the frequency becomes

3.66 ,^
(1U)
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The exact solution contains the factor 3.52 which is 4 per cent

smaller than 3.66. Figure 120 gives the exact shape together

with that of the second mode.

The normal elastic curve of

wi = 352VtiT7nT* a beam which is built in at both

ends (a
"
clamped-clarnped

"
bar)

must have a shape that is sym-
metrical and horizontal at both

ends (Fig. 121). A full cosine

wave displaced upward by y

is a simple curve fitting these

22.0 ->/til/nil*

FIG. 120. The first two natural

modes of motion of a cantilever in

bending.

conditions:

y =

We find successively :

Pot =

cos 2rx\

"Tj

KI
2
167T 4

I
~
2/0 *

Kin =

jbr
2

\~EI_ _ 22.7
fE" "

-V/3\Mi?
~

/
2"V P

El
j

Mi
(115)

whereas the exact solution is 22.4 or 1.3 per cent smaller than 22.7

Fio. 121. Normal elastic curve of a clamped-clampcd bar.

Finally, we consider the "free-free" bar, i.e., a bar which is

suspended freely from one or more strings or which is floating on

a liquid. The simplest mode of vibration (Fig. 122) must have

two nodes and no curvature y" at either end. Such a shape

can be had conveniently in the form of half a sine wave displaced

vertically through a short distance a:

. TTX

y =
t/ sm

-^
a

The amount of vertical displacement a is important, since it

determines the location of the two nodes. For a = they are

at the ends of the beam; for a =
1/0 they are both at the center.
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The actual value of a between and y<> can be found from the fact

that since no external alternating force is acting on the beam,
its total vertical momentum must be zero. While the beam is

passing through its equilibrium position, the ends have downward
velocities co?/ and the middle has an upward velocity wi/. Since

the beam is uniform, i.e., since all particles dx have the same mass,

these values uy are proportional to the momentum as well. The
total momentum is zero if the areas above and below the center

line in Fig. 122 are equal or if

so that

= I ydx =
?/o I sin ~dx I adx = -yQl al

Jo Jo I Jo TT
J

7T

X

"T
FIG. 122. Normal elastic curve of a free-free bur.

With that expression for the shape of the vibration we find

(M]Kin = ._.,

Itf 22.72 /AY

The exact result is the same as that of the clamped-clamped bar,

namely 22.4 which is 1 per cent smaller than 22.72.

Example: A cantilever beam El, of length I and of mass MI per "nit length

(total mass m = n\l) carries a concentrated mass M at its end. Find the

natural frequency by Rayleigh's method, and in particular find what frac-

tion of m should be added to M in order to make the simple formula (16)

applicable (page 43).

Solution: The shape of the deflection curve has to satisfy the same require-

ments that were used in deriving Eq. (113), so that we shall retain the

expression employed there. The potential energy is not affected by the

addition of a mass M at the end of the bar, but since the amplitude of that

end is 3/0, the kinetic energy is increased by J^Mo)
2^. With m = ml, the

total kinetic energy can be written as
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Kin = M + ro ~ =
p*ylW + 0.23m).

With the expression of page 184 for the potential energy the frequency becomes

2 = 3.0.W_w
l*(M -f 0.23m)

Thus 23 per cent of the mass of the bar lias to be added to the end mass.

In ca.se the bar is supposed weight loss, in and the result for co
2 found

here is 1 per cent greater than the exact value, where the coefficient is 3.

34. Beams of Variable Cross Section. In many practical

cases the cross section of the beam is not constant over its lengtb.

The most common example of a beam on two supports is a shaft

in its bearings, the shaft usually having a greater cross section

in its middle portion than near its ends. A si eel ship in the water

sometimes executes vibrations as a free-free bar, somewhat in

the form of Fig. 122. These vibrations become of importance
if the unbalanced forces of the propelling machinery have the

same frequency as the natural frequency of the ship. But the

tending stiffness of a ship is by no means constant over its entire

length.

The method of Rayleigh can be applied to such non-uniform

teams also, since it is always possible to make some reasonable

estimate regarding the shape of the deflection curve. The
calculations are the same as those for the beam of constant

section, with the evident exception that the expression (112)

for the potential energy has to be modified by bringing the now
variable stiffness El under the integral sign. If the stiffness

varies in a more or less complicated manner along the length x,

the evaluation of the integral for the potential energy may
become difficult, but, even if the exact calculation is impossible,

the integral can always be evaluated graphically.

A somewhat different manner of finding the frequency has

teen developed by Stodola
y primarily for application to turbine

rotors. His process is capable of being repeated a number of

times and of giving a better result after each repetition. Briefly

it consists of drawing first some reasonable assumed deflection

curve for the shaft in question. By multiplying this curve with

the mass and the square of the (unknown) frequency jui(:r)aj
2

,
it

becomes an assumed inertia loading. Since co
2

is not known, it

is arbitrarily taken equal to unity to begin with. Then \vith

the inertia loading y(x)n\(x) the deflection curve iy(x) is con-

structed by the regular methods of graphical statics. Of course
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this second deflection curve ty(x) coincides with the originally

assumed one y(x) only if

1. y(x) is exactly the normal elastic curve.

2. The natural frequency co
2
is exactly unity.

The first of these conditions is fulfilled approximately, but the

second is generally far from the facts. The deflection 2?/Or) has

more or less the shape of the original assumption ?/(.r), but its

ordinates may be 10,000 times smaller. If that is so, we could

have obtained approximately equal ordinates for tfj(x) and y(x) by

assuming a frequency o>
2 = 10,000. In that case, the original

inertia load would have been 10,000 times as large and the final

deflection 22/0**) also 10,000 times as large, i.e., approximately equal
to the original assumption. Therefore, the ratio of the ordinates

of y(x) and tfj(x) gives a first approximation for the frequency or.

With a fairly reasonable guess at a deflection curve, tho

accuracy obtained with this procedure is very good. If greater

accuracy is desired, we can repeat the construction with zy(x) as

our original estimate, finding a third curve 32/Cr). It will be

proved on page 201 that the process for finding the fundamental

mode of vibration is convergent, i.e., each successive curve is

nearer to the true shape than the previous one. In fact, the

convergence is so rapid that usually no difference can be detected

between the shape of 3?/(.r) and *y(x).

For the second and higher modes of vibration the process is

not convergent. Nevertheless Stodola's method, properly modi-

fied, can be used for the higher modes, as explained on page 202.

The details of the construction belong to the field of graphical statics

rather than to vibration dynamics. As a practical example consider a shaft

of 72 in. length, on two solid bearings, shown in Fig. 128, I. Dividing it into

six sections of equal lengths, the masses and bending stiffness El of the vari-

ous sections are shown in the table below, where the modulus of elasticity

E has been taken as 30. 10 6 Ib per square inch.

The assumed deflection curve is designated by II. It has been made
rather flat in the center portion because that part is much stiffer than the rest

of the structure. In order to obtain the inertia load
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the ordinates y have to be multiplied with the mass per running inch AH, i.e.,

with the second column of the table. This gives curve III, which is

drawn so that each ordinate "inch" represents 0.025 Ib./in. All lengths

are measured in actual shaft inches indicated by the scale above I. Thus

one "inch" of the shaft is roughly J^ 5 in. in the printed figure. The ordi-

nate of II in the center of the shaft is 15 in. and the middle ordinate of III is

0.852 Ib./in. (15 X 0.0568).

In order to find the deflection curve under this loading, four integrations

have to be performed, divided into two groups of two each. In the first

group we integrate twice and arrive at the bending moment M :

q - (1056)

The first integration is performed by evaluating the areas of the six sections

of curve III. For instance, the area of the first section, being nearly tri-

angular, is K X 12 in. X 0.138 Ib./in. = 0.83 Ib. This is the combined

inertia force (for co = 1 rad. /second) of the whole first section and thus is

the change in the shear force between the left end and the right end of

section 1. The six areas of curve III are set off vertically below each other

in diagram IV, such that AB is 0.83 Ib.; BC = 4.40 Ib. = the area of section

2 of curve III. Thus the vertical line on the left of IV represents the shear

forces S and is the result of the first integration. Now take an arbitrary

horizontal distance //i, here taken equal to 22.5 Ib. and connect its end

with A, #, C, etc. Then, in curve V, draw lines parallel to the rays of

diagram IV, so that the line parallel to OB in IV (which separates section 1

from section 2) runs between the vertical dotted lines through the centers of

gravity of the areas 1 and 2 of curve III. The diagram V represents the

bending moments; the scale being 1 in. = 7/i = 22.5 in. Ib. Thus, for

example, the bending moment in the middle of the shaft is 396 in. Ib.

In order to pass from the bending moment curve V to the deflection curve

VIII, we have to perform two more integrations:

M ^ d*y

El dx*

This equation is built exactly like (1056); in fact, the deflection y can be

considered to be the "bending moment curve of a beam with the loading

M/AY." The values of El for the various sections are given in thje last

column of the table, and curve VI shows the M/EI diagram. We can

repeat the process that has led from III via IV to V, and find VIII from VI
via VII. The ordinates of III were measured in Ib./in. and those of VI in

in." 1

;
so that the dimensions of VI, VII, VIII are found from their counter-

parts III, IV, V by dividing through by pounds. In particular, the hori-

zontal distance Hz of VII has no dimension; it is a pure number.

The deflection curve VIII has more or less the appearance of the first

guess II; however, its middle ordinate is

12.2 X 2.5 X 10~ 8 in. = 30.5 X 10" in.,
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inr

I I I I

Fio. 123. Stodola's construction for determining the fundamental frequency of

a rotor.
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whereas the same ordinate in diagram II was 15 in. Thus the first

approximation for the natural frequency of the shaft is

Van
15

- = 700 rad./sec.
'30.5 X 10-*

For other graphical and numerical methods to solve the prob-

lem of the natural frequencies of flexural vibration of a

bar of variable stiffness and inertia, see page 290.

35. Normal Functions and Their Applications. We now turn

to the proofs of Ilayleigh's minimum theorem and of the con-

vergence of Stodola's process. Though these proofs are not

essential for an understanding of the subsequent parts of the

book, they may give the reader a clearer insight into the nature

of "normal modes of motion."

With the string and the beam on two supports, it was seen that

the various normal elastic curves are sine functions:

. TTX . 2wx . n-nx
y l

= sin
j->

7/2
= sin - ->

, yn = sin -p

In these expressions the amplitudes of the motions have been

arbitrarily assumed to be such that their maximum deflections

are 1 inch.

On the other hand, the normal elastic curves of a cantilever

beam (page 192) or of a beam with non-uniform cross section are

curves of much greater complication.

We know from page 20 that any arbitrary curve between

and I can be developed into a trigonometric or Fourier series and
that one of the most important properties of such a series is

sin
;

sm j-dx
=

0, (m 7^ n)
l I

as explained on page 18.

Applied to the special case of string vibration, this means that

any elastic curve y(x) which may be given to the string by an

external loading can be split up into a series of "normal" com-

ponents. This is true not only for the string with its sine func-

tions, but generally for any elastic system.

If the normal elastic curves of a system of length I are y\(x),

7/2(2), . . .
, yn (x) . . .

,
then any arbitrary deflection curve

y(x) of that system can be developed into a series:

y(x)
=

aiyi(x) 4- a<& 9(x) + anyn (x) + -

(117)
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Moreover, the relation

t*i(x)yn (x)ym(x)dx =
(n 7* m) (118)

holds, so that any coefficient a n in (117) can be found by exactly
the same process as that employed on page 21 :

(119)

This gives us a wide generalization of the concept of Fourier

series.

To prove (118), consider an elastic systcn (beam) of length I of which
the elastic properties are determined by the "influence functions" I(x, Xi),

with the following definition (Fig. 124): the

deflection at a point x of the beam caused by
a load of 1 Ib. at a point Xi is I(x, x\}. In this

expression both x and x\ arc variables running
from to I (see page 1 55) .

Maxwell's reciprocity theorem in the strength
of materials states that the deflection at point

Fju - 124 - -Definition of in-

i i , -i i i j. i r i 1.1 fluonco function I(x\, x).
1 due to a unit load at point 2 equals the v

deflection at 2 due to a unit load at 1. Thus the influence function satisfies

the relation

I(X, Xi) =-
I(Xi, X)

Let the beam be vibrating at one of its natural frequencies with the shape

2/nOr). The maximum inertia force acting on a section dx\ of the beam with

mass m per unit length is

and the deflection caused by that load at a point x is

u>ly n (x\)I(x, Xi)m(xi)dxi

There are inertia loads of this kind on every section dx\ between and Z, so

that the actual deflection curve is the sum of all the partial deflection curves

GCl)/(*, *i)/*i(*,Vte, (120)

This relation holds only when y n (x] is a natural mode, because only the n can

the beam be in equilibrium with loads proportional to its own displace!). cuts.

In order to prove (118) we multiply (120) by m(x)ym (x)dx and inte^te:

f^i(x}ym (x}yn (x)dx = J f Cyn (x 1)ym (x)I(x f Xi)n(xi)m(x)dxidx (121)

Since (120) holds for any natural frequency, we may replace n by m. Then
we can multiply by m(x)y.(x}dx and integrate, with the result:
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f m(x)ym (x)yn (x)dx = ^fCym (xi)yn (x)I(xf x^

In this last double integral we may reverse the order of integration, i.e.,

reverse x and x\\

= o>* f
\JQ /0

ym (x}yn (x l )I(x ij

This double integral is seen to be the same as that in (121) on account of

Maxwell's theorem that I(x, Xi) =
I(xi, x). Let the value of the double

integral be A\ then, on subtracting the last result from (121), we obtain:

=
(o>*

- o>*)A

This means that for um ^ o>n
,
the double integral A is zero, which makes the

left-hand side of (121) also zero, so that the proposition (118) is proved.

Proof of Rayleigh's Minimum Theorem. The approximate curve y(x]

assumed in the Rayleigh procedure ir not a normal elastic curve but can be

expanded in a series of such curves:

y(x) =* 2/i() + 022/2(2) + 032/3(2) 4- + anyn (x) +

In order to express the fact that y(x) is an approximation of y\(x), its coeffi-

cient has been taken equal to unity, whereas the other coefficients a
2}

a 3 ,

etc., may be small numbers. A normal clastic curve yn (x) is a curve that

can be caused by a static loading muly n (x).

Thus the static loading p(x) which causes the assumed curve y(x) is

p(x) = MI[W?//I(X) + a^ly^(x) -f - H- a nw*yn(x)\

The potential energy of an element dx is ^2y(x}p(x)dx, and the total poten-
tial energy is

Pot = Hilyi(x) +a,y,(x) + a,y,(x) +- -\- a ny n (x)}(-
- - a n<**yn (x)]dx

Since by (118) all integrals of products with m ^ n are zero, this becomes

Pot = yuliyldx + + atalnyldx + -

The kinetic energy of an element dx vibrating through the neutral position

with a velocity &y(x) is Hw

Kin = y2

since again all terms with products ymyn drop out.

It is seen that both the potential and kinetic energies consist of the sum of

the various energies of the components yi, y^ etc. This is so only if yh y3

are normal modes; if this is not the case, the integrals of the products ynym
have to be considered also.
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By Rayleigh's procedure we equate the two energies and solve for f
:

<*i I myldx -f- 4- ajw* I /xi2^<

2 = _A--------
j*L

a* Imyldx

4-

+ 4- a* myldx +

ws = W?-_ - (122)

here the symbols (
j
are abbreviations for

Since o>2 > wi and o> 3 > o>2 , etc., it is soon that in (122) the various entries in the

numerator are larger than the ones just below them in the denominator.

Thus the fraction in (122) is greater than 1, from which it follows that

CO > COl

or the frequency w found by Raylcigh's procedure is greater than the first

natural frequency i, which was to be proved.

Moreover, an inspection of (122) will show that this property holds only
for the first or lowest frequency but not for the second or higher ones.

Proof of the Convergence of Stodola's Process. Let the first assumption
for the deflection curve be y(x), where

y(x) =
yi(jr) -f 2y 2 &) 4- a*y*(x) -f -f a nyn (x) 4-

With a mass distribution MI(Z) and an arbitrary frequency o> = 1 the inertia

loading becomes

The deflection curve for the loading Mi^ 2
I/n is yn ', consequently the loading

nMi2/n gives a deflection anyn/u% t
so that the second deflection curve of the

process becomes

which differs from the first curve in that each term is divided by the square
of its natural frequency. Proceeding in this manner we find for the (n -f l)st

deflection curve

1 T . /<oiV
, f^

yi 4-
-

a>y> 4- -

Since o>i < wz and coi < co 3 , etc., it is seen that with increasing n the impurities

i/2, y* . . decrease, and the first mode yi appears more and more pure.
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36a. Stodola's Method for Higher Modes. The above proof

shows that an attempt to construct the second normal elastic curve

by Stodola's method will end in failure because any impurity of the

fundamental elastic curve contained in the guess for the second

curve will be magnified more than the second curve itself. After

a large number of repetitions it will be found that the second

mode disappears altogether and that only the fundamental mode
is left. Still it is possible to find the second mode if before each

operation the deflection curve is purified from its first-mode con-

tent. For this it is necessary first to know the shape of the first

mode with sufficient accuracy.

Let y(x) be the assumed shape for the second mode which

unfortunately will contain some first harmonic impurity, say

A y\(x). Then we want to find

?/0)
-

Ayi(x)

which will be free from first harmonic contamination. In order

to find A, substitute the above expression in Eq. (118).

- A yi (x)]y,(x) dx =

or

(*i

x) dx = A I juiO)//?O) dx
/ * '

or

The integrand in the numerator, apart from the factor AU(Z), is

the product of the known first harmonic deflection curve and the

assumed approximation for the second harmonic deflection curve

y(x). In the denominator the integrand is the product of the

mass ni(x) and the square of the first harmonic curve. Both

integrals can be evaluated graphically; thus A is determined, and

the assumed shape for the second mode can be purified from its

first-mode contamination. Then the Stodola process is applied
to this curve.

For the third or higher modes the procedure is similar, but

the assumed curve for the third harmonic has to be purified from

the first as well as from the second harmonic by Eq. (118a).

Thus the Stodola process cannot be applied to a higher mode of

vibration until after all lower modes have been determined with

sufficient accuracy.
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The method is not necessarily restricted to the graphical form

of page 197. It is sometimes applied arithmetically, as will now
be shown for the simple example of the string with three equal

masses of Fig. 95. In the equations (7(\a) the terms on the right

are the deflections caused by the individual inertia forces. With

the influence numbers of Kq. (79). the elastic deflection equations

(76a) are rewritten (mi = ??? 2
= ?H 3

= m).

JL ^ ,3,1
T = 1^ Q \^

- - 4-
!

4
'*

77? CO
2
/

l}

4 2 1

With Stodola, \ve now assume a- shape for the deformation in the

first mode, and for the purpose of illustrating the convergence

of the method we intentionally make a stupid choice: di <7 2

= as = 1. Substitute that into the right-hand sides of Kq. (706),

and calculate their sums.

where C =
T/???co

2
/. By reducing the middle 1 amplitude to unity

(the same value as assumed first\ we thus find for the second

approximation of the deflection curve

0i = ?'i 0-j 1 03 = ?'t

Put this into the right sides of Kq. (706), and find

or again reduced to unity at the center, the third approximation
becomes

ai = ^, fl 2
-

1, "3 - ^ 7

X = 0.714

Another substitution leads to the fourth approximation

ai = l
Ji4', a* ^ 1

J 3
= 1^4 ^ 0.707

The fifth approximation is

i
= 2%i; 02-1; 03 = 2%i = 0.707

which is identical with the previous one within slide rule accuracy.

Substituting this into the first of the equations (706), we have
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0.707-^-.
= 1.207 or u\ = 0.586

7raw 2
/ ml

as found before on page 1 59.

Proceeding to the second mode, its shape is obvious (page 159)

from the symmetry of the case. However, for the purpose of

illustrating the method we start with a very bad assumption:

ai = 1.000, a 2
=

0.500, a 3
= -0.750 (first)

First this expression is to be purified from its fundamental har-

monic content by means of Eq. ( 1 18a). All masses are equal and

divide out from (118). The expression thus is

l.OO^X 07()7jfJ).500 XJ^O -J3.750 X 0.707

0.707 X 0.707 + 1.000 X 1.000 + 0.707 X 0.707
~

The first harmonic amount to be subtracted from the above

assumption then is

ai - 0.338 X 0.707 =
0.240, a 2

=
0.338, a 3

= 0.240

which leads to

ai = 0.760, o 2
=

0.162, a 3
= -0.990

or multiplying by a constant so as to make i equal to unity, for

purposes of comparison,

ttl
=

1.000, a 2
=

0.213, a 3
= -1.302 (first, purified)

Substituting this into Eq. (76/>), and multiplying by a constant

so as to make ai = 1.000 leads to

ai = 1.000, a2
= 0.1 10, a 3

= -1.181 (second)

fll
= 1.000, a2

- 0.051, a 3
= - 1.125 (third)

fll
=

l.O(X), a 2
= -0.024, a s

= - 1.148 (fourth)

By this time considerable first harmonic error has crept into the

solution, so that it is necessary to purify again by means of

Eq. (118a).

ai = 1.000, a 2
= +0.038, a 3

= -1.058 (fourth, purified)

Continuing

a! = 1.000, a 2
= +0.018, a 3

= -1.035 (fifth)

a, = 1.000, a 2
= 0.000, a, = -1.034 (sixth)
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Again it becomes necessary to throw out the first harmonic, which
has crept in,

a,i
=

1.000, a2 = +0.012, a 3
= -1.018 (sixth, purified)

ei!
=

1.000, a2
= +0.006, a3

= -1.012 (seventh)

i
=

1.000, a2
=

0.000, a3 = -1.012 (eighth)

ai = 1.000, a2
= +0.004, a3

= -1.006 (eighth, purified)

ai = 1.000, a2
= +0.002, a3

= -1.004 (ninth)

a! = 1.000, a2
=

0.000, a3
= -1.004 (tenth)

It is seen that the convergence is very slow, and that the first

harmonic creeps in continually and has to be thrown out about

every other step.

36. Rings, Membranes, and Plates. The strings and beams
thus far discussed suffice in many cases to give a tolerably accu-

rate idealization of the actual constructions or machines with

FIG. 125. Normal modes of a ling bending in its own plane.

which we are dealing. Where this is no longer possible, an

idealization in terms of rings (curved beams), membranes, or

plates may be helpful. But the calculation of the natural fre-

quencies of these elements is much more complicated than

anything we have thus far considered. Therefore, in this section

the results only will be given, while for the detailed derivations

the reader is referred to the literature, especially to the book of

Timoshenko, quoted on page 461.

Full Ring. Of the many possible motions of a full ring, the

bending vibrations are the most important. If the ring has uni-

form mass and stiffness, it can be shown that the exact shape of

the mode of vibration consists of a curve Avhich is a sinusoid on

the developed circumference of the ring. In Fig. 1 25 these shapes

are shown for the four, six, and eight noded modes or for two,

three, and four full waves along the circumference of the ring.

The exact formula for the natural frequencies is
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n(n 2 -
1) I El'

C0 n
= -

7 \ h piVV + 1 \^l /l+

where n is the number of full waves, jui is the mass per unit length

of the ring, El the bending stiffness, and R the radius.

One of the most important applications of this result is to the

frames of electric machines. As these machines often carry

salient poles, which act as concentrated masses (Fig. 193, page

325), the exact shapes of vibration are no longer developed

sinusoids, although in the spirit of Rayleigh's procedure the

sinusoid may be considered as an approximate shape. The

potential energy of deformation is not altered by the addition

of the poles, but the kinetic energy changes from Kin r to

Kin r + Kin
1t ,
where the subscripts pertain to the ring and polos,

respectively. Therefore, the result (123) for the frequency has

to be corrected bv the factor

In case the number of poles is 2n, i.e., equal to the number of

half waves along the ring, and in case these poles are located

in the antinodes so that they move parallel to themselves (Fig.

1916), the correction (121) becomes specifically

where M r is the mass of the complete ring and Mp is the mass of

all poles combined, so that Mp/M r is the ratio of one pole mass

to the ring mass per pole.

Another important case occurs when the 2n poles are located

ut the nodes of the radial vibration and there execute rocking

motions about the node axis. The correction factor for this

'ase (Fig. 194c) is

(1246)

in which Ip is the moment of inertia of a single pole for the axis

about which it rotates during the vibration. The actual location

of that axis is somewhat doubtful (on account of the fact that the
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"node" of the ring is a node only in the radial motion but moves
back and forth tangentially), but no great error is made by taking
the axis on the center line of the ring at the node.

Partial Ring. Quite often the stators of electric motors or

generators are bolted on a foundation in the manner shown in

Fig. 126a. If the foundation or bedplate is very stiff, the stator

may be regarded as a partial

ring of angle a built in

(clamped) at both ends. The
fundamental mode of vibra-

tion of such a ring in its own

plane will be approximately as

sketched in Fig. 1206. Its

natural period, calculated by
the procedure of Rayleigh,

rlI1K '

leads to a result which dimensionally is the same as (123), but

the numerical factor depends on the central angle a and has to be

written /(a) :

(i>

Fid. L2(>. The fundamental floxunil

mode in its own plane of a i>aiti:il

T

The values of the constant /() for the various angles between

a = 180 deg. (half circle) and a ~ 300 deg. (full circle clamped
at one point) are shown in Fig. 127.

In case the stator carries salient poles, the correction (121)

has to be applied. No greater error is committed by distributing

the pole masses uniformly

along the ring, since the vari-

ous pole-carrying points of

|3 -^sr Fig- 1206 move through
roughly the same amplitudes

(which is totally different from

some of the cases of Fig. 125).

The natural frequency calcu-

lated from Kq. (125) and Fig.

FIG. 127. The coefficient /() in Eq. 127 is Usually somewhat (of the
(125) for the frequency of FiK . 126. or(Jcr of ]Q pcr cent) high on

account of the fact that the feet of the stator do not constitute a

complete "clamping" but admit some angular motion.

If the ring of Fig. 120 has a small dimension in the direction

perpendicular to the paper (i.e., in the direction of the axis of the

210 240 270 300 330 560
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cylinder), another motion has caused trouble in some cases.

It is a vibration perpendicular to the plane of the paper. If

Fig. 126 were viewed from the side, it would be seen as a canti-

lever beam of height h. The lateral vibration would then appear
in a form similar to that shown in Fig. 120a. In this case the

Fio. 128. Coo ffie ion is /(or, Elt/C) of Eq. (12(J) for the frequency of a partial rnifc

vibrating porpemiiouluily to its own plane.

elastic resistance of the ring consists of a combination of bonding
and twist determined by the quantities

Eli bending stiffness (now in a plane perpendicular to the

paper, 90 dcg. from the El in Eqs. (123) and (125),

and

C = torsional stiffness, which has the form GIP for a bar of

circular cross section.

The frequency can be written in the form

where the numerical constant is shown in Fig. 128. This figure
was found by a modified Rayleigh method and subsequently
verified by laboratory tests, showing the results to be substan-

tially correct.
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A membrane is a skin which is stretched with a great tension

and which has no bending stiffness whatever. It is therefore

to be considered as a two-dimensional generalization of a string.

A circular membrane or drumhead has an infinite number of

natural modes of motion whereby the nodes appear as diameters

and also as smaller concentric circles. However, we shall

discuss here the fundamental mode only, having no nodes except
the boundary. The shape of the vibration is practically that of

a hill formed by the revolution of a sine curve (Fig. 129). The

frequency of this motion is

~ = 4.2<L , (127)
i# 2 \Mi4

where T is the tension per running inch across any section of the

membrane, /-u is the mass per unit area, and A is the total area

The formula in its second form is useful also when the mem-
brane is no longer circular but has some other boundary which

roughly resembles the circle (square, triangle, half or quarter

circle, etc.). Even then (127) is approximately correct if the area

A of the non-circular membrane is substituted. In such a case the

numerical factor is somewhat greater

than 4.26. An idea of the error in-

volved can be had from the fact that ^^^
for a square membrane the factor "*"*^__,

4.26 in Eq. (127) becomes 4.44, for a FIG. 129. Fundamental mode

2 X 1 rectangular membrane 4.97,
of a drumhead with the. fre-

j- o vy 1 x ic^r^ quency w = 2.40VT//ii# 2
.

and for a 3 X I rectangle 5.74.
M

Just as a membrane is a two-dimensional string, so a plate

may be considered as a two-dimensional "beam." The theory

of the vibrations of plates even in the approximate form of

Rayleigh-Ritz is extremely complicated. The results are known
for circular and rectangular plates with either free, clamped, or

simply supported edges, and the reader who may have occasion

to use these formulas should refer to the more elaborate books on

the subject by Rayleigh, Prescott, or Timoshenko.

Problems

61. Derive Eq. (84) by working out the determinant (78).

62. A simple massless beam of bending stiffness El and length 4/, sup-

ported at its ends, carries a mass m at a distance / from each of the supports.

Find:
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a. The three influence numbers.

6. The two natural frequencies.

c. The two natural modes of motion.

63. A flexible weightless beam of section El and length I is simply sup-

ported at its two ends and carries two equal masses w, each at }^l and at }*>/

-
1/4

-

Fi(i. l^<)r;. Problem O.'i.

from one of the ends (Fig. 129a). Calculate the two frequencies by the

method of influence numbers (page 150).

64. In Fig. 08, let mi = m, w 2
= 5w, /Ci

=
A:,

A: 2
=

3A-, and /c 3
= 7k.

Let a force /% sin w be acting on mi. Find:

a. The frequency w of P at which mi docs not move.

6. The amplitude of w 2 at this frequency.

Solve this problem without the use of large formulas by a physical consider-

tiori, as suggested in Fig. 97.

65. Derive Kq. (936).

66. ('heck the various frequencies shown in Fig. 112.

67. By Hayleigh's method find the natural frequency of a string with

tcntion T and length 3/, carrying masses m at distances / and 21 from one

end. The mass of the string itself is 3m.

68. A beam El on two supports, of length I and of mass jui per unit length

(total mass ni ml) carries a concentrated mass M in the middle. Find

the natural frequency by Hayleigh's method, and in particular find what

fraction of m should be added to Jl/ in order to make the simple formula (10)

applicable.

69. The same problem as 08, but for a beam of total mass 77?, clamped

solidly at both ends, and carrying a mass M at its center.

70. A ship's propeller shaft has a length of 200 ft. between the engine and

the propeller. The shaft diameter is 12 in. The propeller has the same
moment of inertia as a solid steel disk of 4 ft. diameter and in. thickness.

The modulus of shear of the shaft is G 12 X 10 fi

Ib. per square inch. If

the shaft is supposed to be clamped at the engine, find the natural frequency
of torsional vibration, taking account of the inertia of the shaft by means
of Hayleigh's method (steel weighs 0.28 Ib. per cubic inch).

71. The coil springs of automobile-engine valves often vibrate so that the

individual coils move up and down in the direction of the longitudinal axis ot

the spring. This is due to the fact that a coil spring considered as a "bar"

with distributed mass as well as flexibility can execute longitudinal vibra-

tions as determined by Eq. (93a). Find the equivalents for m and AE in

(93a) in terms of the coil diameter D, wire diameter d, number of turns per
inch rii, modulus of shear 6Y

,
mass per turn of spring mi.

Calculate the first natural period of such a spring of total length l(n = nil)

clamped on both sides.

72. A cantilever beam of total length 21 has a stiffness El and a mass per
unit length MI along a part / adjacent to the clamped end, whereas the other
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half of it has a stiffness 5EI and a unit mass /*i/2. Find the fundamental

frequency by Rayleigh's method.

73. A small H-ftP- motor frame has the following characteristics (Fig.

126): a = 220 deg., R = 2.75 in.; / = 0.0037 in. 4
;
E - 27.10 lb./in.

s
;

/u 0.00052 Ib. sec. 2
/"!.

2

Find the fundamental frequency.
74. A mass hangs on a coil spring (Fig. 23 without damping or excitation).

If the mass of the spring itself is not negligible with respect to the end mass,
calculate what percentage of the spring mass has to be added to the end mass
if the natural frequency is to be found from co* = k/m

a. By Rayleigh's method.

b. By the exact theory.

76. A uniform bar of length I, bending stillness El
t
and mass per unit

length m is freely supported on two points at distance //6 from each end.

Find the first natural frequency by Rayleigh's method.

76. A ship drive, such as that discussed with reference to Fig. 147, con-

sists of a propeller weighing 50,000 Ib. and a line shaft of 19 in. diameter

and 188 ft. length, on the other end of which there is a large gear weighing

again 50,000 Ib. The gear is driven by pinions and steam turbines which

have no influence on the longitudinal vibrations of the system. On the*

inboard side of the main gear the thrust is taken by a Kingsbury thrust bear-

ing, the supporting structure of which has a stiffness in the longitudinal

direction of the shaft of 2.5 X 10 Ib./in. The propeller has four blades

and consequently gives four longitudinal impulses to the shaft per revolution.

Calculate the two critical speeds of the installation, considering it as a

two-degree-of-freedom system, distributing the shaft mass equally to the

propeller and to the gear mass.

77. Solve Problem 76 by the exact method, assuming the shaft mass to bo

uniformly distributed, and find the numerical answer for the lowest critical

speed. The data of Problem 76 are taken from an actual case. The vibra-

tion was eliminated by stiffening the thrust bearing supports.

78. To calculate by Rayleigh's method the antisymmetrical, three-

noded frequency of a free-free bar of length 21, assume for the curve a sine

wave extending from 180 deg. to +180 deg., with a base line rotated

through a proper angle about the mid-point, so that it intersects the sin >

curve in two points besides the center point.

a. Determine the slope of the base line so as to satisfy the condition th^t

the angular momentum about the center remains zero during the vibration.

6. Calculate the frequency with the curve so found.

79. The potential energy of a membrane, such as is shown in Fig. 129,

is calculated by multiplying the tension T by the increment in area of each

element caused by the elastic deformation.

a. If the deformation has rotational symmetry about the central axis

(as shown in Fig. 129), derive that this energy is

-/2 Mi

6. Assume for the deformation a sinusoid of revolution and calculate the

frequency by Rayleigh's method.
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80. In connection with the numerical Stodola or "
iteration

"
method,

discussed on page 203, carry out the following calculations:

a. Starting with the first assumption for the second mode, a\ 1.000;

a 2
= 0.500; a 3

= 0.750; carry out the various steps without eliminating
the first mode, and observe that gradually the solution converges to the

first mode and not to the second.

b. In. figuring the third mode start with an assumption such as a\ = ^3

= 1.000, a 2
= 1.000, and eliminate from this solution the first and second

harmonic contents by means of Kq. 706. Xote that the shape so obtained

is the exact solution.



CHAPTER V

MULTICYLINDER ENGINES

37. Troubles Peculiar to Reciprocating Engines. There are

two groups of vibration phenomena of practical importance in

reciprocating machines, namely:
1. Vibrations transmitted to the foundation by the engine

as a whole.

2. Torsional oscillations in the crank shaft and in the shafting

of the driven machinery.
Each one of these two effects is caused by a combination of the

periodic accelerations of the moving parts (pistons, rods, and

cranks) and the periodic variations in cylinder steam or gas

pressure.

Consider a vertical single-cylinder engine. The piston exe-

cutes an alternating motion, i.e., it experiences alternating

vertical accelerations. While the piston is accelerated downward
there must be a downward force acting on it, and this force must

have a reaction pushing up\vard against the stationary parts of

the engine. Thus an alternating acceleration of the piston is

coupled with an alternating force on the cylinder frame, which

makes itself felt as a vibration in the engine and in its supports.

In the lateral direction, i.e., perpendicular to both the crank

shaft and the piston rod, moving parts are also being acceler-

ated, namely the crank pin and part of the connecting rod.

The forces that cause these accelerations must have equal and

opposite reactions on the frame of the engine. This last effect-

is known as "horizontal unbalance.
"

In the longitudinal direc-

tion, i.e., in the crank-shaft direction, no inertia forces appear,
since all moving parts remain in planes perpendicular to the

crank shaft.

The mathematical relation describing these effects is Newton's

law, stating that in a mechanical system the rate of change of

momentum equals the resultant F of all external forces:

= F (128)

213
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This is a vector equation and is equivalent to three ordinary

equations. Two of these equations are of importance, while

the third (in the longitudinal direction) is automatically satisfied

because v is always zero in that direction.

Equation (128) can be interpreted in a number of ways. First,

consider the
" mechanical system" as consisting of the whole

engine, and assume it is mounted on extremely flexible springs

so as to be floating freely in space. No external forces F are

acting, and Eq. (128) states that, while the piston is accelerated

downward (i.e., acquires downward momentum), the cylinder

must be accelerated upward. If the cylinder mass is 50 times

the piston mass, the cylinder acceleration must be 50 times as

small us the piston acceleration.

Next consider only the moving parts, i.e., piston, rod, and

crank shaft, as the mechanical system. During rotation these

parts have a definite acceleration, or -r.(ww), in the vertical and
dt

lateral directions. Equation (128) determines the value of the

force F acting on these parts, and consequently the value of the

reaction V on the stationary parts.

Equation (128) is sometimes written with the differentiation

carried out:

= F (128o)

The expression m dv/dt is called the "inertia force," and the

theorem states that the external force acting on the system equals

the sum of all the inertia forces of the moving parts.

These various inertia forces can form moments. Consider a

two-cylinder vertical engine with the two cranks set 180 deg.

apart. While one piston is accelerated downward the other one

is accelerated upward, and the two inertia forces form a couple

tending to rock the engine about a lateral axis. Similarly, the

horizontal or lateral inertia forces of the two cranks are equal
and opposite forming a couple tending to rock the engine about

a vertical axis.

A rocking about the crank-shaft axis can occur even in a

singlc-cyUnder engine. If the piston be accelerated downward

by a pull in the connecting rod, it is clear that this pull exercises

a torque about the crank-shaft axis. Since the piston accelera-

tion is alternating, this inertia torque is also alternating.
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Newton's law for moments states that in a mechanical system
on which an external torque or moment M is acting

d

dt
(SSI55) = M (129)

where a is the moment arm of the momentum mv. In words : the

external torque equals the rate of change of moment of momen-
tum. With the differentiation performed the relation reads

)
% = M (129a)

or the sum of the moments of the inertia forces of the various

moving parts equals the external moment.
As before, we can take for our mechanical system either the

whole engine mounted on very weak springs, or we can take

merely the moving parts. In the first case the external torque
is zero, and therefore any increase in the clockwise angular
momentum of the moving parts must be neutralized by an

increase in counterclockwise angular momentum of the stationary

parts of the engine. In the second case the increase in clockwise

angular momentum of the moving parts must be caused by a

clockwise torque or moment
on these parts, which has

a counterclockwise reaction

torque on the frame. If this

frame is mounted solidly on

its foundation, this counter-

torque is communicated to

the foundation and may cause

trouble. On the other hand,
if the engine is mounted on

soft springs, no reaction to

the foundation can penetrate

through these springs and

the countertorque is absorbed

as an inertia torque of the

frame and cylinder block.

Hence that block must vibrate, but no appreciable torque gets

into the foundation: we have "
floating power" (page 97).

The formulas (128) and (129) suffice for a derivation of the

inertia properties of the engine which will be carried out in the

(a) M
FIG. 130. Gas pressure forces on a single-'

cylinder engine.
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next two sections. We shall turn our attention now to the effect

of alternating steam or gas pressure in the cylinders.

In Fig. 130, let any inertia effect be excluded by assuming either

that the moving parts have a negligible mass or that the engine

is turning over very slowly at a constant speed w. Let the

pressure force on the piston be P, which is variable with the time

(or with the crank angle w). The gas pressure not only pushes
the piston downward, but it also presses upward against the cylin-

der head. The piston force P is transmitted through the piston

rod (force 1) to the crosshead. Neglecting friction, it is there

held in equilibrium by the forces 2 and 3. The forces 1, 2, and 3

of Fig. 1306 are those acting on the crosshead; 3 is a compression
in the connecting rod and 2 has a reaction pressure on the guide or

frame to the right and of magnitude P tan <p. The force 3 of

magnitude P/cos <p is transmitted through the connecting rod to

the crank pin (force 4). By shifting this force parallel to itself to

O we add a torque ?/P/cos <p, which is the driving torque of the

gas pressure. The force 5 is taken up by the main bearings at

and can be resolved into a vertical component 6, and a horizontal

component 7. From the similarity of the triangles 1, 2, 3 and

5, 6, 7 it can be seen immediately that the magnitude of 6 is P
and that of 7 is P tan <p.

The forces transmitted to the stationary parts of the engine
are:

first, P upward on the cylinder head,

second, P tan <p to the right on the crosshead guide,

third, P downward on the main bearings at 0.

fourth, P tan <p to the left on the main bearings at 0.

The total resultant force on the frame is zero, but there is a

resultant torque Px tan <p. By Newton's law of action and

reaction this torque must be equal and opposite to the driving

torque on the crank shaft, yP/cos <p. The truth of this statement

can easily be verified because it can be seen in Fig. 1306 that

y x sin <p. Thus the gas pressures in the cylinder do not cause

any resultant forces on the engine frame but produce only a

torque about the longitudinal axis.

Summarizing, we note that no forces occur along the longi-

tudinal axis of an engine, while in the lateral and vertical direc-

tions only inertia forces appear. About the vertical and lateral

axes only inertia torques are found, whereas about a longitudinal
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axis both an inertia torque and a cylinder-pressure torque
occur.

If we assume the engine to be built up of solid bodies, i.e.,

elastically non-deformable bodies, the problem is one of
"
bal-

ance" only. The frame or stationary parts usually fulfill this

condition of rigidity, but as a rule the crank shaft can be twisted

comparatively easily, which makes torsional vibrations possible.

The subject is usually divided into three parts:

a. Inertia Balance: By this is meant the balance of the engine

against vertical and lateral forces and against moments about

vortical and lateral axes.

b. Torque Reaction: Under this heading we study the effect

of the torque (due to inertia and cylinder-pressure effects) acting

on the stationary parts about the longitudinal axis (floating

power) .

c. Torsional Vibrations of the Crank Shaft: Here we deal with

the consequences of this same longitudinal torque on the moving

parts of the engine.

The effect c is of particular importance since many crank

shafts have been broken on account of it. Now that the theory
is understood such failures are unnecessary.

The first step in the discussion of the subject is the derivation

of the expressions for the vertical and lateral inertia forces of a

single-crank mechanism as well as a formula for its inertia

torque.

38. Dynamics of the Crank Mechanism. Let Fig. 131 repre-

sent a simple piston and crank, and let

xp
= downward displacement of piston from top.

to = crank angle from top dead center.

r = crank radius.

I = length of connecting rod.

Assume the crank shaft to be rotating at uniform speed, i.e.,

co is constant. Our first object is the calculation of the position

of the piston in terms of the angle co. The distance x p would be

equal to the length DB in the figure, were it not that the connect-

ing rod has assumed a slanting position in the meantime. The
distance DB, which is a first approximation of xp can be written

r(l cos coO

In order to calculate xp exactly, we must add to this as a cor-

rection term the difference between AC and BC or
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1(1 COS <f>)

The auxiliary angle <p can be expressed in terms of cot by noting

that

A B = I sin <p r sin ut

or

sin <p
= , sin (130)

and consequently

COS v?
=

TT, sin 2

Hence the exact expression for the piston displacement xp in

terms of the crank angle co is

j p
-

r(l
- cos /) + / ( 1 - Jl -

^ sin 2

a^j
(131)

On account of the square root this formula is not very convenient

for further calculation. It can be simplified by noting that the

second term under the square root is small in

comparison to unity. In the usual engine, r/l

differs little from ^, so that the second term

is less than ]/{$. Therefore, the square root is

of the form -y/i 5, where 5 < < 1. Expand-

ing this into a power series and retaining only
the first term gives the approximation

Fia. 131. Crank
mechanism.

With 5 = He> the error made is less than one

part in 2,000. Equation (131) becomes

,1 ,N ,

r *
- 2 <xp r(l cos ut) + -JT,

sin 2
co

A further simplification is obtained by con-

verting the square of the sine into the cosine of the double angle

by means of

or

cos

sin

1-2 sin 2

1 cos 2o
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Thus the piston displacement is

ZP =
(r + ^J

- r cos + ~ cos 2wt (132)

The velocity and acceleration follow from the displacement by
differentiation :

xp
= rco vsi + sin

=
ror| cos cot cos

(1326)

(132c)

After multiplication by the mass of the piston, these expres-
sions become the vertical momentum and the vertical inertia

force. They are seen to con-

sist of two terms, one varying
with the same frequency as the

rotation and known as the

"primary" term, and the other

varying at double frequency
and known as the "secondary"
term. If the connecting rod is

infinitely long, the secondary
term disappears and the piston

executes a harmonic motion.

With a short connecting rod

the motion, and especially the

acceleration, deviates consider-

ably from a sinusoid. As an ex-

FIG. 132. The piston acceleration

as a function of the crank angle for

r/l - K-

ample, Fig. 132 gives the piston

acceleration (or inertia force)

of an engine in which l/r 4.

Having found the dynamic properties of the piston, we proceed

to the rotating parts of the crank. The problem is first simplified

by concentrating the entire rotating crank mass in its center of

gravity. (The inertia force of this mass is the same as the

resultant of all the small inertia forces on the various small parts

of the crank.) Next the mass is shifted from the center of gravity

to the crank pin A, but in this process it is diminished inversely

proportional to the distance from the center of the shaft, so that

the inertia force (which is here a centripetal force) remains

unchanged.



220 MULTICYLINDER ENGINES

In this manner the whole crank structure is replaced by a

single mass mc at the crank pin, and the vertical displacement
can be found immediately from Fig. 131:

xc
=

r(l
-

coscoO (133)

so that the vertical components of velocity and acceleration

become
xc

= rco sin ut }

xc
= no 2 cos

utf

The horizontal components are

yc
= r sin ^1 \

yc
= rco cos ul \ (135)

$c
= rco

2 sin
coj

The momentum (or inertia force) is obtained from the velocity

(or acceleration) by multiplying by the rotating crank mass rac .

Crank end Piston end

Wc

V//////////////////////////////////////////////*

FIG. 133. Division of the connecting rod weight into its reciprocating and
rotating parts.

Returning to Fig. 131 we note that the inertia forces of the

piston and the crank have been successfully put into formulas

so that only the characteristics of the connecting rod remain to

be determined. This seems to be the most difficult part of the

problem, since the motion of the rod is rather complicated. The

top point of the rod describes a straight line, while the bottom

point moves on a circle. Ail other points describe ellipses, so

that the determination and subsequent integration of the inertia

forces of all these points require considerable algebra. Fortu-

nately, however, this is not necessary. If the connecting rod is

replaced by another structure, having the same mass and the

same center of gravity, so that the path of the center of gravity

is not changed, then the total inertia force of the rod is equal to

that of the new structure. This follows directly from Newton's

law which states that the component of the inertia force of a body
in a certain direction equals the product of its mass and the

acceleration of the center of gravity in that direction.
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With the aid of this relationship the problem can be easily

solved by replacing the rod by two concentrated masses, one at

each end, so that the center of gravity stays where it is and so that

the sum of the two concentrated masses equals the total mass of

the original connecting rod. This division of mass is the same

as the division of the weight into two parts by placing the rod

horizontally on two scales as shown in Fig. 133.

Although the division of the connecting rod into two distinct masses

leaves the center of gravity in its place and also leaves the total mass con-

stant, the moment of inertia of the two distinct masses is different from the

moment of inertia of the original connecting rod. Therefore the division

of Fig. 133 is correct procedure for finding the inertia forces, but it is not

exact for determining the moments of these forces, i.e., the inertia couple.

Having thus divided the connecting-rod mass into a part

moving with the piston (reciprocating) and another part moving
with the crank pin (rotating), we can denote the total recipro-

cating and rotating masses by mrpc and ?nrot . In other words,
mrec is the sum of the mass of the piston and of a part of the con-

necting rod and ?rarot is the sum of the equivalent mass of the

crank and the other part of the connecting rod.

With this notation the total vertical inertia force X (for all

moving parts) of one cylinder is

X = mTecxp + mrotjcc

r 2

=
(rarec + rarot)ro>

2 cos cot + raroc
yco

2 cos 2eo (136)

and the horizontal inertia force Y is

Y =
Wrotf/c

= Wrotno
2 sin coZ (137)

In words: the vertical component of the inertia force consists

of two parts, a
"
primary part" equal to the inertia action of the

combined reciprocating and rotating masses as if they were

moving up and down harmonically with crank-shaft frequency
and amplitude r, and a "secondary part" equal to the inertia

T
action of a mass jyWrec moving up and down with twice the

crank-shaft frequency and with the same amplitude r.

The horizontal or lateral component has a primary part only,

viz., that due to the rotating mass.

Finally we have to determine the torque of the inertia forces

about the longitudinal axis 0. For the purpose of finding the
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vertical and horizontal inertia forces, the connecting rod was

replaced by two masses at the piston and crank pin in the manner

of Fig. 133, and this procedure was shown to give exact results.

For the inertia torque the result so obtained is no longer exact,

but it will be correct to an acceptable degree of approximation.

Thus again the complicated piston-rod-crank system is replaced

by a mass mrec , reciprocating according to (132), and a mass

wrot rotating uniformly round so that it has no torque about 0.

The inertia torque is caused wholly by the reciprocating mass

rttrec, and its magnitude can be deduced from Fig. 1306, where it

was seen that the torque equals the downward piston force

multiplied by x tan <p. That the downward force in the present

argument is an inertia force expressed by mrw.xp instead of

being a gas-pressure force as assumed in Fig. 130 does not make

any difference. The distance x is

X I COS (p + r COS ut ~ (I
J/) + r cos ^ + T;

cos

Further, tan </?
= y - ~ sin <p (

1 + ^ sin 2
<p )V 1 sin 2

(p \ *
f

<(l
+ ^8in),

r= - sin

so that the torque becomes

M = WrocXp ^ tan <p

/ r \ r / r2 \
J

l cos co^ +
-j
cos 2w^ 1 X

j
sin co^l 1 + ^ sin 2 ^ 1

X \{ I TI I + r cos co^ + . cos 2co^/-

l\ 4V 4Z j

Upon multiplying this out we disregard all terms proportional

to the second or higher powers of r/l. This involves an error of

the same order as that committed in passing from (131) to (132).

Thus

22 Jr , ^Sr AM = mrccco
2r 2 sin wK^ + cos ^ + ^ cos 2w^>

With the trigonometric relation

sin ut cos 2ut % sin 3<*>t % sin ut

the torque becomes finally

1 / r 3rM = xWreoa>
2r 2

f ^ sin o> sin 2o>2
^-

sin SwH (138)
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This important formula for the inertia torque (acting on the

shaft in the direction of its rotation, or also on the frame about

in the opposite direction) is quite accurate for the usual type of

engine where the connecting rod consists of two substantial

bearings at the ends, joined by a relatively light stem. On the

other hand, in a radial aircraft engine, the "master connecting

rod" has a crank end carrying not only the crank-pin bearing,

but n 1 other bearings to which the

other n 1 connecting rods are attached.

It does not seem reasonable to replace this

structure by two concentrated masses at

the ends, and for this case the exact con-

necting rod analysis, given below, is of

interest.

In Fig. 134 let the crank rotate in a counter- F2
clockwise direction at the uniform speed w, and lot

it drag with it the connecting rod. The piston is

supposed to be massless, since its inertia force is

given by Eq. (132c). The piston moreover is sup-

posed to have no friction, so that the reaction force

ot the cylinder wall on the rod must be Fa. Let

further F\ and F 2 be the forces exerted by the crank pin on the rod, which
moves in its prescribed manner under the influence of the three forces F.

This is a case of plane motion, governed by the three equations of Newton:
In the ^-direction, F\ mxo
In the 7/-direction F 2 -f F 3 myo
Moments about e.g., F\a sin <p -f- F 2a cos <p F*b cos <p

= IQ$
The geometry of the motion is prescribed; in particular the center of gravity
moves thus:

< X

FIG. 134.

XG xp -f (xe
- xp)(b/l) = (xpa/l) -f (xjb/l) and ya - ycb/l

where the subscripts c and p denote crank pin and piston, while a and b

are the distances to the center of gravity G as shown in Fig. 134. The
accelerations xp ,

.r c ,
and yc are given by Eqs. (132), (134), and (135). The

angle <f> and its functions, including <p, are determined by Kq. (130). Thus
the Newton equations can be solved for their three unknowns F\, F 2 ,

aridF 3 .

It Is noted that the first Newton equation becomes

Fi = (mxpa/l) -f (mxcb/l) = mrocxp + mrotxe

which leads to the result Kq. (136), known before. Similarly the combina-

tion F 2 + Fa was designated before as Y in Eq. (137). Thus, for the inertia

forces it is seen once more that the statement at the bottom of page 220 is

correct. Now we wish to calculate the torque in the clockwise direction

exerted on the shaft by the inertia of the rod. It is

M = Fir sin ut F 2r cos cot

so that it is necessary to find F 2 separately by eliminating FI from between
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the last two Newton equations. This gives

r> & o IG& ,F 2
= -wrot,rw

2 sin wi --- +,

---
-7
--

I cos </? t cos <f>

In working this out by means of Eq. (130) we neglect all terms containing

powers of r/l higher than 2. This leads to

F2 = TMrotco2 sin

With this expression the inertia torque, after some trigonometry becomes

2Wroca)2r2 2/
s" 1 ^ ~~

(
1 H---

/ "/ s 'n^ ~~
"97

s 'n^ (139a)

in which A; is the radius of gyration of the rod, defined by ink 2 = IQ. This

result is approximate only in the sense that higher powers of r/l have been

neglected; otherwise, it is exact. It differs from (138) only in the double-

frequency term, which now depends on the moment of inertia mk 2
.

Equation (138) is the expression for the inertia torque on the shaft of a

connecting rod consisting of two concentrated masses ma/l and ?nb/l at

distances b and a from the center of gravity. Such a rod has a radius of

gyration k~ = ah, and it is seen that Eq. (139a) reduces to Eq. (138) if this

substitution is made.

ft is interesting to consider two cases of rods that have no end concentra-

tions in order to see how (139) differs numerically from (138). First take

the uniform rod, a = b 1/2 and k'1 = l'
2
/12. In this case the double-

frequency term of (139a) is 33 per cent greater than the term in the approxi-
mate formula (138). Next consider a rod with ? rcc

=
0, (b

=
l) y having its

center of gravity at the crank pin and a certain dimension around it, which

is a rough picture of the master rod of a radial aircraft engine. Assuming
A;2

_.
7,2/10, we find a middle term in (139a) which is the same as that in

(138) if only w loo is replaced by w/10. But, moreover, the sign is reversed.

The aircraft master rod of actual practice is a combination of the two

cases just discussed, and the increase in moment due to the "uniform rod

effect
" more or less balances the decrease in moment due to the large moment

of inertia of the crank end. Thus, even for so unusual a rod as that of a

radial aircraft engine, the approximate result (138) is fairly accurate.

The torque acting on the frame of the engine about the shaft center O
(Eig. 134) is found by multiplying the force F 3 by its moment arm.

Solving for F-A from the Newton equation, substituting it into the above

expression, and working it out, neglecting higher powers of r/l, involves

more algebra than it is expedient to reproduce here. The answer becomes

. .

frame =
5
rowa,*r- -----

4ra
---- + ^ sm t

-

ab -
/c

2 -I
t f3r(A-

2 -06) . 3rl .~~ " "---
/c

2 -I
t

al~ + 1

J
S1

Again, for the connecting rod with two concentrated ends (&
2 = ab) this
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u LJ

result reduces to Eq. (138). Thus for the general connecting rod the

inertia torques on the shaft and the frame arc not equal but differ by the

moment of the inertia forces of the various rod points about 0. Only when

the rod degenerates into two concentrated masses is this moment zero, since

the two inertia forces are along the center line and along a radius, both

passing through O.

39. Inertia Balance of Multicylinder Engines. The unbalance

or inertia forces on a single-cylinder engine are given by Eqs.

(136) and (137). In these

formulas the reciprocating mass

Wrec is always positive, but the

rotating mass m lot can be made
zero or even negative by "coun-

terbalancing" the crank (Fig.
_^^ s _ . ,. ,.

., , J<*a. 1.50.- CounteibjihiiH'od crank.

135). It is therefore possible

to reduce the horizontal inertia force Y to zero, but the vertical

unbalance force X always exists.* Thus a single-cylinder engine

is inherently unbalanced.

Consider a two-cylinder engine with 180-deg. crank angle.

Since the two cranks are opposed to each other, the two hori-

zontal inertia forces are also in opposition and cancel each other

(except for a moment about the vertical axis). Since the two

pistons move against each other, the same is true for the primary
vertical forces. However, the secondary vertical forces are in

the same direction and add. To understand this, it is convenient

to visualize the various forces as (the horizontal projections of)

rotating vectors (page 3). We shall now explain this vector

method for the general case of a multicylinder engine.

In such an engine let the distance between the nth crank and

the first crank be ln and the angle between the nth crank and the

first crank be an (the nth crank angle). In Fig. 136 the first

crank is shown in a vertical position, corresponding to a maximum
value of the primary vertical inertia force. The second crank

is a2 radians ahead of the first one, and consequently its vertical

primary inertia force has passed through its maximum value

OLI/<J) sec. earlier. If the rotating vector representing the primary

vertical force of the first cylinder is in its vertical position, the

vector representing the second cylinder is in the position 2 ,

* A patent has been issued on a scheme whereby the connecting rod is

extended beyond the crank pin so as to make Wp in Fig. 133 negative.

In this manner MTOC may be made zero also. No such engine has ever

been constructed on account of the large crank case required.
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and generally the vector representing the nth cylinder is in the

position . The same statement is true for the primary hori-

zontal inertia force.

Therefore, the crank diagram of Fig. 1366, regarded as a vector

diagram (Fig. 136c), represents the primary force conditions in

2<

to (6) (c)

Fiu. 130. Primary inertia forces on a four-cylinder engine.

the engine. For example a four-cylinder engine of this type has

balanced primary forces.

The secondary force vectors, however, rotate twice as fast as

the crank shaft. Referring

again to Fig. 136a, if the second-

ary force of crank 1 be a vertical

vector, the vector of crank 2

"t" 2-* r ^3 4r was vertical at the time that

crank 2 was vertical. Crank
2 has traveled a 2 radians from

(a)
\ (>)

'

the vertical, and the vector of

crank 2 consequently is 2a2

radians from the vertical. The

. .

1^7 0n

(;!)

nry
and

f0

Z,ld
(

a

a
r

)

y "cond^y-farce diagram there-

moments (c) for the four-cylinder engine fore IS a Star with the angles
of Fig ' 13 - 2a 2 ,

2 8| .
,
2<*n between

the various vectors. Figure 137a shows this diagram for the

engine of Fig. 136.

A similar reasoning holds for the moments of these forces about
a lateral axis. The moment of the nth inertia force about the

center of the first crank shaft is that force multiplied by the

moment arm ln (Fig. 136a). The plane in which such a moment
operates is defined by the direction of the force and the longi-
tudinal center line of the crank shaft. Therefore, the moment
can be represented also by a vector in the same direction as the
inertia force, its length being multiplied by the proper moment
arm ln .
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The primary-moment diagram of the engine of Fig. 136a Is

given in Fig. 1376, where li
=

0, 12
=

I, I*
= 21 and Z 4

= 3Z.

The secondary-moment diagram (Fig. 137c) follows in a similar

manner.

With the aid of such vector diagrams the reader should prove
the following propositions :

1. A four-cylinder engine of 0, 90, 270, 180 deg. crank shaft has

balanced primary and secondary forces and also has balanced

secondary moments, but the primary moments are unbalanced.

2. A four-cylinder engine of 0, 180, 180, deg. crank shaft has

balanced primary forces and moments, while the secondary forces

and moments are unbalanced.

3. A six-cylinder engine (0. 120, 240, 240, 120, deg,) has all

forces balanced and all moments balanced

4. An eight-cylinder in-line engine (0, 180, 90, 270, 270, 90,

180, deg.) is completely balanced.

In these examples it has been tacitly assumed that all pistons

are alike and are spaced at equal distances, which is the case in

modern internal-combustion engines. However, the method will

work just as well for unequal piston masses and unequal spacings.

In fact it was for the application to large triple and quadruple

expansion steam engines for ship propulsion that the theory was

originally developed (Schlick's theory of balancing, about 1900).

A particularly interesting case of balance occurs in the so-called

V-8 engine, consisting of two ordinary four-cylinder blocks

operating on a single common crank

shaft. The crank shaft is of the

0, 90, 270, 180 deg. type, and on

each throw two pistons act, one

from each bank. It was seen

above that each four-cylinder bank

by itself is unbalanced only in terms

of primary moments, the secondary
forces and moments being com-

letely balanced already in each FIQ 138

bank. If the V-angle is made 90

deg., as usual, the vertical, or X-, force of a piston in one bank has

the same space direction as the horizontal, or F-, force of the other

bank, and it is possible to make the primary components of these

two forces annihilate each other. Thus the total primary force of

each crank becomes zero and no primary moments can exist.
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The manner in which this is done is illustrated in Fig. 138, in

which the x- and ?/-axes are in the same direction as in Fig. 131,

the subscripts L and R designating the left- and right-bank

cylinders. Let further mrec be the reciprocating mass of one

piston and the corresponding part of one connecting rod, and

let rarot be the rotating mass of half of one crank and throw with

the corresponding part of one single connecting rod. Then the

primary force in the L-direction caused by the longitudinal

component of the left cylinder, by Eq. (136), is

In L-direction: (mrpo + mrot)/*co
2 cos ut due to L

Similarly by Eq. (137)

In /^-direction: rarot7*cj
2 sin co due to L

In computing the forces caused by the /^-cylinder it is noted

that the angle between its center line and the crank is ut + ?r/2,

so that

In L-direction: +mrotrco
2 sin [co + (ir/2)]

= +Mrotno 2 cos ut due to R
In /^-direction: (mreo + M lot)ror cos [co + (ir/2)]

=
(Wrec + Wrot)?*a>

2
Sill Co duC tO R

Summing these contributions we have

In L-direction: (raroc + 2???,rot)roo
2 cos ut

In 72-direction: (WTOO + 2w rot)rar sin cot

= +(mIOO + 2tfirot)r<o
2 cos [ut + (ir/2)]

It is seen l.luroforc that the unbalanced forces in the R- and

L-directions are alike, and they can be reduced to zero by making
(wiroo + 2-Wrot) zero. Therefore complete balance of a V-8

engine can be attained by counterwcighting each individual throw

in such a way that it takes care of a full crank with the rotating

parts of two rods and the reciprocating parts of one single piston

and rod.

Example: A triple expansion steam engine has pistons of which the weights
are to each other as 1 : }-% 2. If it is desired to balance this engine for primary
forces, how should the crank angles be made?

Solution: The vectors in the diagram have lengths in the required ratios.

Drawing the vector of two units length vertically, as in Fig. 139, the equilib-

rium requires that the two other vectors be arranged so that their hori-

zontal components balance and that the sum of their vertical components
be two units. With the angles a. and /3 of Fig. 139, we have



INERTIA BALANCE 229

1 sin a =
1,^2 sin

1 COS a + 1 l
'2
COS & =2

To solve those, calculate cos a from the first equation:

cos a = Vl sin 2 a = \Al 2f-i sin 2 #

and substitute in the second one:

^_____^__ = 2 _
jj^ CQS ^

Square and simplify:

G cos = 5>i

from which cos =0.88 and

Further, cos = 2 - ^ x 0.88 = 0.68

a = 47 cleg.

28 deg

and
,

z

FIG. 139.

It is possible to express the results of these vector diagrams in

simple mathematical language. The requirement for balanced

primary forces is that the geometrical sum of all the vectors

of Fig. 136c be zero. If this be so, the sum of their horizontal

projections as well as the sum of their vertical projections must

be zero or

V sin a n
= and cos <x n

=
(140)

Similarly, the conditions for balanced secondary forces are

V sin 2an
= and V cos 2a n

=

For the primary moments

sin a n =

For the secondary moments

n sin 2a n
=

and

and

cos an =

cos 2an =

(141)

(142)

(143)

All these formulas are true only for equal piston masses.

For the four-cylinder engine of Fig. 136 we have a\ =
0,

2
=

90, 3
= 270, <* 4

=
deg., and consequently Eqs. (140)

become

+ 1-1 + = and 1 + + 0-1 =

so that the primary forces are balanced.
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But Eqs. (142) become

0- 1 + 1 -0 + 2-0 + 3 1 = 3 ^
so that the primary moments are unbalanced.

Thus we are able to test the inertia balance of any engine design

by using either the formulas (140) to (143) or the vector diagrams.

It may be well to recall that in this analysis the engine has

been considered to be a "
solid body." This is usually the case

in automobile and aircraft engines where all cylinders are cast in

a single block, but in marine engines the cylinders sometimes are

mounted separately. Then the forces or moments of two cylin-

ders may be in opposition to each other and not move the engine

as a whole, but they may move the two cylinders against each

other clastically. The problem becomes extremely complicated,

and is not of sufficient practical importance to merit much time

for its solution. In this connection the reader is referred to

the analogous problem in rotating machinery discussed in Sec. 49.

An interesting case of balance occurs in radial engines for aircraft, having a

single crank, rotating about O, on the crank pin of \vhich operates the
" master connecting rod" AB (Fig. 140). This master rod has a large lower

head carrying (n 1) holes at a radius l\. from the crank-pin center A.

These holes are spaced at angles 2ir/n apart and carry the (n 1) link rods

of which one, CD, is shown. The length of the master rod AB ~ L and that

of a link rod CD Li. The first step in calculating the balance of this engine
is the determination of the displacement of one of the (n 1) pistons. In

the figure the distance 01) is

xp = r cos (cot a) -f- l\ cos <f> + L\ cos <pi

The auxiliary angles <f> and <p\ arc determined by the equations

sin <p
=
j sin ut and sin <p\ j-

sin (ut a)
-~- sin ut

Working out the cosines of <p and <pi, neglecting powers of r/L higher than

the second, in a manner quite similar to the process described on page 208,

leads to

_ f2 * 1 -2 r
r2

4- 7-7-^ sin ut sin (co a)
*

r , sin 2 wf
LJLJ \ ZJ \Li

or, after differentiation,

-Xp
-

rco^COS
(ed

- a) -f j+fl
+

--)
COS 2a>* +

jj-
COS 2(a>*

-
a)

j~^
cos (2oit a)

This expression, multiplied by the reciprocating mass Trw of one piston and

part of one link rod, gives the inertia force. There are (n J ) such forces
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radially distributed round 0, in addition to the force of the main cylinder B.

The latter force is found from the above formula in which a =
0, multiplied

by the reciprocating mass of the master cylinder mrec mfta ,
which usually is

different from the reciprocating mass of w reo of one of the other cylinders.

In order to form the resultant of the inertia forces of all the cylinders, it is

necessary to divide each force into its components along and across the

master-cylinder direction. The component along the master cylinder

Fio. 140.

of the force of a cylinder at angle away from the master is mrGCxp cos a, and
the component across the master cylinder is mr9Pxp sin a.

First we propose to add together the across-eomponents of all cylinders,

utilizing the trigonometric relation

cos A sin a =
J/2 sin (A -{- a) ^2 s in (y^

~ a)

Applying tliis to the first term in the bracket of .r
; , wo find

cos (ut a) sin a. }/i sin oil % K}n fat 2a)

This expression is to be summed over all N cylinders, having angles a spaced
at equal intervals lir/N around the circle. The first term on the right side

above is the same for all cylinders so that the sum is ]^,N sin ut. The second

term, however, is the sum of a set of sines of angles that arc 4ir/N apart;

sketching a vector diagram it is recognized that we have to form the vector

sum of a uniformly spaced star diagram, so that the answer is zero. In the

same manner we proceed with the three other terms in the bracket of xp

with the result

\T Or / \1\ LTl\ . . \
xp sin a = rw Sin Wt -pr

LLi

In this summation it is noticed that for the master cylinder a = sin a 0,

so that its contribution to the across-force is nil and the difference between

mrec and mroc mM does not come in. Thus the force across the center line

of the master cylinder due to all reciprocating parts is
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fN .
, N2rli .
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In the same manner the force along the master cylinder is computed. Sum-

ming over all the cylinders, while considering the master cylinder as having
the same mass as all the others, gives the same result as FWTOSR except that

cosines occur instead of sines. To this must be added the difference between

the master reciprocating parts and those of an ordinary cylinder at its loca-

tion, with the final result

<">s cot 4"

Thus the total unbalance consists of a primary and a secondary force. The

two components of primary force differ if m, maa differs from wrec . In that

case it is not possible to balance the engine for primary force. The best

counterbalance that can be provided interpolates between the two compo-
nents. It must balance first the rotating parts of the crank, the master

rod and the (N 1) link rods, and moreover it must balance a mass at the

crank radius of }/(N l)mrec -f
J/2Wrec mM . If this counterweight is pro-

vided, there remain primary unbalanced forces in the two main directions of

The secondary unbalanced forces cannot be balanced by ordinary means.

40. Natural Frequencies of Torsional Vibration. The shaft-

j
ing of an internal-combustion

m engine with all its cranks, pistons,
I flywheel, and driven machin-

ery is too complicated a struc-

ture to attempt an exact
determination of its torsional

natural frequency. It is neces-

sary first to simplify or "idealize"

the machine to some extent by
replacing the pistons, etc., by
equivalent disks of the same
moment of inertia and by re-

placing the crank throws by
equivalent pieces of straight

FIG. 1/la and fc.-The equivalent
shaft f the SamG torsional flexi-

moment of inertia of a piston varies bility. In Other WOrds, the
with its position. machine has to be reduced to

the shape of Fig. 142o. This process is at best approximate.
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First consider the equivalent moment of inertia of each crank
mechanism. The moment of inertia 7rot of the purely rotating

parts offers no difficulty, but it is not quite evident what should
be done with the reciprocating weight. In Figs. 141a and 6 the

piston is shown in two positions. Imagine the crank shaft to be

non-rotating but to be executing small torsioiial oscillations. In

Fig. 141a this takes place without any motion of the piston, but
in Fig. 1416 the motion (and acceleration) of the piston practically

equals that of the crank pin. The equivalent inertia in position
a is zero whereas in position b it is mrccr

2
. Thus while the crank

shaft is rotating, the total equivalent moment of inertia of the

crank mechanism varies between 7rot and 7rot + tfw 2
,
with an

average value of /rot + J^w2
. The system with variable inertia

(page 424) is now replaced by one of constant inertia /, where

I =
Jrot +JW 2

(144)

Next consider the idealization of a crank throw into a piece of

ordinary shafting of the same torsional flexibility. This is

physically quite permissible, but the calculation of the flexibility

is a very difficult matter. In

Fig. 141c it is seen that, if the

main shaft is subjected to twist,

the crank webs W are subjected

to bending moments and the

crank pin P is in twist. It is

possible to calculate the angle
of twist produced by a certain

torque by applying to the webs

and pin the usual "beam"
formulas for bending and twist.

However, that will give very
inaccurate results because these

W)
Fio. Hie and d. -A orank of length

formulas are true Only for long I is replaced by a piece of uniform shaft1111 i MI i i of length l c having the same torsional
and slender beams and will lead

fiGX jbiii ty .

to serious errors if applied to

short stubs of a width and thickness nearly as great as the length.

Moreover, it can be seen that the torque in Fig. 141c will cause

not only a twisting rotation of the free end but also a sidewise dis-

placement of it on account of the bending in the webs. In an
actual machine the sidewise motion is impeded by the main

bearings and the torsional stiffness of the crank shaft is increased

by these bearings, especially if their clearance is small.
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Cylinder No.

I4

'heel

Generator

18

(a)

Experiments have been carried out on a number of crank shafts

of large, slow-speed engines showing that the "
equivalent length

"

le of Fig. 141d (i.e., the length of ordinary shaft having the same

torsional stiffness) is nearly equal to the actual length I. The
variation is between

0.95Z < 19 < 1.10Z

the lower value being for small throws and stiff webs and the

higher value for large throws and thin flexible webs. In all

tests the diameter of the main shaft was equal to that of the crank

pin.

In cases where the crank pin has a different diameter (usually

smaller) from that of the main bearing journal, the throw is

replaced by a straight shaft of

two different diameters; the

point where the diameter

jumps from one value to the

other being located at the

center of the crank web. For

high-speed, light-weight
engines, particularly aircraft

engines, where the webs are no

longer rectangular blocks but

have shaved-off corners to save

weight, the equivalent stiffness

is very much smaller than

would follow from the above

simple calculation. In ex-

treme cases the stiffness may be as low as 50 per cent of the value so

calculated. The best guide is then a comparison of calculation

and experiment of a number of previous crank shafts of similar

characteristics.

In case one part of the system is connected to the other part

through gears, it is convenient to reduce everything to one speed.

As was explained on page 42, this is accomplished by eliminating

the gears and multiplying the moments of inertia and the spring

constants of the fast rotating parts by n2 where n > 1 is the gear

ratio.

Let Fig. 142a represent the idealized machine, in this case a six-

cylinder Diesel engine driving a flywheel and an electric gener-
ator. There are eight degrees of freedom. It is theoretically

possible to find the eight natural frequencies by the method of

(fe)

FIG. 142. The engine is replaced by a

two-mass system for the purpose of an

approximate calculation of the lowest
natural frequency.
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Chap. IV, using a determinant with eight rows and eight columns

and an eighth degree equation in a>*. This is obviously undesir-

able from the standpoint of time consumption.

Instead, we use a method of successive approximations starting

with a rough first guess at the frequency. Such a guess for the

lowest natural frequency can be made by replacing Fig. 142a by

Fig. 1426, where Ia is the inertia of all six cylinders combined and

Ib that of the flywheel and generator rotor combined. The

frequency of the latter system is [Eqs. (12c) and (16)]

and is an approximation to the lowest frequency of Fig. I42a.

In the reduction of Fig. 142a to 1426 the judgment of the calcu-

lator enters. With some experience the frequency can be esti-

mated to within 10 per cent.

The rough value wi, thus obtained, serves as the basis for the

following method of calculation due to Holzcr. Assume the whole

system to be in a torsional oscillation with the frequency coi.

If coi were a natural frequency this could occur without any
external torque on the system (a free vibration). If coi is not a

natural frequency, this can occur only if at some point of the

system an external torque of frequency o>i is acting. We have

then a forced vibration. Assume arbitrarily that the angular

amplitude of the first disk in Fig. 142a is 1 radian. The torque

necessary to make that disk vibrate is

/iwf sin u\t

This torque can como only from the shaft to the right of /i If

that shaft has a torsional spring constant k\, its angle of twist is

T 2 T 2

-j
^ sin coi with a maximum value -} Since the amplitude of

A* i AI

T 2

disk 1 1 is 1 radian and the shaft twists - -^
radians, disk / 2

A 1

T 2

must vibrate with an amplitude of 1 ^ radians. This
AI

requires a torque of amplitude

This torque is furnished by the difference in the shaft torques left

and right, and, since the torque in ki is known, the torque in A* 2
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can be calculated. From this we find the angle of twist of A*2 ,

the angle of 7 3 , etc., finally arriving at the last disk 7 8 . But

there is no shaft to the right of 7 8 to furnish the necessary torque.

In order to make the system vibrate as described, it is necessary

to apply to 78 an external torque Te^ of the value found by the

calculation. Only when coi happened to be a natural frequency

would this 7
7

oxt be found equal to zero. The magnitude and

sign of 7
7

ext therefore are a measure of how far coi is removed from

the natural frequency. A number of such calculations with

different values of coi must be made, until finally the remainder

torque Tcx * is practically zero. The advantage of this method

is that it gives not only the natural frequency but also the com-

plete shape of the natural mode of vibration, and this will be

needed for the calculation of the work input by the non-uni-

formities of the cylinder torques (page 255).

The actual course of the calculations can best be illustrated by
a definite example, as follows.

41. Numerical Caclulation of Diesel Ship Drive. Consider a

six-cylinder Diesel engine with a flywheel directly coupled to a

ship propeller through a long propeller shaft (Fig. 143). The
characteristics of the installation are:

Crunk radius r 15 in.

(/rank-shaft diameter 12 in.

Weight of piston and crosshead 2,500 Ib.

Connecting-rod weight 1,500 Ib.

Moment of inertia of one crank equiva-
lent to 1,180 Ib. in. sec.

2

Flywheel inertia. 75,000 Ib. in. sec. 2

Cylinder sparing 36 in.

Distance, cylinder 6 to flywheel 36 in.

Distance, flywheel to propeller 150 ft.

Propeller-shaft diameter 12 in.

Propeller inertia 20,000 Ib. in. sec. 2

Running speed 100 r.p.m.

Power at 100 r.p.m 6 X 250 = 1,500 hp.

The moment of inertia of one crank is calculated as follows:

1 ^00
Reciprocating weight: 2,500 + i^p - 3,250 Ib.

Zi

Rotating weight: ^~ = 750 Ib.
2*

Half of the reciprocating weight is effective in rotatory inertia so
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that the equivalent inertia of the piston and rod is

1,625 + 750

237

386
15 2 = 1,380 Ib. in. sec. 2

The total equivalent inertia of one crank thus is

1,180 (crank) + 1,380 (piston, etc.)
- 2,560 Ih. in. sec. 2 = 7i... 6

The elasticity of the crank shaft between two cranks is calculated

as if the equivalent length were equal to the actual length.

IT

<^ o
8 S
CSj" <Vs?

rn

(b)

(c)

i i tjp-
6
-

\

/O 6

i

n
L-i

_J
FIG. 143. (a) Diesel ship drive with its approximations for calculating the first

(b) and second (c) natural frequency.

Hence
GI 12- 10 -IT 12 4

j
\Jt A. p V* II tt/ J *

^ 6
=

~~r
=

32r
= "

32 - 36
~ v/t ' y a

x
ii^'

The elasticity of the long propeller shaft is

ki =
-/'-

= ^' 675 10 f) = 13.5 10 fi

in. Ib./rad.
i 1 OU

The inertia of the propeller is usually increased by 20 per

cent to take care of the water which is moved with it, so that

/8
= 24,000 Ib. in. sec. 2

.

Thus the system is reduced to that shown in Fig. 143a. In

the first mode of vibration with one node, the engine with its
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flywheel will act practically as a solid body; then there are two

masses, the engine-flywheel and the propeller, with the long shaft

between. Consider a two-mass system with

1 1
= 75,000 + G X 2,560 = 90,000

and h = 24,000, with a shaft of A' = 13.5 10 6 between (Fig.

1436). Its natural frequency is

/T=
V

TJT5 -~10 6
(24,000

X 90CKK)

, ,

rad - /flee '

The second (two-noded) mode will be in the engine itself, the

flywheel swinging against the first few cylinders on the left with

a node somewhere in the engine close to the flywheel. Since this

motion is considerably faster than the previous one, the propeller

on its shaft is far removed from resonance, and the propeller,

being excited by the high-frequency flywheel motion, can have

but little amplitude. Thus the propeller shaft cannot influence

this mode very much. Assume (as is shown in Fig. 143c) two

masses, the flywheel and the first five cylinders lumped at the

location of cylinder 3. Then

/170 10 6
(

~V 12,8

2,800 + 75,000)

12,800 X 75,000
= 125 rad./sec.

Higher modes of vibration usually are of no interest.

The Holzer calculation for the first mode becomes

First Mode = 26.2 = 680 First Trial

In this table columns 1, 2, and 6 were first filled in, and with

an arbitrary amplitude /3i
= 1 radian in column 3 the calcu-
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lation proceeds step by step to the right along the first row. The

physical meaning of the second column is the inertia torque per

unit angular amplitude of each disk. The fourth column is the

inertia torque of each disk. Each entry in the fifth column is

obtained by adding the value of column 4 to the previous value of

column 5. Thus column 5 gives the sum of the inertia torques
of all disks to the left of the one under consideration. This sum
must equal the torque in the shaft immediately to the right of

the disk under consideration. Thus, when this torque 2/co 2
# is

divided by the shaft elasticity k we obtain in column 7 the angu-
lar twist (in radians) in the shaft portion between two disks.

This twist is subtracted from the amplitude in column 3 and thus

gives the angular amplitude of the next disk. The reader should

follow all calculations in this table and be clear about the physical

meaning of each entry. In particular the last result 3.5 X 10 6

represents the sum of the inertia torques of all disks and thus is

the torque Text that must be applied to the last disk in order to

vibrate the system at co = 26.2

with 1 radian amplitude at the
ext

first disk. It is seen that 7
T

ox t .

is positive, i.e., that it has the ^ ^1-

same phase as the motion of

the first Seven disks. From
'

FIG. 144. Behavior of the remainder

this we can conclude that the torque of column 5 of the Holzcr
. , t f.

. calculation.
first natural frequency is

greater than 26.2, which can be understood from Fig. 144 whoro

jText is plotted as a function of co.

When co is taken zero, all entries in the columns 2, 4, 5, and

7 become zero, and thus 7"ex t is also zero. For a small co the

values in column 2 are small, and those of column 3 differ only

slightly from unity. Thus column 5 shows a set of increasing

values ending in a positive figure. At the first natural frequency

(and at the higher ones as well) !Text must be zero. Thus a dia-

gram having the shape of Fig. 144 is obtained. Below the first

natural frequency the last entry Text in the Holzer table is posi-

tive; between the first and second frequencies it is negative, and

so on.

Since co
2 = 680 is apparently too small, and since the figures

of column 3 show our original assumption of a stiff crank shaft

and a flexible propeller shaft to be fairly correct, our next trial

is co
2 =

700, very close to our first attempt.
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First Mode o> = 26.5 o>
2 = 700 Second Trial

The torque 7
7

ext is still positive, so that our estimate of the

error was too optimistic. The next value to try is found by
extrapolation from the two previous results based on the fact

that a sufficiently small piece of the curve of Fig. 144 may be

considered straight.

0,2 = 700 +~ '2
r7>(700

-
080) = 710.5

o.o 1 . Z

First Mode = 26.7 CO
2 = 711 Third Trial

In this table the external torque is negligibly small. There-

fore the first natural frequency is 26.7 radians per second or

26.7/27T = 4.25 cycles per second. The shape of the motion is

illustrated in Fig. 145, where the angular amplitudes ft of the

various disks are plotted against their positions. The curve is

known as the " normal elastic curve of the first mode of motion."

It is seen that the crank shaft is practically solid and that nearly
all the deformation is taking place in the propeller shaft.

Proceeding to the second mode of motion, the frequency was
found to be, roughly, w = 125. The Holzer calculation is
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o> = 125 o> = 15625

241

First Trial

VIG. 145. First natural mode of motion of \
r
ift. 14:i.

The remaining torque is negative and rather largo. Figure 144

tells us that our estimate is too low. Considering the large value

of the external torque, the next trial is made very much higher.

Second Mode - 141 20,000 Second Trial

Now the remainder is positive, so that the frequency is too

high. The next value is found by interpolation:
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to
2 = 15,625

Second Mode = 132.4

3
-

15,625) = 17,500

o>
2 = 17,500 Third Trial

(b)

Third mode
(eslimafed)

X4

Fiu. 140. Second and third normal elastic curves.

Though this result is considerably better than the two previous

ones it is still not sufficiently accurate. Linear interpolation

gives

1,054
co

2 = 17,500 +
1,054 + 5,130

(20,000
-

17,500) = 17,930

A consideration of the result of the first trial makes us suspect
that this is somewhat low. Thus the fourth calculation is
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w = 134 co
1 = 18,000 Fourth Trial

The remainder is now sufficiently small. The only unsatis-

factory thing about this solution is the value for the amplitude ft

of the propeller. A very slight change in co
2 makes this ampli-

tude vary tremendously. Consider the flywheel amplitude which

has been underlined in the last two tables. A very small change
in the frequency co

2 will make the amplitude /3 7 of the flywheel

equal to 0.133 in the last table. Then the last two rows of

that table become

Thus we have finally for the second natural frequency o> 134

radians per second or/ = 21.3 cycles per second, and the normal

elastic curve shown in Fig. 140a. The third mode of motion with

three nodes will be somewhat as indicated in Fig. 14(>c, and its

calculation probably would require six or more Holzer trials.

Fortunately, however, such higher modes hardly ever attain

practical importance.
The Holzer method, just outlined, does not take advantage

of the fact that in the usual engine all cylinders and shaft sections

between them are alike. A simplification of the computations
can be obtained by using the methods of the calculus of finite

differences, which is described in the book by von Karmiin and

Biot, quoted in the bibliography. This method leads to results

identical with those of Holzer's method.

A very good approximation is obtained by the method of

F. M. Lewis, in which the inertia of the engine disks is uniformly
distributed along the engine shaft. Then the engine itself

becomes a shaft in torsional vibration, subject to the differential
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equation (936) of page 173, with the general solution (96) of

page 174. This simply means that the engine portions of the

elastic curves of Fig. 145 and 140 are pieces of sine wave. If

moreover the engine ends freely, without flywheel at its left-

hand end, as shown in these figures, and if the end amplitude is

1.000 rad., as assumed, then Eq. (90) becomes

(x)
= (Js

where x is measured from the left to the right. With the nota-

tions / =
nil = the total moment of inertia of the entire engine,

K = GIp/l = the stiffness of the entire engine shafting of length

/, and $ = = angle of twist along the shaft, as in the Holzer

tables, the equation of the shaft deformation reads

/3(
- cos ox -

(a)

The combination

is the number of radians of cosine wave along the engine shaft,

and its numerical magnitude is easily visualized in Figs. 145 and

140. Then we have for the angle at the right-hand end of the

engine, i.e., for the angle of disk 7, the value

- cos (c)

The torque in the shaft just left of disk 7 is

)

.r/,

= coV?/v sin O (</)
/

With these four formulas the sixth line of the Holzer table can be

calculated at once. We can assume cither a value for co, as

before, or, also, we can assume a value for 0, which in certain

respects is even more physically obvious. Then ^7 can be

calculated by Eq. (c), while M/, from (d), gives the value of the

shaft torque, i.e., of 2/or/3.

In assigning numerical values to the inertia / and the stiffness

K of the uniform shaft, which is supposed to be the equivalent
of the actual engine, some judgment is required. For instance,

in Figs. 145 and 140 the mass at the left end should be smeared
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out to the left as well as to the right. In this manner we arrive

at an over-all length of 0* >? shaft sections, and K = 675 X 10 6
/0.5

= 104 X 10 6 inch Ib./rad. Further, / = X 2,500 = 15,300
Ib. in. sec. 2 The two combinations of these quantities, occurring
in the formulas (a) to ((/), are

T
-p

= 0.01215 sec. and \fl~K = 1.205 X 10 6
Ib. in. sec.

Entering with these values into the calculation of the first mode
we assume co X 20.7, as in the third Ilol/er trial. This gives

9 = 20.7 X 0.01215 - 0.324 radian - 18 38'

7
= Cos 18 38' = 0.948

Mi = 2/co 2 = 20.7 X 1.205 X 10 6 X 0.310 = 10.75 X JO 8

These values are seen to differ from those in the ITolzer table

only in the last decimal place, so that the agreement is almost

perfect.

Proceeding to the second mode with co 131, us in the last

Holzer trial for that mode, we find

= 134 X 0.01215 - 1.030 radians - 1)3.5 deg.

fa = cos 93.5 - -0.001

Mi - 134 X 1.205 X 10 t5 X sin 93.5 - 109.5 X 10 6

The value of 7 is far from the correct one. After some trial it is

found that o> = 139 gives a better fit.

9 = 139 x 0.01215 = 1.090 radians - 97.0 deg.

07 = cos 97 = -0.122

/C0
2

J
3 7
= -176.5 X H) 6

Mi = 139 X 1.205 X sin 97 - +170.0 X 10"

Thus we see that Lewis's method gives us no error at all for

the first mode and an error of only 3.7 per cent in the frequency
of the second mode, with a large saving of labor. It is good

practice to carry out the first rough trials with Lewis's method
and to polish off with a Holzer table.

The method of F. P. Porter, which is used by several engine

manufacturers, consists of replacing the entire engine by an
"
equivalent flywheel" /equ.v. The torque exerted by the entire

engine on the rest of the system is expressed by formula (d),

above. If the engine were to consist of a single flywheel /OQU,v,

oscillating at the amplitude of the end of the engine, Eq. (c), the

torque would be

/eQuivC0
2
/3(/)

= 7OQuivC0
2 COS
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Equating this to the torque, Eq. (d), of the actual engine and

considering Eq. (6) we get

tan B

Thus the engine of actual inertia 7 with a flexible crank shaft acts

as a solid flywheel (without flexibility) of inertia /equiv at the

assumed frequency determined by 0. The rest of the calculation

follows essentially Holzer's pattern.

The Holzer method can be applied conveniently to the calcula-

tion of the frequencies of branched systems, such as that in Fig.

147, which shows the main drive of a ship built in 1940 for the

U.S. Maritime Commission. The disks 1 and 5 represent the

inertia of a low-pressure and a high-pressure steam turbine,

running at 7,980 r.p.m. The disks 2 and 4 are intermediate

gears running at 730 r.p.m., while 3 is the main gear, running at

85 r.p.m. and coupled to the propeller 6. The inertias shown are

in Ib. in. sec. 2 and are already multiplied with the squares of

their speed ratios (page 42). The flexibilities shown must be

multiplied by 10 9 to measure in in. Ib./radian and likewise have

been corrected for speed. To find the lowest natural frequency
we notice that the engine shafting is stiff in ccomparison with the

drive shaft. Thus for a first estimate all turbine masses are

lumped at the main gear and

k 0.071 X 10 9

/= 4HMXX)
= 17

A Holzer trial has shown this value to be low; and, with final

value o>
2

17(>, the last calculation proceeds as follows:

co
2 = 170, 0| -

1.000, M, = 7,*0i -= 1.2?r> X 10 9

12
= Mi ^ 1 275 = a(K)î ^ = (U)9S

A,' I O"T O

M 2
= / 2W 02 = 0.181, M 23

= M! + M, = 1.456

23
= M-.ri = 0.279, 3

= 0>
- 0.279 = 0.719

^'23

Now we do not know the amplitudes in the 3-4-5 branch, having
once assumed 1

= 1 .000. Nevertheless we start fresh with the

assumption ^5 = 1.000 and work back.

05 =
1.000, M 6

= 0.083, 045 = 0.000, 4
= 1.000

M 4
=

0.191, M 34
= 0.274, 34

= 0.053, 3
= 0.947

It is clear that /3 3 cannot at the same time have an amplitude of

0.719 and of 0.947. It is possible to make the last value come out
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equal to 0.719 simply by multiplying all figures in the last two
lines by the ratio 0.719/0.947 = 0.760. Then these lines become

05 = 0.760,

M 4
= 0.145,

M 5
=

0.063,

M 34
= 0.205,

045 = 0.000,

034 = 0.04,

04 = 0.760

3
= 0.719

Proceeding with the main gear 3, it is seen that not only its own
inertia torqueM 3

= / 3o/
2
/3 3
= 0.044 is acting on it, but the torques

M 2 3 and M 34 from the two branches as well. Thus the torque

0.07f

Fiu. 147. Ship drive consisting of high-speed (in bines \ and .">, double reduction-

gear drive 1?, U, 4, and propeller (.

entering the propeller shaft is

M 3f)
= 0.044 -I- 1.450

Further,

3 6
= 24.01, 06 = -23.29,

Remainder,

0.205 = 1.705

M 6 -1.705

In a similar way the reader should find the second mode of

motion of this system, which consists primarily of one turbine

swinging against the other one. This leads to a frequency
w 2 =

1,929, and an elastic curve

03 = -2.064, & = -4.870! = 1.000,

06 = -4.89,

02 =
0.978,

06 = -f 0.200

In carrying out this calculation it will be found that the last

result comes out to be the small difference between two large

numbers, which is very inaccurate. Therefore /3 6 is calculated

better by means of Eq. (30), page 61, considering the propeller

and its shaft to be excited at co
2 = 1 .929 by a motion |3 3

= 2.064,

which is known accurately.
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42. Torque Analysis. Since the torsional vibrations in the

crank shaft are excited by the non-uniformities in the driving

torque we proceed to an examination of the properties of this

torque. We have seen in Sec. 38 that it is made up of two parts,

one due to cylinder pressure and the other due to inertia.

In Fig. 148u the cylinder-pressure torque of a four-cycle Diesel

engine is shown as a function of the crank angle. At the four

order

1 order

)Border

Fio. 148.- The gas torque of one cylinder of a Diesel engine and its first thiee

liar monir components.

dead-center positions during the two revolutions of a firing cycle

the torque is zero. When the engine is operated at partial load

by a reduced injection of fuel, the curve is changed only in the

firing quarter cycle. The dotted lines 1 and 2 indicate the shapes
for zero and half load. At zero load the pressure during the firing

period is equal to that during the compression period, so that

even when there is no average torque at all there are alternating

torques of considerable amplitude.
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It is seen that the average torque delivered by the cylinder is

only a small fraction of the maximum torque which occurs during
the firing period. The fact that the torque is so irregular as

shown constitutes one of the inherent disadvantages of the

reciprocating engine as compared with the turbine where the

torque curve is a straight horizontal line.

It is possible to break up Fig. 148a into its harmonic com-

ponents as explained on page 20, and as an illustration the first

three harmonics are shown. They are known as the harmonic

components of the order }%, 1, and 1*2 because they show as

many full sine waves per revolution of the engine. In two-cycle

engines and in steam engines, only harmonics of integer orders

occur. It is only in the four-cycle internal-combustion engine

that we have half-order harmonics due to the fact that the torque
curve is periodic with a firing cycle, i.e., with two revolutions.

It is seen that the 1- and 1
!

2-order curves add up to a positive

result near cot = 45 (leg. and to a negative result near 720 45

deg., while in a broad range near co/ = 300 deg. they cancel each

other approximately. Tims the three harmonic curves added

together give a rough approximation of the actual torque ciuve,

but many more harmonics are required to show the torque curve

in all its detail.

The results of the harmonic analysis of the torque curve for

this engine, a slow-speed, four-cycle Diesel, are given in Figs.

149a and b. Horizontally is plotted the loading condition of

the engine, and vertically is plotted the amplitude of the various

torque harmonics expressed in terms of the average full-load

torque. It is seen, for example, that the harmonic of order 1J

has an amplitude of 1.97 times the average full-load torque when

the engine is running at full load and has an amplitude of O.G9

times average full-load torque when the engine is idling and has

no average torque whatever.

On page 222 it was seen that the inertia force of the recipro-

cating parts also causes a torque, and Kq. (J38) indicates that

only the harmonics of orders 1, 2, and 3 of this torque are of impor-

tance. With these three harmonics the torque due to cylinder

pressure has to be properly compounded with the inertia torque.

Since the Figs. 149a and b do not give the phase relation of the

harmonics with respect to the compound torque curve (e.g.,

order J^ in Fig. I486 is 50 deg. out of phase) and since the

inertia-torque harmonics are all in phase with the sine (i.e., at
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200

80 10020 40 60

Per Cent of Full Load >
FIG. 149rt. Totfil harmonic components [A of Eq. (10), page 20] of Fig. 148

tip to the order f>l-> for .sUw-speod four-cycle Diosol engine. (Calculated by
F. M. Lciris.)

20 40 60 80

Per Cent of Full Load -*

Fio. 1496. Total Iiannonic components of Fig. 148o; orders 6 to 12 for slow-speed

four-cycle Diesel engine. (Calculated by F. M. Lewis.)
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t = the ordinate of the torque harmonics is zero), it is necessary

to specify the phase relation of the orders 1, 2, and 3 of the gas-

pressure torque. This is done in Fig. 149c, where these harmon-

ics are resolved into their sine and cosine components. As an

20 40 60

Per Cent of Full Load *' >

Fit!. 149c. Sine ( M ) and COMMP (h n ) components of (ho h:u monies of orders 1, 2,

and 3. (/*'. M. /-r/r?.s.)

example consider the gas-pressure harmonic of order 1 at full

load. The conditions are sufficiently clear from Fig. J50, in

which the amplitude of the compound curve coincides with

the result shown in Fig. 149a. The addition of the gas-pressure

torque and the inertia torque is best explained by an example.

FIG. 150. Compounding of tho full-load sino and rosino rornponcntH of the fust

ordor from I^i^- 140a.

Take the harmonic of order 2 for the engine with the character-

istics as given on page 230. The mean full-load torque per cylin-

der is

33,000= .

ft lb = l ft lh
2ir -

r.p.m.

By Fig. 149c the sine component of the harmonic of order 2 at full
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load is 1.63 X 13,150 = 21,400 ft. Ib., and the cosine component
is 0.43 X 13,150 = 5,650 ft. Ib.

The inertia torque is given by Eq. (138), page 222. Its ampli-

tude of order 2 (i.e., having 2 cycles per revolution) is )^/ recCo
2r 2

.

Since the reciprocating weight is 3,250 Ib. (page 236), the ampli-

tude of the inertia torque at full speed is

3,25()/ 10000V/15V _ o mo
O/ \\2j

- - 8
'
W)0

This torque has the phase of a sine because the origin of time has

always been taken at the position of top dead center (Figs. 130

and 131). Thus the total sine component has an amplitude of

-8,000 + 21,400 = 12,800 ft. Ib., which with a cosine amplitude
of 5,650 ft. Ib. gives a total harmonic of the order 2 of

\f(\"2,800)2"+ (5,650)2 - 14,000 ft. Ib.

at 100 r.p.m. and full load. In this manner it is possible to cal-

culate the amplitudes of the various harmonics of the torque.

1Uo

\

01234567
Order n-

Fiu. 151. Harmonic torque components for four-cycle 1 gas engine for aircraft.

(K. *S. Taylor.) An approximate expies.>ion for this graph is 7.7/n-.

The results of Fig. 149 are true for slow-speed four-cycle Diesel

engines only. For other types of engine similar results have been

obtained. Figure 151 gives the harmonic coefficients of four-

cycle spark-plug engines used on aircraft. The values shown arc

independent of the operating conditions of the engine, but it is

noted that the ordinates read in "per cent of mean torque,"

whereas in Fig. 149 they are in "per cent of mean full-load

torque." Therefore, if an aircraft engine is run at half torque,

all harmonic coefficients are half as small, a condition that is

roughly true in the four-cycle Diesel only for the three lowest

harmonics. The higher harmonic torques in the Diesel are

roughly independent of the load, whereas in the aircraft engine
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they are proportional to it. For full load it is seen that the coeffi-

cients of the two types of engine have about the same values.

The most complete and useful harmonic analyses were made

by F. P. Porter in a paper entitled "Harmonic Coefficients of

Engine Torque Curves/'* In that paper, which is too large to

reproduce here, curves similar to those of Fig. 149 are given for

eight widely different types of engine (slow and fast, Diesel and

spark plug, two- and four-cycle) so that one of the eight prototype

engines of Porter is always sufficiently close for practical pur-

poses to any engine that may come up.

In interpreting Porter's curves it is to be noted that the

ordinate, which he calls m\, is measured in pounds per square
inch gas pressure, so that to find the corresponding nth harmonic

torque Tn the ordinate has to be multiplied by the piston area A

and by the crank radius 7?(7
T

M miAIt). Likewise his abscissas

differ from those of Fig. 149, in that they are expressed in pounds

per square inch M.I. P. (mean indicated pressure). The defini-

tion of M.I. P. is

Work per cycle - 27i> X M.I. P. X A

where a "cycle" may be one revolution or two revolutions,

depending on whether the engine is two- or four-cycle. Calling p
the number of revolutions per cycle, the relation between the

nth harmonic torque Tn and the mean engine torque 7
T

mean is

Tn _ irpnii _ ordinate

7Tnean

~~

M.I. P.
~" ^

ilhsClHSJl

In ship drives it is not only the Diesel engine that can excite

torsion al vibrations in the installation. The propeller itself,

usually having three or four blades, does not experience a uniform

reaction torque from the water. Each time a blade passes the

rudder stem or some other near-by obstacle, the pressure field

about the blade is influenced and the torque modified. Thus
there will be torque fluctuations with propeller-blade frequency.

Though little detailed information about the intensity of these

variations is available at the present time, it has been found

that an assumed torque variation of 7.5 per cent of the mean

propeller torque leads to calculated torsional amplitudes that

are in decent agreement with measured amplitudes on a consider-

able number of ships.

* Trans. A.S.M.E., 1943, p. A33.
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43. Work Done by Torque on Crank-shaft Oscillation.

Assume the crank shaft to be in a state of torsional oscillation,

superposed on its main rotating motion. If one of the harmonics

of the torque of a cylinder has the same frequency as the vibratory

motion, that torque performs work upon the motion. The work

so done may be either positive or negative (or zero), depending
on the phase relation.

Generally speaking each torque harmonic will induce in the

system a forced torsional vibration of its own frequency, so that

the motion of the shaft is made up of as many harmonics as arc

present in the torque. However, nearly all of these harmonics

have frequencies so far removed from the natural frequency that

the corresponding vibrational amplitude is negligibly small.

Only when one of the torque harmonics coincides with one of the

natural frequencies is the response appreciable, and the ampli-

6 3

FIG. 152. Critical-speed spectrum of tho installation of Fig. 14.S.

tude of vibration then may become great. The "critical speeds
"

of the engine at which such resonance may occur are very
numerous.

For example, the six-cylinder marine Diesel installation

already discussed has natural frequencies of 4.25 and 21.3 cycles

per second or 255 and 1,280 cycles per minute. Suppose this

machine to bo running at 2 X 255 = 510 r.p.m. There are 255

firing cycles per minute, and the torque harmonic of order )<

produces resonance in the first mode. Similarly for a speed of

255 r.p.m., the first-order harmonic is in resonance and, in

general, at 255/n r.p.m. the nth harmonic is in resonance. In

the second mode of vibration the nth harmonic excites at l,280/?i

r.p.m. This gives a spectrum of critical speeds as indicated in

Fig. 152 and also in the table, page 259. This particular machine
has near its running speed (100 r.p.m.) the harmonics of orders

2} and 3 of the first mode.

Most of the critical speeds thus found are not dangerous as

very little work is put into them by the torque. The amplitude
builds up until the work done by the torque equals the work
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dissipated in damping in the manner indicated in Fig. 43, page
08. It is now our object to calculate the work input at the

various critical speeds in order to find their comparative danger,
while a discussion of the dissipation by damping will be postponed
to the next section.

The work done per cycle by one cylinder (the ?*th one) is

wMn/3n sin <pn ,
where M* is the torque harmonic, f$n the torsional

amplitude, and <pn the phase angle between the two (set
1

page 17).

Let us investigate how these three quantities vary from cylinder

to cylinder. The torque harmonic M n has; the same magnitude
but a different phase at the various cylinders, because \ve assume

FIG.

1, 2, an
order of

M.

the

MS
hat monk: M and vihiation amplit ude ft for the cylinders

The sub.srript.s 1
, 2, 3 under M denote the cylinder and not the

harmonic. The diagram holds for any oider of harmonic.

h

that they all fire with the same intensity but naturally not all

at the same time. On the other hand the angular displacement

fin varies in magnitude from cylinder to cylinder according to

Fig. 145 or 146, but it has the sample phase everywhere because

all disks reach their maximum amplitude (or go through zero)

simultaneously. The phase angle <pn therefore varies from cylin-

der to cylinder. This is shown in Fig. 153, where the (horizontal

projection of the rotating) doubly lined vector represents the

torque harmonic and the (h.p.o.t.r.) single vector represents

the angular vibration amplitude for the various cylinders. The

velocity of rotation of all the diagrams is co, the natural circular

frequency of the vibration. This is not the angular velocity of

the crank shaft which is m times as slow as co for the wth-order

critical speed.

Since the work done by the nth cylinder is 7rMn n sin <pn ,
it is

not changed if, as in Fig. 154, the directions of the torque and

displacement vectors in each individual diagram are interchanged,
so that we now consider the fictitious case of torques in phase at

the various cylinders and torsional amplitudes out of phase.
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This is convenient for adding the work done by the individual

cylinders. Since /3n sin <pn is the horizontal projection of the

single-lined vector fin in Fig. 154a, the work by one cylinder is

7rM times the vector obtained by projecting ftn horizontally.

Hence the work done by all cylinders combined is 7rM n times

the vector obtained by projecting the resultant of all /3-vectors

horizontally as indicated in Fig. 1546. There will be some phase

(b)

FIG. 154.--The work input by all cylinders i^ found by adding the work of the

vaiious c
%\iiii(Ieis individually.

angle \l/
in this result which will depend on the original <pi at the

first crank.

The <pi or ^ is unknown, and its exact determination for each

frequency co is out of the question. However we can state that

at resonance
\f/

must be 90 dog., which can be understood as

follows. At " resonance
"

the amplitude (considered as a func-

tion of the frequency) is a maximum, and consequently the work

dissipated by damping is a maximum. But this work is equal
to the input of Fig. 15t/>. Thus the phase angle \l/ is such as to

1,6

m 2 3 4 5

Firing order: 153624

(a)

3,4 Z,5

(b)

FIG. 155.-- Direction of the torque vectors of order 1 for a six-evil rider enpino.

make that work a maximum, i.e., \p must be 90 deg. Hence we
do not need the doubly lined arrows of Fig. 151 for the determi-

nation of the work input. It is necessary merely to draw a star

of vectors with the phases of the torques Mn and the magnitudes
of the angular displacements j8M . The vector sum of this star,

numerically multiplied by TT times the torque amplitude M n ,
is

the work done by all the cylinders per cycle of oscillation.

Consider the specific example of the Diesel ship drive dis-

cussed earlier. Let the crank shaft be as shown in Fig. 155,

which is the usual construction, having complete "inertia bal-
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ance" (see page 229). The sequence with which the various

cylinders fire, i.e., the "firing order," is limited somewhat by this

choice of crank shaft, but it is not completely determined. For

each one-third revolution two pistons come to the top, of which

one is fired and the other begins its charging stroke. Thus there

are only four possible firing orders for counterclockwise rotation,

namely: 1 5 3 6 2 4, 1 5 4 2 3, 1 2 3 f> 5 4, and 1 2 I 5 3. The
first of these will be assumed to exist in this case.

We proceed to construct the star diagram of Fig. 1546 for the

various orders of vibration first considering the phase angles only
and paying no attention to the length of the vectors.

At the critical speed of order J.j *''' when half a vibration

occurs during one revolution, the crank shaft makes a full turn

6

(a)

5,6,4

(b)

(c)

FIG. 150.- Direction of torque vectois for vaiious orders. As in Fig. 155h (ho

lengths of all vectors have been made equal, for .simplicity.

while the vibration vector turns through only 180 (leg. Or,

while the crank shaft turns 120 (leg. (Fig. 1556) between two

firings, the vibration vector turns only (>() (leg. This gives Fig.

156a, rotating with half the crank-shaft speed. After a ()0-deg.

turn, arrow 5 is on top and fires, which occurs at the same time

that arrow 5 in Fig. 1 556 is on top.

Next consider the vibration of order 1, i.e., one vibration per
revolution. The motion vector turns just as fast as the crank

shaft, and the star diagram coincides with Fig. 1556. The

1/^-order vibration gives a vector diagram turning 1J^ times as

fast as the crank shaft, i.e., the angle between consecutive vectors

is \\i X 120 = 180 deg. (Fig. 1506). The order 2 gives an angle

of 2 X 120 = 240 dog. between consecutive vectors as shown in

Fig. 150c. The diagram 156c is seen to be the mirrored image of

1556, so that the length of the resultant arrow will be the same.

Similarly with the order 2]/ the angles between the vectors are

300 deg., which is 360 GO deg. making the diagram a mirrored

image of that of order ^ (Fig. 156a). The order 3 gives angles
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of 3 X 120 = 360 deg. between the various vectors (Fig. 156d),

and order 3)^ is again the same as order J^, because the angle

between vectors is 360 -f 60 deg.

t

'\

&
. . Orders 1

Orders j,2ji,
3 Jetc.

FIG. 157. Complete stai diagiams (dneetion and magnitude) for the first normal
mode of motion of the engine of 1'ig. 155.

Thus we find that only four different diagrams exist, namely:

Figure 150a for the orders l/2 ,
2 ]

/>, 3,
!

,
51

, GJ4, 8^, etc.

Figure \5(}c for the orders 1, 2, 4, 5, 7, 8, etc.

Figure 1506 for the orders lj/9, 4}, 7^, etc.

Figure l5Gr/ for the orders 3, 6, 9, etc.

Now we are ready to construct the diagrams completely

including the proper lengths of the vectors. Figure 157 gives

*Z*t.60

4*
Orders 1.2,4,5 etc. Orders l,4j elc. Orders 3,6,9 eft

FHJ. I f>8. Complete star diagrams for the second normal mode of motion.

them for the first mode of motion (Fig. 145) and Fig. 158 for the

second or two-noded mode.

The critical speeds of order 3, G, etc., are known as major
critical speeds, all others being minor critical speeds. The

characteristic property of a major critical speed is that all the

vectors in the diagram have the same phase. The physical

significance is that with a rigid engine ( in which the crank shaft
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cannot twist) the major critical speeds are the only speeds at

which work can be done on the vibration, because, as all magni-
tudes of j$n are then equal, the resultants of the star diagrams of

all minor critical speeds are zero.

The distinction between major and minor critical speed does

not imply that a major speed is always more dangerous than a

minor. In fact, for engines with a more or less symmetrical
normal elastic curve, as shown in Fig. 159, the resultant of the

FIG. 159. First normal elastic curve for symmetrical engine with two very heavy
flywheels.

major critical speeds is zero, whereas for the minor speeds of order

1^, 4J^, etc., the resultant becomes very large (Fig. 1506, d).

The work input per vibration cycle at the various first-mode

critical speeds that may be encountered is calculated in the table

below.

All critical speeds below order 12 of the second mode lie above
the running speed and need not be considered. The figures in
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column 4 have been calculated from those in column 2 by assum-

ing that the torque varies as the square of the speed as is approxi-

mately true for a ship drive. Column 5 has been calculated from

column 4 in connection with Figs. 148, 149, and 150 and from

formula (138). The formula (138) comes in only for the critical

speed of order 3, and in the calculation it has to be remembered

that the inertia torque also varies as the square of the speed.

The entries in column 6 are the work input per cycle and are a

measure of the relative severity of the critical speeds. The

amplitude of vibration can be calculated by equating column 6

to the energy dissipated per cycle by damping. It is to the

calculation of this latter quantity that we now turn.

44. Damping of Torsional Vibration. In marine engines the

damping provided by the action of the water on the propeller

is usually particularly effective. A damping torque is one which

is opposite in phase to the angular velocity. In the free vibration

of the first mode, shown in Fig. 145, the propeller speed will

alternately be faster and slower than normal. Since the resisting

torque of the surrounding water increases with the speed there is

positive damping action, which can be explained as follows.

During the half cycle that the propeller speed is greater than

average (Qp + d$lp), the retarding torque is also greater than

average (M p + cMp), so that the excess torque dMp tends to

retard the motion, i.e., dM.p is directed opposite to the excess

velocity dtip . Conversely, during the half cycle that the propeller

speed is smaller than average (Qp dtip), the retarding torque is

M p ofMp, so that the excess dMp is accelerating. The excess

velocity d$lp is directed against the rotation lp ,
which also is

against the direction of the excess torque.

If for these small variations in torque and speed the torque-

speed characteristic is straight, the damping constant c, being the

retarding torque per unit angular velocity, is c = dMp/dtip .

By (Eq. 34), page 68, the work dissipation per cycle is

TT7" y nV^^^^lt / -t A f\W TTCCOpp
=

TTUpp-jt (145)

where P is the amplitude of vibration at the propeller. The work

input per cycle by the cylinder torques doubles if all amplitudes
of vibration are doubled, since the torques are not affected by a

change in amplitude. However, by (145) the propeller dissipa-
tion quadruples if the amplitudes are doubled. Thus there will



PROPELLER DAMPING 261

be a definite amplitude at which input and output of energy

balance each other (Fig. 43, page 68). It is necessary merely

to find the value of dM.p/dttp .

In Fig. 160 the steady-state relation between the torque and the

propeller speed of a typical ship is shown. The curve is a parab-

ola or a somewhat steeper curve expressed by Mp
=

flj with an

exponent n between 2 and 3. This curve can be easily obtained

for a given ship by the actual measurement of the torque (indi-

cator diagrams), and the shaft revolutions per minute for a num-
ber of speeds. But the slope of this curve is not the damping
constant we are seeking, because in it the ship's forward speed

grows with the revolutions per minute, whereas during the rapid

Op-variations of the torsional vibra-

tion, the ship's speed is constant. It i //

is shown below in small print that at a g-

definite torque and speed (point P in

Fig. 160) the slope dM p/dttp for a con- |
stant ship speed is considerably greater

than the slope of the steady-state curve.

The dotted line throughP indicates the
!

Ivopeiler^peecl

curve for constant ship speed, and it FIO. i GO. -Marine propeller

is usually assumed that its slope at P characteristic.

is twice as large as the slope of the fully drawn steady-state

characteristic.

Consider a propeller-blade element cut out by two cylinders concentric

with the shaft and with radii r and r + dr. The section of the propeller
blade so obtained has the appearance of an airplane-wing section. Let this

blade be moving forward (Fig. 161a) with the ship's velocity V and tangen-

tially with the velocity ttpr. The water will flow against it from the upper
left corner of the drawing with the relative velocity Frei. The propeller is so

designed that this direction includes a small angle a (the angle of attack) with

the main direction of the blade. This causes a hydrodynamic lift force L
on the blade perpendicular to the direction of flow (Fig. 1616). There will

be also a small drag or resistance force in the direction of flow which we may
disregard in this argument. The lift L can be resolved into two components
T and R : T being the thrust, and R the reaction, thus causing a torque Rr
about the shaft axis. The sum of all T's for the various blade elements of

the propeller add up to the thrust on the ship, and the sum of the various

Rr's is equal and opposite to the engine torque in the steady-state case.

Imagine a periodic variation in the propeller speed Op while the ship's

speed V is constant. In Fig. 161a the length $lpr varies, and consequently
the angle of attack a varies. This varies the lift L and the torque Rr. Let

ftp diminish to such an extent that the angle a. and with it the lift and Rr
become zero. Then the propeller torque is zero, because the propeller
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freely screws through the water, which in this case acts as a stationary nut.

The forward speed and the rotation are adjusted so that this screwing takes

place without any effort. In the usual designs the blade angle tan- 1 -~-

varies between 20 and 80 deg. along the blade, whereas the angle of attack a

is of the order of 5 deg. Thus we see that a diminishing of ilp by 10 or 20

per cent is sufficient to make the torque zero. This condition is indicated

by the point Q in Fig. 160.

In this argument it has been tacitly assumed that the rate of change

dilp/dt is of no influence on the phenomenon, i.e., we have assumed that the

flow in Fig. 1C la is a steady-state flow for each ratio Stpr/V. In case the

variation in ilp is s/ow, such a succession of steady-state flows is practically

the same as the actual flow, but for rapid variations (d$lp/dt =
large), this

analysis is inapplicable. A completely satisfactory theory of propeller

damping docs not exist as yet, and for important cases where the frequency
is high, only an experiment on a model can give reliable information.

a! M
Fia. 161. Direction of water How (a) and the forces (b) acting on a propeller-

blade element.

The torque M p of our 1,500-hp. engine at 85 r.p.m. is

1,500- 33,000/ 85V = 57;000ft _ lb _

and the angular speed Qp of the propeller is

= 8.90 radians per second

The equation of a parabolic relation (Fig. 160) between the two
would be

M - 57,000 2 _ 720 02p
~

(8.9)
2 p

~ ' p

and its slope at 85 r.p.m.

= 12j80 ft> lb> sec -

The actual propeller-damping constant at this speed is assumed
to be twice as great, or

cp
= 25,600 ft. lb. sec./rad.
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The energy dissipation per cycle in the first mode of vibration is

TrwijSJCp
= TT 26.7 25,600/3;

= 2,150,0000* ft. Ib.

The work input of the table on page 259 is calculated on the basis

of the amplitude of 1 radian at cylinder 1 and 3.58 radians at the

propeller. Thus the energy input is

189,000 _
" ~ ~~

Equating the two energies, we find for the amplitude at the

propeller

ft,
= 0.025 radian = 1.4 deg.

From Fig. 145 we see that the tuist in the propeller shaft is

(3.58 + 0.94)/3.58 times as large as ft,. With a spring constant

in this shaft of k= 13.5 X 10 6
in. Ib./rad., the torque amplitude

is

|4f
- 0.025 13.5 10 6 = 426,000 in. Ib. - 35,500 ft. Ib.

3.58

The mean engine torque is 57,000 ft. Ib., so that the variation

in the engine torque is about 62 per cent of the mean torque.

Though this is not particularly smooth, it may be without

danger for the shaft. We see that even the worst major critical

speed may not be dangerous on account of the propeller damping.

This is generally true for direct propeller drives where the pro-

peller inertia is small compared uith the engine-flywheel inertia.

On account of the relatively great propeller amplitude and the

small engine amplitude it is easier for the damping to destroy

work than it is for the torque harmonics to create it. How-

ever, under the circumstances it would be wise to stiffen the

propeller shaft so as to bring the major critical above the running

speed.

In high-speed ship engines it may happen that some critical

speeds of the two-noded mode come into the running range.

Then usually (Fig. 146) the propeller amplitude is very small and

consequently the propeller damping is nearly zero. In such cases

and also in those where the Diesel engine and its flywheel are

directly coupled to an electric generator, there is hardly any

damping which we can calculate except that due to mechanical

hysteresis in the crank-shaft fibers, which are alternately in ten-

sion and in compression.
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The stress-strain relation of any steel under alternating load

is represented by a thin loop as in Fig. 162a, the area of which

equals the energy dissipated per cycle in 1 cu. in. of the material.

Plotting the area of the loop against the maximum stress gives a

curve of the character shown in Fig. 1026. If the hysteresis loss

in the crank shaft is calculated on the basis of an experimental
curve (Fig. 1026), we find that only about 10 to 15 per cent of the

actual energy loss in the engine can be accounted for. The

major portion of the energy is dissipated in the bearings and

through them into the foundation. The argument given with

Figs. 1 He and d, page 233, showed that during a torsional oscil-

lation alternating forces arc imparted to the main bearings which

FIG. \('/2a. Mechanical
hysteresis loop.

FK;. l()2/j. Hysteresis-

di.sMpation curve for typi-
cal shaft hteel.

set the whole machine vibrating. (Incidentally this is respon-
sible for the fact that a torsional oscillation can be observed on

the machine by a rumbling noise or by a vibration in the frame

which can be felt by the hand. The purely ideal system shown in

Fig. 143 will not give any external evidence of a state of tor-

sioiuil vibration.) The motions thus caused in the several parts
of the foundation may result in rubbing and a consequent dissi-

pation by friction. Obviously this effect is beyond calculation.

In spite of the fact that only some 10 per cent of the dissipa-

tion is caused by hysteresis, it has become customary to calculate

this loss and multiply it by an empirical factor, which was
determined so as to make the calculated torsional amplitudes
coincide statistically with the measured ones on a number of

installations.

For this calculation two formulas are used in practice, the first

one being the Lewis-Porter formula:

T . ,-- . , .

Loss per cycle =
/rs

in. Ib./cycle
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where D is the diameter of the crank shaft or crank pin in inches,

/ is the distance in inches between two crank throws and 2/}'--
3

is the sum of the 2.3 powers of the angles of twist of the various

shaft sections between cylinders. These angles are not found

in the fourth or /3-column of the Ilolzer table, but rather in the

last column (page 238). The energy dissipation of the engine,

thus found, will be proportional to the 2.3 power of the end

amplitude. The energy input of the engine is proportional to

the first power of the end amplitude, so that when the energy-

equilibrium equation is written it can be solved for that amplitude.
The second, more recent, formula is due to Doroy:

Loss per cycle - 90,000D 4/" 1^ 2 in. Ib./cyclc

where the letters D and ft have the same meaning as in the Lewis

formula above, but the length / is the distance in inches between

two crank throws less the thickness of two crank webs, thus

including only the length of one crank pin and of one main shaft

section.

It is apparent that for large stresses and angles in the shaft

Lewis's formula gives higher values, while for small angles Doroy

gives higher values for the work dissipated. The two formulas

give the same result for an average value of the angles occurring

in practice. Both are empirical, based on a number of actual

calculations, and under the circumstances the; simpler one by

Dorey is preferable. The Lewis formula is retained in this book

because of its widespread occurrence in the literature.

In engine installations without active propeller damping,
without badly constructed couplings or without other visible

sources of energy dissipation, a critical speed with a compara-

tively large entry in the last column of the table on page 259 will

inevitably cause such large amplitudes that the crank shaft or

driving shaft breaks in fatigue. To prevent this we can apply
one of the following procedures:

1. If the engine is to operate always at the same speed, e.g., a

synchronous-generator drive, changes in the elasticity of the

shaft or in the inertia of the masses can be made such as will

removB the running speed sufficiently far from any important
critical speed.

2. If the engine has to operate over a narrow speed range,

course 1 usually suffices. If it does not suffice, the relative

severity of the minor critical speeds may be influenced by chang-

ing the firing order. This is explained on page 280.
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3. If operation over a very wide speed range is required, as

for instance in Diesel locomotives or in ship drives, it may become

very difficult, if not impossible, to avoid all danger of torsional

vibration by the means 1 and 2. An artificial damper should

then be applied. Three such devices will now be discussed, i.e.,

the friction damper of Lanchester, the tuned centrifugal pendu-
lum described on page 119, and the

hydraulic coupling or "fluid flywheel."

45. Dampers and Other Means of

Mitigating Torsional Vibration. The

Lanchester damper (Fig. 163a) consists

of two disks a, which can rotate freely

on the shaft bearings b. Between

them is a hub disk h solidly keyed to

the shaft. This hub h carries brake

lining c on its faces against which the

disks a can be pressed by screwing

down the springs s.

If the engine, i.e., the hub h, is in

uniform rotation, the friction carries

the disks a with the shaft, so that the

disks then merely increase the inertia of the engine by a small per-

centage. If, however, the hub executes a torsional vibration, the

motion of the disks depends on the amount of friction between

them and the hub. If the friction torque is extremely small, the

disks rotate uniformly and there is a relative slip between the hub

and the disks with the amplitude of the

hub motion. Since the friction torque

is nearly zero, very little work is con-

verted into heat. On the other hand,

if the friction torque is very large, the

disks lock on the hub and follow its

motion. There is then no relative slip

and hence no energy dissipation.

Between these two extremes there is

both slip and a friction torque, so that

energy is destroyed. There must be some optimum value of the

friction torque at which the energy dissipated is a maximum, as

indicated in Fig. 1636. At the optimum damping torqueMopl ,
let

iph be the amplitude of relative motion rei
= pa &

g$h be the amplitude of disk motion /3a .

FIG. 163a. Lanchester

dumper.

Friction Torque

FIG. 163b. Energy dissipa-

tion in the Lanchester damper
as a function of the fnotion

torque.
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The factors f and g are yet unknown. The friction torque
is usually of the dry friction or Coulomb type, i.e., not pro-

portional to the slip velocity but constant in magnitude and

opposed in sign to the slip. The work destroyed per cycle is

W = 4M/fc* = 4fM/&

The friction torque M/ is the cause of the oscillatory motion of

the disks a, which have a combined moment of inertia I a . Thus

by Newton's law

M, = I&

and, if the disk motion is approximately sinusoidal, we have

roughly

M/ = /aCO% - Ingush

Substituting this in the energy dissipation per cycle,

W = 4fg/ ffl
co

2
|8J

For a damper with a viscous damping torque the analysis is

similar and gives the same result except for a factor TT instead

of 4. The numerical value of the factor 4fg (or Trig) for the

optimum friction torque has been found by a somewhat elaborate

calculation, with the results

W = -latf&l (for dry friction) (146a)
7T

W =
!/

aa>
2$ (for viscous friction) (1466)

The optimum friction torque at which this maximum dissi-

pation occurs is determined by

A/2

7T

a

(for dry friction) (146c)

a
^-^sin wt (for viscous friction) (14M)

The derivation of the results (1466) and (I46d) for the case of viscous

damping, though somewhat lengthy, offers no particular difficulties and is

left as an exercise to the reader. For a dn/-friction damper, however, the

problem is more complicated. If

w = angular velocity of friction disks a.

UA = angular velocity of the hub,

M/ = the friction torque,
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the angular velocity of slip (relative motion) is co* co fl
= cor6i, and the work

done per cycle is

with the proper limits of integration. Figure 164 serves to illustrate this

integral. The angular velocities of the hub and friction disks are plotted

against the time. The velocity of the hub, i.e., of the engine as a whole, is

supposed to be harmonic with the amplitude &, where a> is the frequency
of the vibration and ph its angular amplitude at the hub. The friction

disks are acted upon by an alternating constant torque M/, i.e., they have

alternating constant accelerations M///a and thus the velocity diagram
<*> must consist of pieces of straight line of slope M/// . The difference

between the ordinates of the two curves of Fig. 164 is core i
= WA wa

,
and

FIG. 104. Angular vclooity diagrams of the hub and the inertia disks of the

Lnnchester damper.

thus the shaded area multiplied by M/ is the work dissipated per half cycle.

Taking the origin of time at the instant that co =
(t.c., at the instant

that the angular velocity of the disks equals the average angular velocity

of the hub), the phase relation between the disk and hub motions is deter-

mined by the quantity co/o, which is as yet unknown.
The motions during the shaded interval are

&h Ph& COS (<j)t 0)to)

The phase co can be found from the fact that at wt ir/2 the two

angular velocities arc equal.

_i_
M / *
j'^T = ^*WCI
l a &U

sin
M/

The work dissipated per cycle is 2M/ times the shaded area, or

/
2coP M/ "I

/SAW (cos <o cos co^o -f sin ut sin co^o) j-
t\dt

r L
'

J

2o>
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The integral contains three terms. The first term is

cos f
+

I

~

The second term is a sine integrated between equal positive and negative

angles and thus is zero. The third term is the area under the straight line

of Fig. 164 between ir/2 < ut < o>/2 and is also zero.

Thus

W = 4M/& cos *o

For which value of the friction torque M/ docs this dissipation become a

maximum? By differentiation,

n n ,
2M/^ oiv/r / * Y= .,. = 40A cos coo - '

2M/( 4> ,
-

)cos cot o \2/aco
2
/3/ty

.,. A c

c/M/

A short calculation shows that

A/2 1

M/ = -
0,4/ co

2 and cos w/o = rz (14(Jc)
* A/2

This is the optimum value of the friction torque. The dissipated energy is

found by substituting into the above equations

ir = 2A/2M//3A = 4
/co 2

/3j q.c.d. (146a)
7T

It is clear from (146a) that the damper should be placed at a

point of the shaft where the torsional amplitude is great, and that

the device becomes entirely useless if placed at a node of the

vibration. This is a property which the damper has in common
with the ship's propeller.

In order to make the Lanchester damper dissipate more energy
for a given inertia of the flywheel a of Fig. 163a, the relative

motion between the flywheel a and the hub h may be increased by

mounting the flywheel on tuned springs. This produces the
"
damped tuned vibration absorber" of which the theory for

viscous damping is discussed on pages 119 to 133. That theory

gives the complete behavior of such a damper when applied to a

simple K-M system. In order to apply it to a multimass system
the theory would become hopelessly complicated. However the

results of pages 119 to 133 can be applied with decent accuracy
to a multimass system as well, by replacing the multimass system

by an equivalent K-M system as follows:
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1. The mass M of the one-mass system is so chosen that for

equal amplitudes at M and at the point of the multimass system
where the damper is attached, the kinetic energy of M equals the

kinetic energy of the multimass system in the mode of motion

considered.

2. The spring K of the one-mass system is then so chosen that

K/M is equal to the a?
2 of the multimass system in the mode of

motion under consideration.

3. The exciting force P on the single mass M is so chosen

that its work wPxi at resonance is equal to the total work input

by all the exciting forces of the multimass system adjusted to the

fearnc amplitude x\ at the point of attachment of the damper.
Another device useful for avoiding or damping torsional vibra-

tion is Focttingcr's hydraulic coupling, also known as "fluid

flywheel" (Fig. lG5a). It consists of a piece A in the shape of

half a doughnut keyed to the driver shaft. A similar piece B
is keyed to the follower shaft. A cover C is attached solidly to

A on the driver shaft and can turn with respect to the follower

shaft. At D there is a hydraulic seal with little friction. The
entire interior of the doughnut is filled with a fluid, thin oil or

water, and the sole purpose of the cover C is to hold that fluid

in place. The doughnut-shaped space is subdivided into a

large number of open compartments by many thin vanes, each

having the form of a semicircle, and arranged in purely radial

planes (Fig. 1656). By Newton's law of action and reaction

the torques on driver and follower must be equal and opposite.

Since the device does not operate at ideal efficiency, the speed
of the follower must be somewhat less than that of the driver, the

speed ratio being the same as the efficiency, which is between

97 and 99 per cent. The fluid in the coupling is under the influ-

ence of centrifugal force, which is greater in the driver than in

the follower on account of the speed difference. Thus a circu-

lation is set up, moving the fluid outward in the driver and inward

in the follower. This circulation, for the existence of which a

speed difference is essential, is the cause of torque transmission

between the two shafts.

Consider a particle of fluid dm at point P in Fig. 165c. Its velocity will

have a radial component v r ,
and the Coriolis acceleration is 2Ovr ,

directed

tangcntiully. The Coriolis force is 2ttvr dm and its moment is 2ttvrr dm, in

a direction such as to retard the rotation ft of the driver. For all the par-
ticles in the stream tube of P the torque integrates to
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2ft ry dm = 2ft f-

271

The factor dm/dt appearing in this integration is the mass flowing by P
per second, which is constant and equal to Arrc/7

7

, i.e., the total mass Aw. of

the entire steam tube from 7 to in the driver and from to / in the follower

divided by the period of circulation T in seconds.

The Coriolis torque on the follower is in the direction of rotation and is

calculated similarly with the same form of answer. Only the angular speed

FIGS. 165a, 6, and c. The hydraulic coupling or "fluid flywheel" transmit*

torque primarily by the action of Coriolis forces

of the follower is less, say 12 Aft, so that the Coriolis torque is

(O - - -
rj)

which is different from the Coriolis torque of the driver. This apparent

discrepancy is removed by considering that there are some other contribu-

tions to the torques. At 0, fluid of tangential velocity ftr from the driver

is received by the follower of which the tangential speed is less by an amount
Aft r<>. The loss in tangential momentum per second thus is Aft r Am/2

7

which is equal to the force exerted by the stream tube of P on the follower,

in the direction of rotation. The moment arm of this force is ro giving
a moment Aftr0Aw/7\ Consequently the total amount on the follower
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is the sum of the Coriolis torque and the torque caused by the change in

momentum:

Aft -

rj] (147)

Similarly at the inlet point / slow water from the follower enters the

driver which rotates faster, thus causing a retarding torque on the driver

of AS2r/Aw/7
1

,
which in conjunction with the driver's Coriolis torque gives

the same expression (147) for the total retarding torque on the driver.

The torque (147) is that due to a single stream tube only. The torque of

the complete device is found by still another integration, in which ro, r/,

and T are variables, since the period of circulation

will be different for different stream lines. However,

Eq. (147) ran be interpreted as the total torque if we
consider Am to be the mass of water in the entire

doughnut, TO and r/ the radii belonging to the center

stream line, and T some average period of circulation.

So far we have considered only uniform or steady-

state operation of the coupling. To investigate its

damping characteristics both halves of it arc now

given non-uniform motions. Let the driver speed
bo S2 4- <pd, and let the follower speed be S2 A 2 -f- <?/,

where the <f> arc variable with time. If these varia-

tions are sufficiently rapid, the consequent changes in

centrifugal force are so fast that the velocity of the

fluid circulation is not affected. Then we can apply
the above steady-state analysis, merely substituting
the variable angular speeds for the constant ones.

Thus the torque on the follower (in the direction of rotation) is

I66a.

(S2
- Ai2 (Afl

-

which is seen to be the sum of the steady-state torque (147) plus the variable

part:

Mv.r
= A

[^5 - f/r}\ (147a)

Tn the same manner the torque on the driver, in a direction opposite to

that of the rotation, is written as the sum of the Coriolis and momentum
transfer components. The answer again is (147) plus the variable part

(147a). It is noted that the torque (147a) is proportional to the angular

speeds and thus acts as a damping torque. It may be a positive or a nega-

tive damping torque, on account of the second term in the bracket of (147a),

but in all actual installations it is found to be a positive damping torque.
See further problems 122 and 123 on page 405.

Another means of correcting a troublesome condition of tor-

sional vibration is the tuned centrifugal pendulum mentioned on

page 119. Since there is no energy loss in the device, it cannot

be considered a "
damper,

"
but, just as the Frahm absorber of
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page 112, it acts like an infinite mass for the frequency to which it

is tuned, thus enforcing a node at the point of its application.

For other frequencies it acts like a mass which is not infinitely

large and thus does not affect the situation particularly. The

proof of this statement is as follows:

Let the shaft in Fig. IGGa rotate about its center with an

average angular speed on which is superposed a rotational

oscillation a = a Q sin ut = oi sin ntit, the number n being the

"order" of the vibration. The (mathematical) pendulum of

length r and mass m swings about A, with the small angle

<p
=

<PQ sin nfit relative to the shaft. The angle AOB denoted

by \l/ satisfies \f/
=

<pr/(R + ?*).

Considering the relative motion of the system with respect

to a uniformly rotating coordinate system ft, the Coriolis forces

can be neglected for small oscillations. The tangential compo-
nent of the centrifugal force (i.e., normal to AB) is

jf? + r) sin (^
-

^) = -mWR sin <p

and the tangential displacement of B with respect to the coordi-

nate system is a(R + r) + <pr. Thus the equation of motion is

(R + r)<i + rip
= -WR<p

which, after substitution of the harmonic values for a and ^,

yields

The tension in the pendulum string mW(R + r) furnishes the

only reaction from the pendulum on the shaft and with the

moment arm OP = R<p gives the reaction torque

M = mW(R + r)R<p - mW(R + r)It--~ a sin nilt

After substitution of (I48a), this becomes

^

If instead of the pendulum a moment of inertia 7oquiv had been

attached to the shaft, its reaction torque to an acceleration d

would have been a/equiv, from which follows that the undamped
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pendulum for small oscillations is completely equivalent to a

flywheel of inertia:

m(R + r)
2

7 .
_

-CQUIV (I486)

The numerator of this expression is the moment of inertia

of the pendulum when clamped to the shaft; the denominator is

FIG. 1666. The "
bifihir

"
or Sarassin-ChiJton type of tuned centrifugal pendulum

a multiplication factor. Thus a "tuned" pendulum

(148c)
2

K
ri1 =

r

is equivalent to an infinite moment of inertia; an "overtuned"

pendulum (R/r > n 2
) represents a (large) positive inertia, while

an ' ' undertuned ' '

pendulum
behaves like a large negative
moment of inertia (see Fig. 38,

page 59).

The tuning formula (148c)

carries within itself a difficult

problem of design. The order

of an objectionable harmonic

vibration in a multicylinder

engine is at least n 3, usually

higher. The radial distance R
FIG. l6Gc. The roller or Salomon ,. ., i i .j

type of centrifugal pendulum.
1S limited by space considera-

tions
;
in a radial aircraft engine,

for instance, where the pendulum is conveniently located in the

crank counterweight, the maximum distance R is of the order of 5

in. Thus, by (148c), the pendulum length r is about J^ in. for

n =
3, and considerably shorter for higher orders of vibration.
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Since the pendulum must have appreciable mass, the construction

indicated in Fig. 776 is impossible. Two solutions of the problem
have been found; they are sho\vn in Figs. 1666 and c, both located

in the counterweight of a crank shaft.

The first one, known as the "bifilar" type, was invented by
Sarazin in France and, independently, by Chilian in the United

States. The pendulum is a large U-shaped weight, fitting loosely

around the crank-shaft overhang. That overhang carries two
circular holes of diameter d\. The U-shaped loose counterweight
has holes of the same diameter. The two pieces are joined by two

pins of a diameter d2 ,
smaller than that of the holes. It is

now possible for the pendulum to roll without slipping on the

pin's, and in doing this the center of the hole in the pendulum
describes a small circle about the center of the crank-shaft hole

as a center. Thus the radius of this circular path is (d\ d 2),

and it is seen that all points of the U-pendulum describe similar

paths. The pendulum swings parallel to itself in a circular path
of radius di d%. Thus in Eq. (I48c), R + r is the distance

from the shaft center to the center of gravity of the pendulum,
while r = di d^. Thus it is possible to make r very small and

still retain a large mass.

The other construction is due to Salomon in France and con-

sists of a cylinder of radius r2 , rolling or sliding in a cylindrical

cavity of radius r\ (Fig. KMc).

In case the cylinder slides without rotation, all its points

describe similar paths of radius r\ r2 ;
this quantity thus is

the equivalent pendulum length r. For a rolling cylinder the

swing is slower, so that r is greater than TI r2 . Since the mass

involved in this construction is much smaller than that of

Fig. 1666, the amplitude through which it must swing for cor-

rect operation is much greater, which creates some additional

difficulties.

A single pendulum arranged as a loose counterweight exerts a

torque on the crank shaft by virtue of the fact that the force

exerted on its guide does not pass through the center (Fig. 1 66a)

but is directed along BA. Thus the tangential component of

the force along BA by its moment arm R furnishes the desired

reaction torque, but in addition to that torque the pendulum
exerts a force on the crank shaft. This alternating force is

entirely unbalanced and can cause a linear vibration of the

center 0. If two pendulums were installed, one in the counter-



276 MULTICYLINDER ENGINES

weight and another one diametrically opposite, i.e., at the crank

pin, these two pendulums would enforce nodes at the two points

of their application. In case the shaft excitation were purely

torsional, the two pendulums would acquire equal and opposite

amplitudes, their reactions forming a pure torque. If, however,
the shaft excitation were a purely lateral force, the two pendulums
would swing in phase, furnishing a pure force as a reaction. In

the case of mixed excitation, the two pendulums would assume

different amplitudes such that the sum of their reactions would

be a force and a torque, equal and opposite to the excitation.

The argument in connection with Fig. 166a makes it clear that

the pendulum can furnish a reaction force only in a direction

perpendicular to the radius OA, while along that radial direction

it simply acts like a dead body. Thus the two pendulums just

discussed cannot prevent motion along the line OA. In order

to prevent all motion in the plane of the crank throw when the

excitation consists of a torque, a lateral force, and a radial force,

three pendulums are necessary, located 120 deg. apart for con-

venience. They will respond with three different amplitudes

causing three reactions of which the sum is equal and opposite
to the sum of the excitations.

The application of a centrifugal pendulum to a multicylinder

engine requires some calculations, which will be discussed with

reference to the example of Fig. 143. It was seen on page 259

that the only dangerous critical is that of order 3, occurring at

85 r.p.m. We wish to investigate the possibility of applying a

centrifugal pendulum of order 3 to the end cylinder Ii of the

installation. If this pendulum works properly, it enforces a node

there, and therefore we must now calculate what torque is neces-

sary at /i to ensure that. The torque so found must be supplied

by the pendulum and determines its necessary size.

The introduction of the pendulum removes the resonance from the

85-r.p.m. speed, so that we have to deal with a forced vibration rather than

a free one. The gas torques at the individual cylinders play an important

part, and, in this case of the major order 3, they all have the same phase
with respect to the motion. The magnitude of this torque, taken from the

table on page 259, is 10,200 ft. lb., or 0.122 X 10 6 in. Ib. We proceed through
the Holzer table in the usual manner, except that now this gas torque at

each cylinder must be added to the inertia torque of that cylinder.

Another change in the Holzer table from the previous practice is that

it is no longer necessary to guess at the frequency co because that frequency
is known, being the third harmonic of the r.p.m. In our particular case
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for 85 r.p.m., we have co
2 = 711, as in the third trial on page 240. It is no

longer permissible to assume an end amplitude of unity, as was done in

the usual form of the Holzer table; for, the motion being a forced vibration,

the amplitudes are definite quantities that are determined by the gas torques.

We therefore assume an end amplitude x and proceed through the table

with this unknown x, which is determined at the end of the calculation by
the necessary condition of zero motion at the damper end of the engine.

In order to arrive at the damper last, we start the Holzer table from the

end opposite that from which we started in the process described on page

240 and proceed in the opposite direction so that we finish at cylinder 1 at

which the damper is located. The table is shown on page 277. It is seen

that a few additional columns appear, viz., that of the gas torque and that

of the sum of the inertia and gas torque at each cylinder. Beyond this, the

table docs not differ essentially from the familiar form. It is noticed that

at the end of the table the amplitude at cylinder 1 conies out to be +0.00268

0.28282. This quantity must be equal to zero if the damper works

correctly, and from it we find x = 0.0095 radian. The last entry in the

table shows the remainder torque, being equal to (0721 0.35z)10
6 =

724,000 in. Ib. This is the torque that is necessary to enforce a node at

cylinder 1 and consequently is the torque to be supplied by the pendulum.
If R 15 in., the pendulum length by Eq. (148c) must be r = 1.667 in.

At 85 r.p.m. the centrifugal field at 15 in. radius is WR 3.08 g. If we

design the pendulum to swing 30 deg. each way, the lateral component
of force is half the centrifugal force, or 1.54 times the weight of the pendu-
lum. The moment is this force times 15 in., or 23.1 IF in.-lb. Setting

this equal to the required torque of 724,000 in.-lb. gives the prohibitive

pendulum weight of 31,000 Ib. The principal reason for the fact that the

device is not practical for this application is the low speed. Since the

centrifugal force grows with the square of the speed, the required pendulum
weight is inversely proportional to that quantity, everything else being

equal. For engines of high and medium speed the pendulum size becomes
reasonable.

A few remarks remain to be made in connection with the above Holzer

table. First it is noticed that the final torque of the pendulum, 719,000

in.-lb., is practically equal to the sum of the six gas torques on the six

cylinders. The reason for this becomes clear by comparing the relative

values of columns 5 and 6, i.e., by comparing the inertia torque to the gas

torque of each cylinder. On account of the very low speed the gas torques
are overwhelming, so that the pendulum must furnish the countertorque
to their sum. For higher speed machines the inertia torques become of the
same order as the gas torques and then the above simple rule no longer
obtains.

Another observation is that only for a major order of disturbance are

the gas torques of the various cylinders in phase with each other (Fig. 157d),
while for all minor orders (Figs. 157a, 6, c) there are phase angles. In
these cases it is necessary to perform the Holzer calculation twice, once for

gas torques found by the vertical projections of the vectors of Fig. 157
and once again for their horizontal projections. At the conclusion of these

computations two remainder torques are found, one for the components of
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gas torque in phase with those of the first cylinder and the other one for the

components at quadrature. The total torque to be furnished by the pendu-
lum is the Pythagorean sum of these two (Fig. 6, page 6).

In the special case of the third diagram of Fig. 157, for order 1}, etc.,

the phase angles can be accounted for by changes in sign of the gas torques,
and a single calculation suffices.

Formula (1486) shows that by proper tuning of the pendulum it can be
made to behave like a moment of inertia of almost any magnitude, large or

small, positive or negative. This property has been used in a number of

practical applications; pendulums have been built of orders different from
that of the excitation, so that they acted as flywheels of an inertia different

from infinity. Each different pendulum tuning gives the system a different

set of natural frequencies for each order of excitation. If the system con-

tains several pendulums of different tunings, the number of possibilities

becomes overwhelmingly large. In order to obtain a bird's-eye view over

all these relations, preliminary to designing the pendulums, we can proceed
as follows:

1. Make a plot of "equivalent moment of inertia of pendulum-damper'

flywheel" plotted vertically against ''natural frequency" horizontally.

This can be done by a number of Holzer tables without gas torque. Take
a frequency and make a Holzer table, starting at the end away from the

damper. Proceed to the damper end. Then, arbitrarily, give the damper
moment of inertia such a value as to make the Holzer table come out with a

zero remainder. Plot that moment of inertia against the frequency. Each
Holzer table gives a point on the graph; no trials or other fumbling. The

frequency range calculated for is the one where trouble might be expected
from the engine excitation. This graph looks like a resonance diagram
with many branches and asymptotes. The curve intersects the horizontal

line at the natural frequencies of the system without pendulum dampers;
the curve goes to infinity at the natural frequencies of the system with

perfectly tuned pendulum dampers.
2. Two other useful curves can be drawn into the same diagram without

further calculations:

a. The angular motion at damper hub (based on unit motion at the other

end of the engine) vs. natural frequency.

b. The torque reaction of the pendulum damper (the shaft torque in the

last shaft section) vs. the natural frequency. These points can be taken

directly from the Holzer tables.

Curve (2o) goes through zero where the moment of inertia curve becomes

infinite. Curve (26) goes to zero where the moment of inertia curve becomes

zero.

3. The diagram thus constructed gives a bird's-eye view of the system
for any damper tuning that is desired. At this stage a preliminary decision

has to be made as to number of pendulums and their sizes. With these

values fixed, different pin diameters (different tunings) for the same weight

can be investigated as follows:

a. Assume certain tunings, and find the 7equiv of all dampers combined

for a particular order of vibration n by means of Eq. (1486).

6. Find the natural frequencies of the system for this particular order n
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by inserting this equivalent inertia in the diagram. Also, from the diagram
find the damper torque reaction and the damper hub motion, both per

degree at the free end for this particular order. Find the critical speeds
for this order arid for any other orders that may be troublesome.

c. Repeat (a) and (6) for a number of tunings arid choose from among
them one set, for which all important criticals are outside the running range.

d. With this tuning perform a full set of forced vibration calculations,

including the influence of gas torque, by means of Holzer tables, such as

are shown on page 277.

The statement was made that the relative danger of minor

critical speeds could be affected by a change in the firing order.

The reader can easily verify this fact by drawing the star dia-

grams of Fig. 157 or 158 for two different firing orders and observ-

ing that the resultant vector is the same only for integer order

critical speed and not for half-integer orders. This can be seen

particularly well with the "symmetrical" engine of Fig. 159.

Consider the major critical of order 3. There are three oscil-

lations per revolution, or one oscillation per 120-deg. rotation,

i.e., one oscillation per firing. Figure 159 shows that during a

clockwise (+) vibrational velocity of 1, 2, 3, the disks 4, 5, 6

move in a counterclockwise ( ) direction. Just after the firing

of a cylinder, that cylinder exerts a particularly heavy torque
on the crank shaft. Assume cylinder 1 to fire first while disk

1 has a clockwise (+) velocity. Cylinder 1 then does work on

the motion. When the next firing occurs, 1, 2, 3 again have a

+ velocity and 4, 5, 6 a counterclockwise or velocity. Sup-

pose that the next cylinder to fire is 5. It does negative work,
because 5 has a negative angular speed. After six firings, the

total work done is positive for 1, 2, 3 and negative for 4, 5, 6.

It is seen that a change in the firing order does not affect this

result.

Now consider the l)^-order minor critical speed, i.e., one-half

vibration per firing. When cylinder 1 fires, let 1, 2, 3 have a

(+) velocity and 4, 5, 6 a ( ) velocity. At the next firing this

condition is reversed, 1
, 2, 3 are moving counterclockwise, because

one-half vibration period has passed. If the next cylinder to

fire is 5, it does positive work; but if it is 2, it does negative work.

If cylinder 5 is chosen, 2 gets its turn to fire after one revolution,

i.e., after one and one-half vibrations and then does positive work.

We see that the sign of the work done by cylinder 2 depends on

whether it is made to fire immediately after 1 or one revolution

later.
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Of the four possible firing orders of Fig. 159 with the crank

shaft of Fig. 155, the order

153624
puts a maximum amount of work into the 1^-order vibration,

because the firing always occurs when the corresponding disk is

moving in a positive (clockwise) sense. For the three other

possibilities we have

154623 123654 124653
where the signs indicate positive or negative work done. The
reader should verify these statements carefully. As an example

verify that in the 8-cylinder engine of Problem 91, page 283, when

vibrating in a mode such as shown in Fig. 159 in the order % or

4j/, etc., the best possible firing order is 1246875 3, and that

the worst possible firing order is 17438256. What are the

best and the worst firing orders for order 1J/2?

This changing of the firing order acts as a shift of severity

rather than as a cure. If one particular minor critical speed is

made less dangerous by such a change, the result is obtained at

the expense of another critical speed becoming more serious. If

this other speed is outside the running range, our object is

attained; but if the machine is required to operate over a very
wide speed range, it may not be possible to avoid danger by
changing the firing order. Then a damper is practically the only
resource left to us.

Problems

81. A single-cylinder engine weighs complete 300 lb.; its reciprocating

weight is 10 lb., and the rotating weight is 5 lb. The stroke 2r = 5 in.,

and the speed is 500 r.p.m.

a. If the engine is mounted floating on very weak springs, what is the

amplitude of vertical vibration of the engine?
b. If the engine is mounted solidly on a solid foundation, what is the

alternating force amplitude transmitted?

Assume the connecting rod to be infinitely long.

82. Construct the piston-acceleration curve (Fig. 132) for an engine
with a very short connecting rod, l/r 3.

83. Sketch one full cycle of the inertia-torque variation [Eq. (138)] for

an engine with l/r
= 3.

84. Prove the four propositions on inertia balance stated on page 227.

Find also the balance properties of a three-cylinder (0-120-240) engine.
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85. A 4-cylindcr engine has all 4 cylinders in one plane, on a crank shaft

of 2 cranks in line, 90 deg apart (Fig. 166d). Find:

a. The amount of necessary counterweight at A or A 1 in order to reduce

the primary inertia force of one crank and pair of pistons to a force of con-

stant magnitude rotating in a direction opposite to that of the crank shaft.

Fiu.

b. The secondary inertia force of one crank.

c. The necessary counterweight and its angular location at B and C (gears

rotating at 1:1 speed opposite to the crank shaft) in order to balance for

primary forces and moments.
86. Figure IfiOr shows a "wobble-plate" engine. A number of stationary

cylinders arc1

equally spaced angularly around tho central shaft. By prop-

Fio. IGGe.

erly proportioning the inertia of the piston and piston rods in relation to

the inertia of the wobble plate, the engine can be balanced perfectly. For

purposes of this analysis the pistons and rods may be assumed to have a

uniformly distributed mass around the axis of rotation. The wobble plate

is assumed to be a disk of total weight W <**, uniformly distributed over its

circular area of radius Rdisk. The total weight of all pistons and connecting
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rods is TFp a
, supposedly concentrated on a circle of radius #, from the

x-axis. Find the relation between these variables for which perfect balance

is accomplished.
87. The torsional amplitudes of any engine at slow speeds are very large

but the crank shaft stresses associated with it are small. In order to visual-

ize this condition, consider a two-disk system I\
}
7 2 ,

connected by a shaft k,

with a torque T Q sin ut acting on disk /i only. Calculate and plot:

a. The amplitude of the engine /i as a function of frequency.

b. The shaft torque as a function of frequency.

88. Find the first natural frequency of a four-cylinder oil engine driving

an electric generator of the following characteristics:

/i, 2. 3, 4 of the cranks, pistons, etc. = 50 Ib. in sec. 2 each

/s of flywheel-generator assembly = 1,000 Ib. in sec. 2

fc l
= k 2

= ki = ki = 10 7 in. Ib./rad.

89. a. Sketch the steam-torque curve of a double-acting steam cylinder

of which the inlet valve is open for one-fourth revolution after the dead-

center position. During the next quarter revolution the steam expands

according to pv = constant. The engine works without compression.
b. Sketch the combined torque curve of an engine made up of three such

cylinders on a 120, 240, 360 deg. crank shaft and also the combined torque
curve of a six-cylinder Diesel engine based on Fig. 148a. Compare the two.

90. Draw the four fundamental star diagrams (Figs. 157 and 158) for the

engine Fig. 159, for each of the four possible firing orders listed on page 281.

91. Discuss the star diagrams for the eight-cylinder engine (0, 180, 90,

270, 270, 90, 180, 0) without considering the elastic curve (Figs. 155 and 156).

How many fundamental diagrams are there, and to which orders of vibration

do they belong?
92. The turbine ship drive of Fig. 147, page 247, is excited by the four-

blacled propeller only, the intensity of the exciting torque being 0.075 times

the mean torque. Assume a propeller damping corresponding to twice the

slope of the diagram, Fig. 160, and assume that diagram to be a parabola.

Neglect damping in other parts of the installation.

a. Calculate the amplitude at resonance at the propeller.

b. From the Holzer calculations of pages 246 and 247 find the resonant

torque amplitudes in the shafts 2-3 and 3-4.

c. At what propeller r.p.m. does this critical condition occur?

93. Problem 92 determines the resonant amplitude of the ship drive, Fig.

147. The resonance curve about that critical condition is found by calcu-

lating the undamped resonance curve and sketching in the damped one.

Points on the undamped curve are determined by calculating a Holzer

table for neighboring frequencies and by interpreting the "remainder

torque" of these tables as a forced propeller-exciting torque. The mean

propeller torque is 6,300,000 in. Ib. at the rated speed of 90 r.p.m. and is

proportional to the square of the speed. Find the amplitudes of forced

vibration at the propeller for o>
2 = 145 and o>

2 = 215, and from the results

sketch the resonance curve.

94. A recent aircraft engine consists of two six-cylinder-in-line blocks

arranged parallel to each other and coupled to each other at each end by
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three identical spur gears, so that the two blocks run at equal speeds in

the same direction. One set of natural modes has nodes at both ends of

each block.

a. What modification has to be made in the first line of the ordinary

Holzer table to accommodate the node at one end?

6. What is the Holzer criterion at the other end?

c. What is the 9 in Lewis's method (page 244)?

d. Calculate the lowest natural frequency of a system of six equal inertias

/, coupled to each other and to two solid walls at either end by seven identical

shafts of stiffness k.

96. A variation (due to Chilton) of the damper of Fig. 166a consists of a

steel block of weight W with a hardened cylindrical bottom that can roll

on a hard cylindrical guide (Fig. 166/). The two

radii of curvature Ri and R z arc large and their

difference A/ = R Ri is small. The distance

between the center of gravity G and the contact point
is

,
and the radius of gyration about G is p.

a. Calculate the natural frequency of small rolling

oscillations in a gravity field g.

b. The assembly rotates with speed 12 about a

center 0; the distance OG /*<?, arid gravity is

neglected. Calculate the frequency of small rolling

oscillations.

96. Prove the results (1466) and (146d) of page 267

on the operation of the viscous Lanchestcr damper.
97. An eight-cylinder, four-cycle engine has a firing

1GO/.

order 17468253 and crank angles 0, 90, 270, 180, 180, 270, 90, deg.

a. Sketch the vector diagrams for the various orders of vibration without

considering the magnitude of the vectors.

b. If at a certain mode the Holzer amplitudes are as follows:

No. 1, 1.000; No. 2, 0.900; No. 3, 0.800; etc.

down to No. 8, 0.300, and, if the 3^ order harmonic torque is 100,000 in. lb.,

find the work input per cycle at the resonance of this order if cylinder No. 1

vibrates 1 deg.

c. If the above mode occurs with a value a?
2 = 2,000 in the Holzer table,

what is the critical r.p.m. of order 3K?
d. What is the most dangerous r.p.m. of this engine?

c. What is the state of balance of this engine?

98. An idealized single-acting steam engine with constant pressure during
the entire stroke (no cutoff) and an infinitely long connecting rod has a

torque-angle diagram consisting of 180 deg. of sine wave, then 180 deg. of

zero torque, etc; the torque never becomes negative. Find the harmonic

torque components by a Fourier analysis, in terms of the mean torque



CHAPTER VI

ROTATING MACHINERY

46. Critical Speeds. Consider a disk of mass m on a shaft

running at constant angular speed co in two bearings, as shown

in Fig. 167. Let the center of gravity of the disk be at a radial

distance e (= eccentricity) from the center of the shaft. If

the disk were revolving about the shaft center line, there would

be a rotating centrifugal force raco
2
e acting on the disk. Such a

rotating force can be resolved into its horizontal and vertical

components and thus is seen to be equivalent to the sum of a

vertical and a horizontal

vibratory force of the same

amplitude wco 2
e. Hence we ^ u>

expect the disk to execute i vf P
Y//A **

simultaneous vertical and

horizontal vibrations, and in

particular we expect the disk T? 1P7 7r . ,
,

... ...
1 r JIG. 1G7. Unbalanced rotating disk.

to vibrate violently when

these impulses are in resonance with the natural frequency, i.e.,

when the angular speed co of the shaft coincides with the natural

frequency con of the non-rotating disk on its shaft elasticity.

This conclusion is not restricted to a single disk symmetrically
mounted on rigid bearings but holds for more complicated systems
as well. The speeds at which such violent vibrations occur are

known as "critical speeds." In general the critical speeds co

of any circular shaft with several disks running in two or more

rigid bearings coincide with the natural frequencies of vibration

of the non-rotating shaft on its bearings. The critical speeds

can be calculated from the influence numbers in the manner

discussed in Chap. IV, and the determination of the influence

numbers is a problem in the strength of materials.

The same result can be obtained also in a slightly different

manner as follows. Figure 168 is drawn in the plane AA of

Fig. 167 perpendicular to the shaft. The origin of the x-y

coordinate system is taken in the point B which is the intersec-

285
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tion with the plane AA of the center line connecting the two bear-

ings. In the whirling unbalanced shaft there are three points of

importance:
B = the center of the Bearings

S = the center of the Shaft (at the

disk)

G the center of Gravity (of the

, ^ t
disk)

6

> x In Fig. 168 these three points have

n . been drawn in a straight line BSG,
FIG. 108. Cross section

. . j 4. 4. t i i vAA of Fig. 167 where B = which is supposed to rotate about B
bearing center, S = shaft cen- w^ t^e angU lar velocity CO of the disk,
tor, and G = gravity center.

It will be seen that this apparently arbi-

trary assumption is the only one for which all forces are in

equilibrium.

Further let

e = constant distance between S and G (eccentricity).

r = BS the deflection of the shaft at the disk.

If the effect of gravity be omitted, there are two forces acting

on the disk: first, the elastic pull of the shaft which tends to

straighten the shaft or to pull S toward B, and, second, the

centrifugal force on the center of gravity (7, which point is

traveling in a circle of radius (r + e). The first force depends
on the bending stiffness of the shaft and is proportional to its

deflection; thus we write for it kr (toward the center). The

centrifugal force is mco 2
(r + e) directed from the center outward.

For a steady whirling motion these two forces must be in

equilibrium:

kr = mwV + mrfe (149o)

and solving for the shaft deflection r,

(-T=

This formula coincides with Eq. (30) on page 61 for the case of a

simple fc-ra-system excited by a force proportional to the square
of the frequency. Hence Eq. (1496) may be represented also by
the diagram of Fig. 40, which is shown again in Fig. 169. Taking
the points S and G at the fixed distance e apart, the location of B
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with respect to these two points at each frequency is the projection
of the ordinate of the curve on the vertical axis. It is seen

immediately that for very slow rotations (co
^ 0) the radius of

whirl BS is practically zero; at the critical speed, r = BS becomes

infinite, while for very large frequencies B coincides with G.

Thus at very high speeds the center of gravity remains at rest,

which can be easily understood physically, since, if it were not so,

the inertia force would become

very (infinitely) great.

Equation (149a) shows that

for a perfectly balanced shaft

(e
=

0), the spring force kr

and the centrifugal force raorr

are in equilibrium. Since both

are proportional to the deflec-

tion, the shaft is in a state of

indifferent equilibrium at reso-

nance. It can rotate perma-

nently with any arbitrary

amount of bend in it. Whereas

below the critical speed the

shaft offered some elastic resist-

ance to a sidewise force, this is no longer true at the critical speed.

The smallest possible sidewise force causes the deflection to

increase indefinitely.

Another interesting conclusion that can be drawn from Fig. 169

is that, for speeds below the critical, G lies farther away from the

center B than S does, whereas, for speeds above the critical, S lies

farther outside. The points S and G are on the same side of B
at all speeds. Thus below the critical speed the "heavy side

flies out," whereas above the critical speed the "light side flies

out/'

The inertia force or centrifugal force is proportional to the

eccentricity of (7, which is r + e] and the elastic force is propor-

tional to the eccentricity of S, which is r. The proportionality

constants are mco 2 and k, respectively. For speeds below the

critical, war is smaller than ft, so that r + e must be larger than

r since the two forces are in equilibrium. At the critical speed,

r + e is equal to r, which necessitates that r be infinitely large.

Above the critical speed, r + e is smaller than r, which makes r

negative .

FIG. 169. The relative location of S, G t

and B for various speeds.
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It is difficult to understand why the shaft, when it is accelerated

gradually, should suddenly reverse the relative positions of the

three points B, S, and G at the critical speed. In fact the above

analysis states merely that at a given constant speed the con-

figuration of the three points, as determined by Fig. 169, is the

only one at which equilibrium exists between the two forces.

Whether that equilibrium is stable or unstable, we do not know
as yet. It can be shown that for certain types of friction the

equilibrium is stable below as well as above the critical speed.

The stability above the critical speed is due to the Coriolis acceleration

which is set up as soon as the center of gravity of the disk moves radially

away from the center B. Then G is accelerated sidewise and ultimately

driven to the other side of B, destroying the collinearity of B, S, and G during
the process. If this sidewise escape is prevented, i.e., if the collinearity of

the three points is enforced, the equilibrium above the critical speed is

indeed unstable.

T n p The theory leading to Fig. 169 applies also

to the system of Fig. 170 where the mass m is

constrained to move without friction along

a straight wire which in turn rotates with

speed co. When u =
0, the spring is not

stretched and the equilibrium position of the

mass is at a distance c from the vertical-shaft

center. With increasing co the mass will move
more and more toward P

t
and just below the

. critical speed it will rest against P. Above the

j f-|
critical speed the equilibrium position of

the mass is on the other side (the Q-side) of

S
"

the vertical shaft, so that the centrifugal force

FIG. 170. Rotating wire toward Q is in equilibrium with the spring
PQ along which the mass m

f t d p d b th compressioncan slide. This system is un- J
.

*

stable above the critical speed.
m the spring. This equilibrium, however, is

unstable, as can be easily verified by displacing

the mass by a small amount from the equilibrium position. Then the

centrifugal force either increases or decreases at a faster rate than the spring

force, with the result that the mass flies either to Q or to P, depending on

the direction of the small initial displacement. In this experiment the

collinearity of the three points B, S, arid G is enforced by the wire, arid

sidewise escape is impossible. While the mass is moving along the wire, the

Coriolis effect is felt only as a sidewise pressure on the wire and this does not

influence the motion. In case the wire were absent, as in our original set-up

of Fig. 167, a radial velocity of the mass would be associated with a sidewise

acceleration (Coriolis) so that the above argument would be no longer valid.

In order to prove the stability of the system of Fig. 167 we have to write

Newton's equations for the disk in the general case, i.e., dropping the

assumption of collinearity. The only assumption we retain is that the disk
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rotates at a uniform speed to about its center S, which is permissible of its

moment of inertia is sufficiently large. In Fig. 171 the distance SG is

constant and equal to e, whereas BS is variable and is denoted by r.

Let the coordinates of S be x and ?/,
then the coordinates XG and yo of

the center of gravity are x + e cos ut and y -f c sin coZ. The only tangible

force acting on the disk is the elastic force kr y

toward B and this force has the components
|

&xand ky along the axes. Newton \sequa- |

tions for the center of gravity G are therefore

mxo = kx and mya = ky

or written out
B

m.r -f- kx ?ttco
2e . cos ut\ ^ r

, FIG. 171. Proof of the

my + ky = m^-c . sin cot)
^ ''

stability of the system of Fig.
167 above the critical speed.

From Chap. II we know that the solution of these equations states that

the motion of S in the x-dircction as well as in the ^-direction is made up of

two parts, a free vibration of frequency <*>
= k/m and a forced vibration of

frequency o>. The two forced vibrations in the x- and ^-directions being
90 deg. out of phase in time as well as in space make up the steady rotation

of Fig. 168 (see Problem 27, page 101). If the usual type of friction exists,

the free vibrations will be damped out after a time, so that indeed the

circular motion with amplitude (1496) is reached ultimately. The "free

vibration" which gradually dies down expresses the sidewisc escape from

collinearity as before discussed. However, there are types of friction for

which the whirl above the critical speed is unstable, as discussed on page 362.

Until now the bearings of the machine have been assumed

rigid. By making them flexible the argument already given
needs no change whatever, provided the flexibility of the bearings
is the same in all directions. The meaning of

A:,
as before, is the

number of pounds to be applied at the disk in order to deflect

it 1 in. With flexible bearings, k is numerically smaller than with

rigid bearings, but that makes no difference in the behavior of

the shaft other than somewhat lowering its critical speed.

This situation is slightly altered if the bearings have different

flexibility in the horizontal and vertical directions. Usually
with pedestal bearings the horizontal flexibility is greater (k is

smaller) than the vertical flexibility. We merely split the cen-

trifugal force Wco2 into its horizontal and vertical components
raco

2e cos ut and raco
2e sin ut and then investigate the vertical and

horizontal motions separately. In Eqs. (150) this procedure
introduces the difference that k in the ^-equation is not the

same as the k in the ^/-equation. At the frequency coi, the hori-

zontal motion gets into resonance whereas the amplitude of the
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Horizontal Vertical

vertical motion is still small (Fig. 172). The path of the disk

center S is an elongated horizontal ellipse. At a greater speed w 2 ,

there is vertical resonance and

the path is an elongated vertical

ellipse. Thus there are two

critical speeds and the shaft

can hardly be said to "whirl"

at either of them. Rather the

shaft center vibrates almost in
r"==ta

a straight line at either critical- speed.
The generalization of this

FIG. 172. Resonance diagram for a theory to shafts With many
shaft on bearings which are stiffer verti- disks on more than two bearings
cally than they are horizontally. . , ,.~, .,.,.. . ,

with different flexibilities in the

two principal directions is obvious. In general, there will be

twice as many critical speeds as there are disks.

46a. Holzer's Method for Flexural Critical Speeds. The usual

method for determining the natural frequencies or critical speeds

of shafts or beams in bending is the "iteration" method of

Stodola, either in its graphical form (page 197) or its numerical

form (page 203). Recently another manner of arriving at the

result was suggested by several authors; this method can be

properly called an extension of the Holzer method, familiar in

torsional calculations, to flexural vibra-

The beam in question is firsttion.

M n

5>

n> Yn

FIG. 172a.

divided into a convenient number of

sections 1, 2, 3, etc., just as in Fig.

123 (page 197). The mass of each sec-

tion is calculated, divided into halves,

and these halves concentrated at the

two ends of each section. Thus
the beam is weightless between cuts

and at each cut there is a concentrated mass equal to half

the sum of the masses of the two adjacent sections. As in

the Holzer method, we assume a frequency and proceed from

section to section along the beam. In the torsional problem

(governed by a second-order differential equation) there are two

quantities of importance at each cut : the angle (p and the twisting

moment, proportional to d<p/dx (page 173). In the flexural

problem (governed by a fourth-order equation) there are four
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quantities of importance at each cut: the deflection y, the slope

6 = y
1 = dy/dx y

the bending moment M = Ely", and the shear

force S = dM/dx = Ely'"] and it is necessary to find the rela-

tions between these quantities from one cut to the next. Figure

172a shows the section between the nth cut and the n + 1st

cut, together with the various quantities. The sign of these

quantities is defined as positive as shown in Fig. 172a. It is

noted that the cut is made at and immediately to the left of the

concentrated mass. The mass mn shown in the figure thus equals

half the mass of the section between cut n I and n plus half the

mass of the section between n and n + 1. Then we can write

the following four equations for the section of length I:

Sn+ i
= S r( + mnco

2
?/n (a)

TV/T I Q 7 fh\
rj-f-1

-LV.l.n ~T~ ^n-j-l*' V^/y

TWT 72 Q .73

(d)

of which (a) and (b) arc the equilibrium equations of the section,

subject to the inertia force or centrifugal force mnco
2
7/n at the

chosen frequency or. The equations (c) and (d) are the deforma-

tion equations of the section, considered to be a cantilever built

in at the left at the proper angle On ,
and deformed by the force

Sn+i and the moment Mn+ i at its right-hand end.

The equations (a) to (d) allow us to calculate ?/, 0, M, and S at

the right-hand end of a section where they are known at the

left-hand end. This can be done with a Holzer table, similar

to the familiar one in torsional vibration, but much more elabo-

rate, containing 17 columns instead of 7.

If we start from a simply supported end, where y = and

M = Ely" =
0, the slope 6 and the shear force S are unknown.

In the torsional case only the amplitude was unknown, which

was arbitrarily assumed to be 1.000. Here we assume B = 1.000

and S = So- If we have a single span, by the Holzer table we
find values for T/, 6, M, and S at the other end bearing, all in

terms of the symbol S and the assumed numerical value of w 2

and the assumed slope 1.000. At the end bearing we must have

y =
0, and from this condition S is calculated numerically and

substituted in. Then we find a definite numerical value for the

bending moment M at the end bearing, which is the counterpart
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of Holzer's
" remainder torque

"
in the torsional case. Repeat-

ing the calculation a number of times for different values of co
2

and plotting the end moment against co
2 leads to a curve like

Fig. 144 on page 239, and the natural frequencies are the zero

points of that curve.

The case of a multispan beam is essentially the same. The
start is as usual and upon arriving at the first intermediate bear-

ing we set y = and solve for So. But there is a new unknown
reaction and consequently a new shear force Si at the intermedi-

ate bearing. Thus, between the first and second intermediate

bearings the calculation proceeds as before; only with the

unknown symbol Si instead of S in the previous span.

Suppose the beam starts with an overhang instead of a bearing-

supported end. Then M = S = at that end, while y and

are unknown. We start with y = 1.000 and do and the

calculation is the same as before. For a built-in end y = 6 = 0,

and we start with M = 1.000 and S = S .

Whereas the calculation for the torsional problem can be

carried out with three decimal places on the slide rule, this is no

longer feasible for the more complicated case of flexure. Eight

or more decimal places are necessary to arrive at a final result

accurate to three places, so that calculating machines become

essential. This method is being used by the General Electric

Company for the calculation of their turbogenerator critical

speeds by means of the punched-card type of calculating machine,

originally developed for bookkeeping purposes by the Interna-

tional Business Machines Corporation.

47. Balancing of Solid Rotors. The disk of Fig. 167, of which

the center of gravity lies at a distance of e in. from the shaft

center, will vibrate and also will cause rotating forces to be

transmitted to the bearings. The vibration and the bearing
forces can be made to disappear by attaching a small weight
to the "light side" of the disk so as to bring its center of gravity
G in coincidence with the shaft center 8. If the original eccen-

tricity is e, the disk mass M, and the correction mass m, applied at

a radial distance r from S, then

mr = eM or m = -M
r

The "unbalance'' mr of the disk is usually measured in "inch

It is, of course, correct to double the balance weight
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for a given disk if the double weight is applied at half the original

radius, since the centrifugal force is proportional to the product
mr.

The determination of the location of the correction is a prob-

lem of statics. The shaft can be placed on two parallel hori-

zontal rails, for example, then the heavy spot will roll down,
and a correction weight can be attached tentatively to the top
side of the disk. The amount of this weight is then varied until

the disk is in indifferent equilibrium, i.e., shows no tendency to

roll when placed in any position. In order to minimize the errors

of such a procedure (or as is sometimes said, in order to increase

the sensitivity of the balancing machine), the rails must be made
of hard steel and must be _ . ^
firmly embedded in heavy

concrete, so that their elastic

deformation under the load is

as small as possible.

The set of horizontal rails is

the simplest static balancing

machine in existence. For

machines in which the rotating

mass is of disk form, i.e., has

no great dimensions along the axis, static balance is the only
balance required to insure quiet operation at all speeds.

In case the rotor is an elongated body, static balance alone is

not sufficient. Figure 173 shows a rotor which is supposed to be

"ideal," i.e., of perfect rotational symmetry, except that two

equal masses, mi and w 2 ,
are attached to two symmetrically

opposite points. The rotor is evidently still in static balance,

since the two masses do not remove the center of gravity from the

shaft center line. When in rotation, the centrifugal forces on

m\ and m 2 form a moment which causes rotating reactions R on

the bearings as indicated. This rotor is said to be statically

balanced but dynamically unbalanced, because this type of unbal-

ance can be detected by a dynamic test only, while on a static

balancing machine the rotor appears to be perfect.

We shall now prove that any unbalance whatever in a rigid

rotor (static, dynamic, or combined) can be corrected by placing

appropriate correction weights in two planes, the end planes

I and II of the rotor usually being chosen on account of their easy

accessibility (Fig. 174). Let the existing unbalance mr consist

FIG. 173. A dynamically unbalanced
rotor causes equal and opposite rotating
reactions on its bearings.
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of 4 in. oz. at one-quarter of the length of the rotor and of 3 in.

oz. in the middle between the planes I and II but turned 90 deg.

with respect to the first unbalance. In determining the correc-

tive masses to be placed in the planes I and II, we shall first find

the corrections for the 4-unit unbalance, then find them for the

3-unit unbalance, and finally add the individual corrections

together. The 4-unit unbalance will cause a 4-unit rotating

centrifugal force, which can be held in static equilibrium by a

3-unit force at I and by a one-unit force at II.
*

Thus we have to

place a 3-unit correction mass in plane I, 180 deg. away from the

original unbalance, and similarly a single-unit correction mass

in plane II, also 180 deg. away from the original unbalance.

3

FIG. 174. The most general unbalance in a rigid rotor can be corrected by
placing one weight in each of two planes I and II.

The 3-unit unbalance is corrected by IJ^-unit masses in each

of the two planes. Thus in total we have to place in plane I a

3-unit mass and a 1^-unit mass, 90 deg. apart. The two centrif-

ugal forces due to these can be added together by the parallelo-

gram of forces so that instead of placing two correction masses

= 3.36 unitsin plane I we insert a single mass of \/(3)
2 +

at an angle a tan- 1 0.5 from the diameter of the 4-unit unbal-

ance. Similarly, the total correction in plane II consists of a

correction mass of \A + (1M)
2 = 1-80 units at an angle

ft
= tan- 1 1.5 from the same diameter.

The process can be extended to a larger number of unbalanced

masses, so that any unbalance in a rigid rotor can be corrected

by a single mass in each of the two balancing planes.

In any given rotor the size and location of the existing unbal-

ance are unknown. They can be determined in a dynamic
balancing machine. A type of construction of such a machine,
used for small and medium-sized rotors, is shown in Fig. 175.

The rotor is put in two bearings which are rigidly attached to a

light table T. This table in turn is supported on springs and can

be made rotatable about either one of two fulcrum axes F l or F 2 ,
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located in the two balancing planes I and II. The rotor is driven

either by a belt or by a flexible shaft, in which cases the driving
motor is separate from the table T, or sometimes is driven by
direct coupling to a small motor rigidly mounted on T. The
latter scheme increases the weight of the table, which is unde-

sirable. The drive is not shown in the figure.

The balancing process is as follows. Make FI a fulcrum by
releasing F 2 and run the rotor until it, together with the table,

comes to resonance on the springs. The maximum oscillating

motion takes place at the right-hand end of jT, ajid its amplitude
is read on a dial indicator. By a series of operations to be

described presently, the location and magnitude of the correction

weight in the plane II are determined. With this weight

inserted, the rotor and table do not vibrate at all. Any unbal-

ance which still may exist in the rotor cannot have a moment
about the fulcrum FI, so that

such unbalance must have a

resultant located in plane I.

Next, fulfrum FI is released

and fulcrum F 2 is tightened,

and the correction weight in

plane I is determined by the

same process, to be described.

After this correction has been

applied, the moments of all centrifugal forces are zero about the

axes through FI and /'Y But, then, by the rules of statics, there

can be no moment about any other axis, and the rotor is balanced

completely.
Now we proceed to discuss how the correction weights can be

determined. Apparently the simplest method is by means of

the phase-angle relation shown in Fig. 426, page 66. If a pencil

or a piece of chalk is held very close to the rotating and whirling

shaft, it will "scribe the heavy spot" when the shaft runs below

its critical speed; it will
"
scribe the light spot" when above

resonance, while exactly at the critical speed it will scribe at a

point which is 90 deg behind the heavy spot. Thus the location

of the unbalance can be found by scribing, and the magnitude
of the correction is then determined by a few trials.

In practice this phase-angle method is very inaccurate, since

near resonance the phase angle varies rapidly with small varia-

tions in speed, whereas at speeds markedly different from the

Fio. 175. Balancing machine for

small and medium size rotors with two
interchangeable fulcrums Fi and ^2.
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critical the amplitudes of the vibration are so small that no

satisfactory scribing can be obtained.

A more reliable method is based on observations of the ampli-
tude only. It consists of conducting three test runs with the

rotor in three different conditions: (1) without any additions to

the rotor, (2) with a unit unbalance weight placed in an arbitrary

hole of the rotor, and (3) with the same unbalance weight placed

in the diametrically opposite hole. In Fig. 176 let OA represent

to a certain scale the original unbalance in the rotor and also, to

another scale, the vibrational ampli-
tude observed as a result of this un-

balance at a certain speed. Similarly

let OB represent vectorially the total

unbalance of the rotor after the unit

addition has been placed in the first

hole. It is seen that the vector OB
may be considered as the sum of the

vectors OA and AB, where AB now

represents the extra unbalance intro-

duced. If now this unbalance is

removed and replaced in the diametri-

cally opposite hole, necessarily the

new additional unbalance is repre-

sented by the vector AC equal and

opposite to ABj and consequently the vector OC, being the sum
of the original unbalance AC, represents the complete unbalance

in the third run.

As a result of the amplitude observations in these three runs,

we know the relative lengths of the vectors OB, OA, and OC, but

we do not as yet know their absolute lengths or their angular

relationships. However, we do know that OA must be the

median of the triangle OBC and the problem therefore con-

sists in constructing a triangle OBC, of which are known the

ratios of two sides and a median. Its construction by Euclid's

geometry is carried out by doubling the length OA to OD and

then observing that in the triangle ODC the side DC is equal to

OB, so that in triangle OCD all three sides are known. Thus the

triangle can be constructed, and as soon as this has been done

we know the relative lengths of AB and OA. Since AB repre-

sents a known unbalance weight artificially introduced, we can

deduce from it the magnitude of the original unknown unbalance

B

FIG. 170. Vector diagram
for determining the unbalance
in a plane by three or four

observations of amplitude.
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OA. Also the angular location a of the original unbalance OA
with respect to the known angular location AB is known.

There is one ambiguity in this construction. In finding the

original triangle OCD, we might have obtained the triangle

OC'D instead. Consequently we would have obtained the direc-

tion C'B' instead of the direction CB for our artificially intro-

duced unbalances. This ambiguity can be removed by a fourth

run which also will act as a check on the accuracy of the previous

observations. It is noted that in the construction of Fig. 176

no other assumptions have been made than that the system is

linear, i.e., that all vibration amplitudes are proportional to the

unbalance masses. This relation is not entirely true for actual

rotors but it is a good approximation to the truth. If after going

through the motions shown in Fig. 176 and if after inserting the

correction weight so found there still is vibration present in

the machinery, that vibration will be very much less than the

original one and the process of Fig. 176 may
be repeated once more.

In factories where great numbers of small-

or moderate-sized motors have to be balanced

as a routine operation, the process of Fig. 176

takes too much time. For such applications

the movable fulcrum machine of Fig. 175 was

developed into an intricate precision apparatus anei

T

ĝ hcacT with

in which the balancing is done by means of a two unbalanced

so-called "balancing head."
arms*

A balancing head is an apparatus which is solidly coupled to

the rotor to be tested and which contains two arms with weights

(Fig. 177). These arms rotate with the rotor and keep the same
relative position with respect to it, at least as long as the operator
does not interfere. The possibility of rotating these arms relative

to the rotor exists in the form of an intricate system of gears,

clutches, and magnets or motors. The power for its operation is

introduced necessarily through slip rings, since the whole head
is rotating. The operator has before him two buttons. If he

presses the first one, the two arms rotate in the same direction;
if he presses the second one, the arms rotate in opposite directions

at the rate of about one revolution per 5 sec. relative to the rotor

in each case.

Since the two arms form the only unbalance in the head, this

makes it possible for the operator to change the magnitude as
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well as the direction of the added unbalance. By letting the

two masses rotate in the same direction (button 1) and watching

the vibration indicator, a maximum and a minimum amplitude

appear every 5 sec. After taking his finger off button 1 at the

minimum amplitude, the operator makes the two arms rotate

against each other by pressing button 2. Since during this oper-

ation the bisecting line of arms remains at rest with respect to

the rotor, the direction of the additional unbalance does not

change, but the magnitude varies from two masses (when the

arms coincide) to zero (when they are 180 deg apart). After

the vibration has been reduced to zero, the rotor is stopped and

from the position of the arms in the head the desired correction is

determined immediately. As before, the process has to be per-

formed twice for different locations of the fulcrum.

Another entirely different balancing head is the one invented

by Thearle (1930). The machine is of the type of Fig. 175

with two fulcrums and with a head like Fig. 177 but with the

important difference that the two arms are entirely free to

rotate with respect to the rotor, except for the possibility of

clamping them. There are no gears or magnets, merely a

clutch which either clamps or releases the arms. In operation

the arms are first clamped and the machine brought to above its

critical speed. Upon releasing the arms, they will automatically

seek the position of complete balance where all vibration ceases.

They are clamped again in that position and the rotor is brought
to rest.

The theory of operation of this device is very interesting.

Suppose that the two arms are clamped in a 180-deg. position so

that the head with the arms included is in perfect balance. The

only unbalance in the system is in the rotor.

In Fig. 178, let B (center line of bearings), S (center of shaft,

i.e., balancing head), and G (center of gravity) have the usual

meanings. We know from Fig. 169 that these three points

appear in different sequences for speeds below and above the

critical speed. The whirl of the whole assembly is about the

bearing center line #, so that the centrifugal forces acting on

the clamped arms must be directed away from B.

If at some speed below the critical (Fig. 178a) the arms are

released, then the centrifugal forces will turn them toward each

other to the top of the figure. Having arrived there they find

themselves on the side of G, i.e., on the heavy side. On the
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other hand, if they are released above the critical speed, Fig. 1786

shows that the centrifugal forces tend to drive the arms again

to the top of the figure, which is now the light side. In coming
closer together, the arms bring the location of G up and, after

they have gone a certain distance, G coincides with S (and also

with B) and all vibration ceases.

(cO Below critical (b) Above critical

FIG. 17S. Explains the The.irle balancing machine.

Another balancing machine is shown in Fig. 179. The rotor

R is supported in bearings on a table, which may rock about a

fulcrum F. The rotor carries an arm A, which sweeps over the

face of a stationary disk B. The disk is made of an electrically

insulating material but carries a copper insert to which a wire is

attached. By this means the magnet M receives an electric

FIG. 179. Automatic balancing machine of Spaeth-Losenhausen in which the

counterforce is furnished by synchronous pulses of current in an electromagnet M .

impulse once per revolution of the rotor, so that the table

experiences a downward force once per revolution. If this

impulse occurs at the instant that the unbalance is on top of the

rotor and if, moreover, the intensity of the impulse has a certain

magnitude, the table does not vibrate. By slowly turning the

handwheel C the phase of the impulse can be changed and by
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adjusting the potentiometer P the magnitude can be varied, until

all vibration disappears. From the positions of C and P the loca-

tion and magnitude of the unbalance can be deduced immediately.
In Fig. 179 the fulcrum coincides with plane I, but by reversing

the rotor in its bearings plane II can be made to pass through F.

As with all other machines having balancing heads, the device is

run at its critical speed, which insures a great sensitivity.

With the modern developments in radio technique, it is now
no longer necessary to run balancing machines at resonance.

They can be operated at speeds well removed from the resonant

one, the very small vibrations at the bearing being picked up by
electrical devices, of which the output can be magnified to any
desired degree by a vacuum-tube amplifier. Machines utilizing

such amplifiers are discussed in the next section.

48. Simultaneous Balancing in Two Planes. It is possible to

simplify the methods of balancing described in the previous

section if means are available to measure the phase angle between

the location of the unbalance in the rotor and the "high spot"
of the vibration. Let the rotor be supported in two bearings

a and b which are flexible in, say, the horizontal direction and

stiffly supported vertically. The balancing planes I and II do

not coincide with the locations of the bearings a and 6. Now
imagine the rotor to be ideally balanced so that while it is

rotating in the bearings no bearing vibration occurs. Then
unbalance the ideal rotor by placing a unit weight in the angular
location of balancing plane I. This will cause a vibration in

both bearings and these vibrations are denoted as aai and abi,

where the first subscript denotes the bearing at which the vibra-

tion occurs and the second subscript denotes the balancing plane
in which the unit unbalance at zero angular location has been

placed. When there is no damping in the system, these numbers

a are real numbers, by which we mean that the maximum dis-

placement (

in the horizontal direction of the bearings occurs

at the same instant that the unbalance weight finds itself at

the end of a horizontal radius. If there is damping in the

system, there will be some phase angle between the unbalance

radius and the horizontal at the moment that the bearing has

its maximum displacement, and this condition can be taken care

of by assigning complex values to the a numbers.

In a similar manner the ideal rotor may be unbalanced with

a unit weight in the zero angular location of plane II, which then
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causes the bearing vibrations aaii and atu. The four numbers a

so found are known as the complex dynamic influence numbers

of the set-up. If the rotor is run well above its critical speed,

the phase angles are close to 180 deg. and the influence numbers

are nearly real. These four influence numbers completely deter-

mine the elastic and inertia properties of the system for the

r.p.m. at which they are determined, but they are entirely

independent of the amount of unbalance present.

Next suppose that the unbalance in plane I is not a unit unbal-

ance at zero angular location but an unbalance which numerically
as well as angularly differs from the unit unbalance, and is repre-

sented by the complex number Ui. Then this unbalance Ui will

cause a vibration at the bearing a, expressed by the product

daiUi of two complex numbers. This can be easily seen for

the case where the unbalance is, say, two units in angular location

0, but it also holds true for any other angular location of the

vector l/i.

With these notations, it is now possible to write the vibration

vectors V at the two bearings in terms of a general unbalance

f/i and Uu as follows:

Va
= aaif7i + aaU Uu\

a. 77 I (150a)+ v

The eight symbols used in these equations are all vectors or

complex numbers. It is possible to measure the vibration vec-

tors Va and Vb and calculate from them by means of the set

(150a) the unknown unbalance vectors Ui and Uu, with the

following result :

U 1
= *va -*vbi

(1506)

In these equations A = aai a&n a&iaaii is the determinant

of the coefficients of Eq. (150a). The set of equations (1506)

enables us to calculate the unknown unbalance vectors if we can

measure the vibration vectors at the two bearings and if we
know the four dynamic influence numbers.

These V vectors can be measured in various ways. A very
convenient method consists of inverted loud-speaker elements

such as are described on page 81. These elements are attached
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to the two bearing shells a and b of the balancing machine, and

their output is an electric alternating voltage which in magnitude
and phase determines the vibration vector. The Gisholt-West-

inghouse balancing machine uses such elements and also has an

electric circuit by which Eqs. (150b) are automatically solved.

In order to understand the operation of this circuit, shown in

Fig. 180, we rewrite the first of Eqs. (1506) as follows:

U, .A = va
-^ - Vb (150c)

a&n din

In this equation we notice that the ratio aau/abu is smaller than

1 because the numerator is the response of a bearing to a unit

unbalance far away from it, while the denominator is the response

to an unbalance close to it. In all ordinary systems this ratio

is smaller than unity. Thus we see from Eq. (150c) that the

unbalance in plane I is found by taking the vibration vector of

bearing a, subtracting from it a fraction of the vibration vector

of bearing 6, and multiplying the result by <*&n/A. The fraction of

F&in general is a complex fraction but it is made real by running the

machine at a speed far above its resonance. The subtraction of

these two quantities is accomplished in Fig. 180 by connecting in

series the full output of the loud-speaker coil on bearing a with a

fraction of the voltage output of loud-speaker coil "F&. This frac-

tion is picked off by a potentiometer knob 1. In this way it is

possible to adjust that fraction to any real number smaller than

one. The fact that there is a minus sign on the right-hand side of

Eq. (150c) instead of a plus sign has no further importance than

that the terminals of one of the coils have to be reversed. The

voltage representing the right-hand side of Eq. (150c) is then

fed into an amplifier, and the amplified voltage is multiplied by
the number cx&n/A, by picking off a fraction of it through the

potentiometer knob 2. The output of the circuit is then read on a

milliammeter and is simultaneously used to actuate a strobo-

scopic lamp which flashes once per revolution of the rotor.

If it is only possible to set knob 1 so as to represent the ratio

oiaii/oibu and to set knob 2 so as to represent the ratio a&n/A, then

the milliammeter to a certain scale will read directly the amount
of the unbalance, while the stroboscopic lamp will apparently
freeze the rotor at such an angular position that a fixed needle

points at the angular location of the unbalance.

The circuit thus described solves the first of Eqs. (150c). For
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the solution of the second equation (150c) it is necessary to com-

bine the full output of Vb with a fraction of Va and multiply
the amplified output by a different number. This is done by a

new circuit with knobs 3 and 4 instead of 1 and 2 in a similar

manner.

The interesting feature of this circuit is that the proper

setting of these knobs is not calculated but found by a series of

very simple experiments. Suppose that a large number of

identical rotors have to be balanced in a mass-production proc-

ess. We start with balancing one rotor in any convenient

j 71
I AmpH-|
J fier

/^

ir_,
Strobo-i

scopic I

circuit ,

FIG. 180. Circuit diagram of the Gisholt-Wcstinghouse balancing machine.
(J. G. Baker.)

manner until it is perfect and this may take us a considerable

time. This perfect rotor placed in the two bearings a and b

will cause no vibration in them, therefore no voltage Va or j^&,

and hence no reading in the milliammeter. Then a unit unbal-

ance at zero angular location is deliberately placed in plane I.

This ought to cause a unit reading on the milliammeter and a

zero angular reading on the stroboscope in the case where the

circuit of Fig. 180 with knobs 1, 2 is switched in, i.e., in the case

where a left-right switch is set on the position I. If this switch

is set to the position II, the other circuit with knobs 3 and 4 is in

force and the milliammeter ought to give a zero reading. Natu-

rally, these readings will not be as they should, because the four

adjustments have not been made as yet. It follows from Eq.

(150c) that with the switch in the position II the zero reading
on the milliammeter (due to unit unbalance in plane I) is not

affected by the knob 4 but can be accomplished entirely by 3.

We therefore turn knob 3 until the milliammeter reading becomes
zero.

Now the unit unbalance in plane I is removed and brought
to plane II, while the selector switch is thrown to position I.
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Again the milliammeter should read zero, which is accomplished

quickly by adjusting knob 1. Now, leaving the unit unbalance

in plane II, the selector switch is thrown to the position II and

the knob 4 is adjusted until the milliammeter reads a unit un-

balance and the stroboscope a zero angular position. Finally,

the unit unbalance is brought back to plane I, the selector switch

is set on plane I, and knob 2 adjusted to get unit reading on the

milliammeter and zero angular reading on the stroboscope. This

process of making the four adjustments takes only a few minutes

for an experienced operator, and thereafter these adjustments
are correct for every other rotor in the series to be balanced.

The balancing process then consists of placing an unbalanced

rotor in the bearings, starting the rotor by a. foot-operated

switch (belt drive), reading the milliammeter and the angular

position, throwing the selector switch to the other side, and again

reading the unbalance numerically as Well as angularly. This

process takes only a few seconds and is extremely accurate.

In cases where a single rotor has to be balanced instead of a

whole series in mass production, such as, for example, a turbine

or a generator rotor in its own bearings in a powerhouse, the

problem is to produce one "ideal rotor.
77 The procedure out-

lined above does not solve the difficulty, but it is still possible

to use the apparatus of Fig. 180 by a clever expedient, due to

J. G. Baker, which consists of fooling the circuit of Fig. 180 into

believing that it deals with an ideal rotor, whereas in reality

it deals with an ordinary unbalanced rotor. For this purpose two
small alternating-current generators are made to be driven by the

turbine to be balanced. These generators produce currents of a

frequency equal to that of the r.p.m., and their voltage output
can be regulated in magnitude as well as in phase. Now the

circuit of Fig. 180 is opened in two spots at the two coils Va and

Vb. The output of the generators, suitably modified, is now fed

into these openings and regulated so that the voltage induced by
the vibration in each pickup coil is bucked by an equal and

opposite voltage artificially introduced by the generators. With
this set-up the circuit of Fig. 180 gets no impulses and therefore

reacts as if an ideal rotor were run. Now with the bucking

voltages in force, the three runs of the existing rotor are made:

(1) "as is/
7

(2) with a unit unbalance in plane I, and (3) with a

unit unbalance in plane II. In this manner the adjustment on

all four knobs is carried through as outlined above. After this,
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the artificially introduced bucking voltages are removed and now
the circuit responds to the actual rotor with the existing unbal-

ance in it.

A still simpler method of balancing without fulcrums is sug-

gested by Eqs. (150a). It is clear that the vibration readings

can be made at such a position along the rotor that the influence

numbers a n and abi become zero. This means that the measure-

ment Va (or Vb) has to be made at a position along the rotor

which will not experience any vibration if an unbalanced weight
is placed in plane II (or I) . This position is known as the

"
center

of percussion/' belonging to the "center of shock 77
II (or I). In

that case each loud-speaker element or other type of electrical

indicator reads only the vibration caused by one of the balancing

planes alone and, instead of solving a set of four algebraic

simultaneous equations (150a) with four unknowns, the problem
is reduced to finding a solution to two sets of two unknowns each.

This method has been used for some time in a machine developed

by the General Motors Research Laboratory.
49. Balancing of Flexible Rotors: Field Balancing. In dis-

cussing the effects of unbalanced masses in the last two sections,

we have assumed that the rotor was not deformed by them.

When running at speeds far below the .first critical, this assump-
tion is perfectly justified, but for speeds higher than about half

of the first critical the rotor assumes deformations which can no

longer be neglected since they set up new centrifugal forces in

addition to the ones caused by the original imbalance. If, for

example, a unit unbalance is located in the center of a symmetrical

rigid rotor, the unit centrifugal force due to this unbalance will

have reactions of half a unit at each of the bearings. On the

other hand, if the rotor is flexible, the unit centrifugal force will

put a bend in the structure and bring its center line off the original

position. Consequently, the bent center line whirls around and

additional centrifugal forces are set up which will alter the bearing
reactions.

The machine can evidently be balanced by adding a corrective

mass in the middle directly opposite the original unbalance.

But we prefer to balance it in two definite planes near the ends.

Assume that the rotor consists of a straight uniform shaft and
that the balancing planes are at one-sixth of the total length from

each end. Evidently the rigid rotor will be balanced by putting
in corrections of magnitude }/% in each plane (Fig. 181a).
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When the unbalanced rotor is running at its first critical

speed, its deflection curve is a sinusoid (page 188) of which

the amplitude is so large that the newly "induced" unbalance

is far greater than the original unit balance. Thus the original

unbalance does not influence the shape of the deflection curve,

which at the balancing planes has half the amplitude of the

middle. The proper corrections have to be of the same amount
as the original unbalance. This can be understood by bending
the shaft a little more. The centrifugal forces of the shape itself

(exclusive of the original un-

balance) are in equilibrium
with the elastic forces at any

position of the shaft, since

there is resonance. When
increasing the deflection at the

center by 5, the work done by
the unbalance is 5 X 1 and the

work done by each of the two
correction weights %d X 1.

It is seen that the equilibrium

remains indifferent (character-

istic of a balanced rotor at a

critical speed) when the cor-

rection weights are made a full

unit (Fig. 1816).

At the second critical speed
the central unbalance is not

displaced in position so that no

correction weights are necessary. At the third critical speed the

correction weights have to be made half a unit on the side opposite

to where they were at slow speeds (Fig. 181c, d).

We thus draw the conclusion that a flexible rotor can be bal-

anced in two planes for a single speed only; as a rule the machine

will become unbalanced again at any other speed. Large turbine

spindles or turbogenerator-rotors in modern applications usually

run between their first and second critical speeds. When such

units are balanced at a rather low speed in the machine sketched

in Fig. 175, they quite often become rough when run at full

speed in their permanent bearings. This is one of the reasons

why shop balancing is not sufficient, and why such machines

have to be balanced again in the field under service conditions.

3rdcrit.

(a)

(b)

CO

(d)

FIG. 181. The proper correction

weights to be inserted in the planes I

and II vary with the speed in a flexible

rotor.
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In the field no movable fulcrums are available and the process
of balancing takes a considerable time. As a rule, the ampli-
tude method discussed on page 296 is applied, but in order to

secure good balance it is necessary to repeat the operation a

number of times, shuttling back and forth from one balancing

plane to the other.

There are cases on record where even several weeks of sys-

tematic field balancing did not produce a smooth machine. In

such cases the trouble is evidently caused by something other

than unbalance. In one particular machine it was found that a

careless workman had dropped a balancing weight in the hollow

interior of a turbine spindle and had failed to report the fact.

Consequently a loose weight of 1 lb. was flying around freely in

that space, and it was impossible to balance the machine.

A remarkable series of cases of steam-turbine vibration,

observed off and on during the last fifteen years, was explained

recently. The turbine would vibrate with the frequency of its

rotation, obviously caused by unbalance, but the intensity of

the vibration would vary periodically and extremely slowly. On
some turbines the period of time between two consecutive maxima
of vibration intensity was as low as 15 min.; on others this

period was as much as 5 hr. The seriousness of the trouble

consisted in the fact that each maximum was worse than its

predecessor, so that after half a dozen of these cycles the machine
had to be shut down.

Observations were made of the phase angle of the vibration,

i.e., the angle between the vertical and the radial direction of a

definite point of the rotor at the instant that, say, the horizontal

vibrational displacement of a bearing was maximum to the

right. This angle was observed by watching the needle of a

vibrometer placed on the bearing by a stroboscopic light, flashing

once per revolution and operated by a contactor driven off the

rotor. The phase angle was found to increase indefinitely,

growing by 360 deg. each time the vibration reached a maximum.
This was explained as a "

rotating unbalance " which would creep

through the rotor and which would be additive to the original

steady unbalance when the vibration was a maximum and in

phase opposition to the steady unbalance at times of minimum
vibration. A detailed explanation of how an unbalance can

creep so slowly through a rotor was given recently by R. P.

Kroon, as follows.
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Let Fig, 182 represent a cross section of the rotor and let the

vector OS be the static unbalance of the rotor; i.e., is the geo-

metric center of the rotor and S is its center of gravity when not

rotating. For very slow rotation the rotor will bow out under

the influence of the centrifugal force in the direction OS, but at

higher speeds the "high spot" will no longer coincide with the

"heavy spot" S. The high spot will be given by the dynamic

unbalance vector 01), where D is the location of the geometric

center of the rotor while running. Since OS is the "force"

and OD the "displacement," the result of Figs. 41 and 426 can

be applied from which it is seen that the

high spot always trails behind the heavy

spot by an angle <p which is less than 90

deg. below resonance and between 90 and

180 deg. above resonance.

The unsymmetry in the direction OD
caused by the bowing out of the rotor

may be the cause of local heating at D.

This may be in the form of actual rubbing
FIG. 182. This iilus- on the periphery at D or, in the case of a

trates a .spiral wamleiing in j_ i Ji u_ r

of the unbalance within hollow^
rotor may be the result of con-

the rotor caused by unsym- deiisation. The water droplets from the
metrical heating or cooling. i , -111 i i

condensing steam will be moved by
centrifugal force to D, thus causing further condensation and

heating at that point. The heating at D in turn causes the rotor

fibers to expand, thus producing an elastic bowing out of the

rotor with a consequent shift in the location of the center of

gravity. The point S therefore shifts to S', the vector SS'

having the direction OD. The new static unbalance OS' is

angularly displaced with respect to OS] the angle <p remains the

same, so that OD also shifts clockwise. In this manner we see a

slow rotation of the unbalance in a direction opposite to that of

rotation. Also OS' is slightly greater than OS, so that the result

will be that the point $ describes a spiral within the rotor. We
have thus seen that for local heating at the high spot below reso-

nant speed we get a retrograde and increasing spiral. In a similar

manner it is shown that above resonant speed (<p > 90 deg.)

the spiral is still retrograde but now decreasing. If there happens
to be cooling at the high spot, instead of heating, the spiral is
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forward and decreasing below resonance, forward and increasing

above that speed.

For very flexible rotors, running well above their first critical

speed and close to the second critical, the phase angle <p becomes

greater than 180 deg. and the analysis in terms of a single degree

of freedom can no longer be applied. However, the general

reasoning is the same; only the value of <p is different.

In this connection it may be of interest to mention another

temperature effect observed in steam turbines. After a turbine

has stood still for some time, the temperature of the top fibers

of the rotor is usually somewhat higher than that of the bottom

fibers, so that the rotor is
"
humped up." When rotating the

unit, this evidently corresponds to a huge unbalance, since a

bend of 0.001 in. in the center line of a 20-ton rotor means an

unbalance of 40 in.-lb. Thus an attempt to bring the machine

to full speed at once would end in disaster. It is necessary to

rotate the spindle at a low speed for about an hour before the

temperature differences are sufficiently neutralized and the

machine can be put in operation.

50. Secondary Critical Speeds. Besides the main or ordinary
critical speed caused by the centrifugal forces of the unbalanced

masses, some disturbance has been observed at half this critical

speed, i.e., for the single disk of Fig. 167 at co =
This effect has been observed on horizontal shafts only. On

vertical shafts it is absent, indicating that gravity must be one

of the causes of it. There exist two types of this disturbance,

caused by gravity in combination with unbalance and by gravity
in combination with a non-uniform bending stiffness of the shaft.

These phenomena are known as "secondary critical speeds/'

and, as the name indicates, their importance and severity are

usually less than for the ordinary or "
primary

"
critical speeds.

The theory of the actual motion is very complicated, and its

detailed discussion must be postponed to the last chapter,

pages 406 to 424. Here, we propose to give merely a physical

explanation of the phenomena and a calculation of the ampli-
tude of the disturbing forces involved.

To this end we imagine the simple shaft of Fig. 167 to be

rotating without any vibration or Avhirl, and then we calculate

which alternating forces are acting on the disk. For the ordinary
critical speed of page 287 we have a rotating centrifugal force
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mco 26 (m = mass of the entire disk, e = eccentricity of its center

of gravity), and this force can be resolved into its horizontal and

vertical components. Each of these is an alternating force of

frequency o> and amplitude raw 2
e.

Consider next the case of a perfectly balanced disk (e
= 0)

running on a shaft which is not equally stiff in all directions.

Since a shaft cross section has two principal axes about which

the moment of inertia is maximum and minimum, it is seen

that for each quarter revolution the stiffness of the shaft in the

vertical direction passes from a

maximum to a minimum (Fig.

183). For a full revolution of

the shaft the stiffness is twice a
FIG. 183. -shaft cross sections of maximum and twice a mini-

non-uiuforrn flexibility.

mum, or for each revolution the

stiffness variation passes through two full cycles.

If the spring constant of the shaft varies between the mini-

mum value k A/c, and the maximum value k + A/r, with an

average value of k, then for uniform rotation co the stiffness can

be expressed by

k + AA* sin 2co

If the disk is not vibrating and its downward deflection during

rotation is 5, there are two vertical forces acting on it, viz.:

The weight mg downward.

The spring force (A* + A/r sin 2<at)8 upward.

Naturally the weight and the constant part of the spring force

are in equilibrium, so that we have a vertical disturbing force

of frequency 2co and of amplitude

If the shaft is running at half its critical speed, the impulses of

this force occur at the natural frequency so that we expect

vibration.

The next case, that of an unbalanced disk on a uniform shaft,

is somewhat more difficult to understand. Assuming no vibra-

tion, i.e., the center S of the shaft being at rest and coinciding

with B, and assuming an eccentricity e, the center of gravity G
describes a circular path of radius e (Fig. 184). The weight W
of the disk exerts a torque on the shaft which retards the rotation
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when G is in the left half of Fig. 184 and accelerates it when G is

in the right half. The magnitude of this torque is We sin cot.

If the moment of inertia of the disk about the shaft axis is mp 2

(p radius of gyration), the angular acceleration of the shaft

caused by this torque is (We/rap
2
) sin cot. The point G in its

circular path has an acceleration of which the radial or centripetal

component is of no interest to us in this case, since it will lead to

the ordinary (primary) critical speed. However, on account of

the angular acceleration, G has a tangential

component of acceleration of magnitude

We 2
. /

2
sm cot

i

This means that there must be a tangential .

force acting on G of value (We 2
/p

2
) sin cot. \_

The vertical component of this force is sin cot
-4-^ I

times as large, or F i o . i 8 4 . K \ -

plains the secondary

/W^ 2\ We 2 critical bpeed cau.sod

I r~ I Sin 2
cot = COnst. ^- 2

- COS 2cot by unbalance and
\ P / *P gravity.

The constant part of this force is taken up as a small additional

constant deflection of the shaft and is of no interest. How-
ever, the variable part has the frequency 2co and the amplitude
We 2

/2p
2

.

Summarizing, we have for amplitudes of the disturbing forces

the following expressions :

At the ordinary critical speed,

W /eV2
At the "unbalance" secondary speed, "o"

'

I
"

i

(151)
A 7 '

At the "flat-shaft" secondary speed, W
In practice, the order of magnitude of e/p to be expected in a

machine is about the same as that of A/c/A-, both being very

small, say 0.001. It is seen that the disturbing force of the

"unbalance" secondary critical speed is of a much smaller order

than that of the "flat-shaft" critical speed, since e/p appears
as a square. Therefore, in most cases where the secondary
critical is observed, it is due to non-uniformity of the shaft

rather than to unbalance. The nature of the trouble can be

established by balancing the machine at its primary critical

speed. If the amplitude of the secondary critical speed is not
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affected by this procedure, that speed is clearly due to shaft

flatness.

A more detailed analysis of this problem is given on pages 406

to 424.

60a. Critical Speeds of Helicopter Rotors. About the year

1940, helicopter rotors with the usual hinged-blade construction

were observed to come to a violent critical condition at a speed

very much lower than that calculated from the a?
2 = k/M for-

mula. This happens while the

aircraft is standing still on the

ground prior to take-off and con-

sequently is called the "ground
critical/' The phenomenon was

explained by R. P. Coleman of

Langley Field in N.A.C.A. reports

of 1942 and 1943, and the simpler

portion of his results are here

reproduced for the great interest

attached to them.

The system is as shown in Fig.

1 84a. The blades of a helicopter

rotor are hinged at H, so that

they can swing freely about H in

the plane of rotation. The hub
of the rotor coincides with the

top T of a "pylon
"
OT, which at

is supposed to be built-in into

the helicopter structure. If k be the stiffness of this pylon against

a force at T in the plane of the rotor and if M be the total mass

of the hub and all attached blades, then the observed critical speed
co

2 was very much smaller than k/M.
Consider the three-bladed rotor of Fig. 1846, where O is the

bottom of the pylon seen from above and T is the top of the

pylon, displaced to the right through the distance OT =
e,

the eccentricity. The pylon is supposed to be bent elastically

through distance e, and the entire figure as a solid body rotates or

whirls at speed co about the vertical axis 0. The blades will turn

about their hinge axes H through small angles e, so that the blade

lines up with the centrifugal field through the center of rotation

0. During the whirling motion these angles e are constant and no

relative motion takes place across any of the hinges H. We now

H T H

FIG. 184a.
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calculate the centrifugal forces of all three blades and of the hub
and set their sum equal to ke, the elastic homing force of the

pylon. This will give the critical speed.

In the triangle OTH the angle OTH is 120 deg., the angle

THO = e is considered "small," the hinge radius 277 =
a, and

the eccentricity OT c is again "small" with respect to a.

From the geometry of this triangle the reader should derive as

follows :

e ,. TT . c
sin e = e = ~ - - OH = + ?>

(.1

Thus the centrifugal force of blade 2, Fig. 1846 is

a + b + e/2), directed along (7/7. This force is now resolved

into components parallel and perpendicular to OT. The com-

ponent parallel to OT (to the right) is

m6co
2 fa + b +

|j
cos

(
60 - e

j

= mtco
2 fa + b +

I J
(cos 60 + e sin 60)

+
J ;

For blade 3 the result is the same for reasons of symmetry, while

the components of centrifugal force perpendicular to OT for
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blades 2 and 3 cancel each other. The centrifugal force of

blade 1 in the direction OT (to the left) is

?7?6co
2
(a + b e) (b)

The centrifugal force of the hub itself (to the right) is

Wimble (c)

Thus the total centrifugal force to the right is twice Eq. (a) less

Eq. (b) plus Eq. (c) :

coV mhub + nib ( 3 +
^

)

Let

wihui, + 3///6
= Mj the total mass,

and

H = -ri ratio of hinged mass to total mass.

Then the total centrifugal force can be written :

Equate this to the clastic force ke, and the critical frequency
comes out:

k 1

M 1 + nb/2a
(d)

It is seen that for the case of no hinged mass, \i 0, the

natural frequency is k/M : the presence of the hinged mass dimin-

ishes this frequency. The relation is shown graphically by the

fully drawn curve of Fig. 184c. Although the above analysis

was carried out for a three-blade rotor, the result is good also

for a rotor with more than three blades, which is shown in small

type on page 316.

In the case of a two-bladed rotor, however, the result comes out

differently. Figure 184d shows the equivalent of Fig. 1846, this

time for two blades. Before repeating the analysis for this case,

we notice that in Fig. 184d the eccentricity OT has been drawn

perpendicular to the line HH connecting the two hinges. If we
had assumed the other extreme case: that of an eccentricity OT
in the direction of the hinge line HH, the angle c would have been

zero, the hinges would not have deflected at all, and consequently
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the frequency would have come out just co* = k/M, without any

hinge effect. With the position shown in Fig. 184d the hinge

effect is as great as it can be. The principal steps in the calcula-

1.0

Upper 7/777// - two bladed rofor

tioii of Fig. 184c/ arc

sin e c = -
a

Oil = a

Centrifugal force of one blade m bu 2
(a + b)

Component parallel OT = mbu 2
(a + &)

-

s>

Total centrifugal force to right = 2m bu 2
(a H- b)

.

in which ju is again the ratio of the hinged mass

to the total mass :

2m 6 __ 2m b

(2m b + Whub) ^7

Setting the total centrifugal force again equal

to the spring force ke leads to the critical speed :

A A 1 x v

represented by the dotted line in Fig. 184c.

For the case that the whirl eccentricity is at

angle o: with respect to the hinge line 77, 77, it FIG. I84d.
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will be shown in small type below that Eq. (e) modifies to the more

general

u, - *
i. (f)M I + nb sin 2

ao/a

which reduces to Eq. (e) for a = 90 deg., and which gives

plainly w 2 = k/M for <* = deg. and a value for the frequency
in between these two extremes for a between zero and 90 deg.

It must be concluded then that for a two-bladed rotor a large

amplitude whirl at some value of a Q is possible for any speed of

rotation in the shaded region of Fig. 184c. Thus the two-bladed

rotor has a region of instability, shown shaded in Fig. 184c, whereas

a multibladed rotor just has a simple critical speed above which

it becomes stable again. All of this is in good agreement with

experiment.

In order to write the general theory for a multibladed rotor we start with

a single blade located at an arbitrary angle with respect to the direction

of eccentricity OT as shown in Fig. 184e. With the same assumption as

before, that the eccentricity e is small with respect to a, we have in the

triangle 0777:

OS = e sin
;

e = - sin
;

Oil = US = HT - ST = a - e cos
a

The centrifugal force of this blade thus is

AN;,o>
2
(<7 -\-b-e COS a)

The component of this force in the direction OT of the eccentricity is

Wft
2
(a + b e cos ) cos (a -\- e)

=

-Wfr 2

|(a
-f b) cos a - c (} +

^
sin 2

)+..."]
=

rtt6co
2

(a + b) cos a; c ( 1 -f --
J

-f e cos 2

Now let the rotor have N equally spaced blades. The angle between blades

is 2ir/N =
A, and if the angle a of the first blade be

,
then the angle a

of the (p + l)s blade is ce Q + pA. Substituting this value for the angle a
and adding for all blades we find for the component along OT of the centri-

fugal forces of all blades :

V / b \
> cos (pA -\- ao) Net 1 -}- |

Lir \ 2aJ

[

cos (2pA + 2o
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The first of the sums appearing in this expression can be interpreted as the

sum of the horizontal projections of the individual vectors of the star of the

blades. Since the total resultant of the vectors themselves is zero, so is

the horizontal projection. The second sum is a star of vectors with double

angles 2A between them, which for a multibladed rotor again has a zero

resultant. Thus both sums disappear and the OT com-

ponent of centrifugal force is simply

Adding to this the hub force Whubw 2e and setting the sum

equal to the elastic force kc leads to the result equation (d),

independent of the number of blades TV or of the direction

of the whirl <x .

For a two-bladed rotor the summations in Eq. (g) come
out differently. The first sum is cos + cos (180 + ),

which is zero as before. The second sum however becomes

cos 2ao + cos (360 + 2<*o)
= 2 cos 2a . This makes the

centrifugal force component for a two-bladed rotor equal to

A\ _ f .

Adding to this the centrifugal force of the hub and equating the sum to ke

leads to the result equation (/).

51. Gyroscopic Effects. The disk of Fig. 167, being in the

middle of the span, will vibrate or whirl in its own plane. When
the disk is placed near one of

the bearings, and especially

when it is located on an over-

hung shaft, it will not whirl in

its own plane. Then the

system of Fig. 1856 will have

a (primary) critical speed
different from the one of Fig.

185a, the mass and shaft stiff-

ness being the same in both

cases. This is due to the fact

that the centrifugal forces of

the various particles of the

disk do not lie in one plane

(Fig. 186) and thus form a

couple tending to straighten the shaft. Before calculating this

moment, it is necessary to have a clear picture of the mode of

motion.

u u
n n

FIG. 185. The critical speeds of (a)

and (6) are not equal if the shafts are

identical and the masses at the end are

equal.



318 ROTATING MACHINERY

We assume the machine to be completely balanced and whirling
at its critical speed in some slightly deflected position. The

angular velocity of the whirl of the center of the shaft is assumed
to be the same as the angular velocity of rotation of the shaft.

This implies that a particular point of the disk which is outside

(point in Fig. 1856) will always be outside; the inside point x
always remains inside; the shaft fibers in tension always remain

in tension while whirling, and similarly the compression fibers

always remain in compression. Thus any individual point of

the di.sk moves in a circle in a plane perpendicular to the undis-

torted center line of the shaft.

(o.) (b)

FIG. 186. The centrifugal forces on the disk tend to bend the disk to a plane
perpendicular to the equilibrium position of the shaft. Thus these forces act

as an additional spring.

Figure 186 shows the centrifugal forces set up by this motion.

In Fig. 1866 we see that the centrifugal force of a mass element

dm is o)
2ridm directed away from the point B. This force can

be resolved into two components: o>
26 dm vertically down and

coV dm directed away from the disk or shaft center 8. The forces

co
25 dm for the various mass elements add together to a single

force mo>2 d (where ra is the total mass of the disk) acting verti-

cally downward in the point 8 of Fig. 1866. The forces co
2r dm all

radiate from the center of the disk S, and their influence becomes

clear from Fig. 187, as follows. The ^/-component of the force

rfrdm is co
2
?/ dm. The moment arm of this elemental force is

y<p, where <p is the (small) angle of the disk with respect to the

vertical. Thus the moment of a small particle dm being co
2
z/V
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dm, the total moment M of the centrifugal forces is

M = o>

where Id is the moment of inertia of the disk about one of its

diameters.

Thus the end of the shaft is subjected to a force ma>~d and to

a moment co
2
/<f<p, under the influence of which it assumes a

deflection 5 and an angle <p. This can happen only at a certain

speed co, and the calculation

of the critical speed is thus

reduced to a static problem,

namely that of finding at which

value of co a shaft will deflect 5

and (p under the influence of

P = wco 2
<5 and M - 7dcoV-

For a rotating overhung canti-

lever shaft of stiffness El and length

I, tins calculation willnow be carried

out in detail.

From the strength of materials the formulas for the deflection and angle
of the end of a cantilever due to a force P or a moment M arc

FIG. 187. Calculation of the moment
of the centrifugal forces.

Sp = !!;

With these formulas we write

PI* MJ
El

which after rearranging become

This homogeneous set of equations can have a solution for 5 and <p only when
the determinant vanishes (see page 157 or 167), which gives the following

equation for co
2

:

CO
4 + CO

2
/ml* T \
[-3- Id]
V 3 /

This can be solved for co
2

. Before doing so we prefer to bring the equation
to a dimensionless form with the variables:

(the critical speed function)
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(the disk effect)

The equation then becomes

with the solution

AT 2 =
((> (152)

of which only the plus sign will give a positive result for A' 2 or a real result

fortf.

The formula (152) is plotted in Fig. 188 of which the ordinate

K 2
is the square of the " dimcnsionless natural frequency," i.e.,

Id/
ml1 ^

FIG. 188. Change in the natural frequency caused by the stiffening effect of the

centrifugal forces in the system Fig. 185.

the square of the factor by which \/EI/mP must be multiplied
to obtain that frequency. The abscissa is the "disk effect"

D, which is zero for a concentrated mass. In that case the

frequency of Fig. 185a is a>
2 = 3EI/ml*. On the other hand

for Id = (a disk for which all mass is concentrated at a large

radius), no finite angle <p is possible, since it would require an
infinite torque, which the shaft cannot furnish. The disk

remains parallel to itself and the shaft is much stiffer than
without the disk effect. The frequency is w 2 = 12EI/ml

3
.
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The phenomenon just described is generally referred to in the

literature as a gyroscopic effect. The name is unfortunate since

in the usual sense of the word a gyroscope is a body which rotates

very fast and of which the axis of rotation moves slowly. In

the disk just considered the whirl of the axis of rotation is just

as fast as the rotation itself, so that it could hardly be called a

gyroscope.

A true gyroscope effect occurs in the experimental set-up of

Fig. 212, page 361, where a small motor is suspended practically

(b)

FIG. 189. Explains the gyroscopic effect ol the apparatus shown in Fig. 212

(page 361).

at its center of gravity by three very flexible springs. We want
to calculate the natural frequencies of the modes of motion

for which the center of gravity remains at rest and the shaft

whirls about in a cone of angle 2<p (Fig. 1896). The disk

on the motor shaft rotates very fast, and, as the springs on which

the motor is mounted are flexible, the whirl takes place at a very
much slower rate than the shaft rotation.

Let

12 (fast) angular velocity of disk rotation,

co = (slow) angular velocity of whirl of the shaft center line,

1 1
= moment of inertia of the stationary and rotating parts

about an axis through perpendicular to the paper,
12
= moment of inertia of rotating parts about shaft axis,

k = torsional stiffness of the spring system, i.e.j the torque
about for <p

= 1 radian.
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Further let the direction of rotation of the disk be counter-

clockwise when viewed from the right so that the angular momen-
tum vector 72 ft is as shown in Fig. 189a. In case the whirl is in

the same direction as the rotation, the time rate of change of

the angular momentum of the disk is directed from B toward C
in Fig. 1896, i.e., out of the paper toward the reader. This is

equal to the moment exerted by the motor frame on the disk.

The reaction, i.e., the moment acting on the motor, is pointing

into the paper and therefore tends to make <p smaller. This acts

as an addition to the existing spring stiffness k, so that it is seen

that a whirl in the direction of rotation makes the natural

frequency higher. In the same manner it can be reasoned that

for a whirl opposite to the direction of rotation the frequency is

made lower by gyroscopic effect.

To calculate the magnitude of the effect we see in Fig. 1896

that

d(T&) PC fW AB_ _

7 2 fl

~
OB

~
AB OB

Consequently

is the gyroscopic^ moment. The elastic moment due to the

springs A' is k<p, and the total moment is

(A- wfi/ 2)p

where the plus sign holds for a whirl in the same sense as the

rotation and the minus sign for a whirl in the opposite sense.

Since the parenthesis in this last expression is the equivalent

spring constant, we find for the natural frequencies

k coQ/2
:
=

77
-

or

rt + SJ B
- A = o

^i fi

or

I n K9\
+J

-
(153)

Of the ambiguity before the square root, only the plus sign
need be retained since the minus sign gives two negative values
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for o>n which are equal and opposite to the two positive values

obtained with the plus sign before the square root.

The result (153) is shown in Fig. 190, where the ordinate is the

ratio between the actual natural frequency and the one without

gyroscopic effect, i.e., with a non-rotating shaft. The abscissa

is the rotor speed multiplied by some constants so as to make the

quantity dimensionless. It is seen that the natural frequency

is split into two frequencies on account of the gyroscopic effect:

a slow one whereby the whirl is opposed to the rotation, and a

fast one where the directions are the same.

In the quasi-gyroscopic phenomenon of Fig. 186 the frequency

is raised by the disk effect for a whirl having the same direction

as the rotation. The case of

a whirl opposed to the rotation 2.4

with a lowered frequency is 2.2

said to have been observed 2.0

also in the system of Fig. 186, A ie

but it is difficult to understand I 1.6

how such a mode could be

excited. IL*

62. Frame Vibration in

Electrical Machines. Be-

tween the stator and rotor of

Q8

06

04

02

0.2 0.4 0.6 0.8

FIG. 190. The two natural fre-

quencies of Fig. 189; with the faster one

of the two, the precession co has the

same direction as the rotation 12; with

the slower frequency these directions

are opposite.

any electric motor or generator

magnetic forces exist which

have a small rapid variation in

intensity with a frequency

equal to the number of rotor

teeth passing by the stator per

second. These alternating

forces may cause vibrations

in the stator frame if they are

in resonance with one of its natural frequencies. For constant-

speed machinery such trouble, if it ever appears, can easily be

corrected by changing the stiffness of the frame and thus destroy-

ing the resonance. If, however, the machine is to run satisfac-

torily over a wide range of speeds, it is necessary to look for other

means of avoiding the trouble. The situation in this respect is

quite analogous to that for Diesel engines as discussed in Sees. 43

to 45.

The number of teeth in the rotor multiplied by its r.p.m.
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usually leads to a very high frequency, and the amplitudes of

vibration observed in practice are invariably so small that no

danger for the structural safety of the machine need be feared.

The frequency, however, is in the range of greatest sensitivity

of the human ear so that noise considerations become of impor-

tance. In submarine motors, which have very light frames and

thus are apt to be noisy, the problem is of special interest since

such noise may be picked up by the enemy sound detectors.

The details of the phenomenon will first be explained with

the help of Fig. 191, which represents one stator pole and a

part of the rotor. The magnetic force RI acting between the

stator and the rotor can be conveniently resolved into its normal

and tangential components NI and TV These forces are nearly

FIG. 191. The normal and tangential FIG. 192. Variation of the

components of the force R\ exerted by magnetic force with the time,
the rotor on a pole of the stator.

constant with respect to time; however, they are subjected
to small variations of amplitude N and T with the frequency of

the rotor teeth passing by the stator (Fig. 192). A calcula-

tion of the exact phase relation of this variation (i.e., a calcula-

tion of the position of the rotor teeth with respect to the pole

at the instant that N or T becomes zero) requires electrical

theory which is not necessary for our present purpose. It is

sufficient to know that both N and T go through a full cycle

of variation each time a tooth goes by, i.e., each time that the

relative position between rotor and pole passes from b to a in

Fig. 191.

Before investigating how the variation of N and T can excite

vibration, we shall discuss the possible motions of the frame.

Consider an eight-pole machine for submarine application

(Fig. 193). In such a construction the poles are comparatively

heavy and the "frame" consists of a rolled-up steel plate to

which the poles are bolted. Thus the poles practically form

the
" masses" and the frame shell the "

elasticity" of the system.
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Since each pole as a solid body has six degrees of freedom (page

34), the whole frame must have 48 different natural modes of

motion. Some of these are trivial (e.g., the six possible motions

of the whole frame as a solid body), and many of the others pos-

o

FIG. 193. Stator of submarine motor generator.

sess natural frequencies which are far removed from the frequency
of the variation of the magnetic forces N and T. Four of the

natural modes that have been causing trouble in an actual instal-

lation are shown in Figs. 194a to d.

FIG. 194. Four natural modes of motion of the frame shown in Fig. 193.

In the first of these figures the poles move parallel to themselves

in a radial direction, while the frame ring alternates between the

purely extended and compressed states. In Fig. 1946 the motion

of the individual poles is the same as before, but the consecutive

poles are 180 deg. out of phase and the frame is in bending.
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Figure 194c shows a rotation of the poles about their longi-

tudinal axes with bending in the frame. These three cases have

the common property that all cross sections of a pole lying in

planes perpendicular to the axis of rotation have the same

motion. This is not the case in Fig. 194d Here the poles

rotate about their transverse axes, and the frame ring is in

combined twist and bending. There are eight nodal generators

and one central nodal circle on the cylinder, all denoted by n

in the figure.

Assume first that the rotor teeth and slots are parallel to the

axis of rotation, the forces T or N reaching their maximum
value at the same instant all along a pole. It is clear that the

motions of Fig. 194a and b may be affected by the normal force

N; the tangential force T will act only on Fig. 194c, while the

motion of Fig. 194d will not be excited at all, because, if the nor-

mal force helps the motion at one end of a pole, it opposes the

motion at the other end of the same pole.

Even if there is a large variation in N of the same frequency
as the natural frequency of modes 194a or 6, these modes are

not necessarily excited. If the number of rotor teeth per pole

(total number of teeth divided by 8) is an integer, the force NI
becomes a maximum at all poles at the same time. Then, of

course, Fig. 194a is excited, but the work input for Fig. 1946

is zero over a full cycle of the vibration. (While the force N
pulls the four downgoing poles downward and does positive work,
the same force pulls down on the upgoing poles and there does

equal negative work.) On the other hand, if there are n + J^
teeth per pole, Fig. 1946 is excited and Fig. 194a is not. A similar

consideration holds for Fig. 194c which is excited by the tan-

gential variation T if there are n + % teeth per pole.

It is clear that a changing of the number of teeth per pole is not

alone sufficient to avoid an excitation of all four modes of motion
at once.

Another possibility of affecting the phenomenon consists in
"
skewing

"
the slots or teeth of the armature with respect to the

axis of rotation. Figure 195 shows how the teeth are skewed

by one full tooth pitch over the length of the rotor. In this

case the forces N or T at any one instant vary from point to

point along the length of the pole, and it can be seen that the

diagram of the force as a function of position along the pole
must be identical with the diagram of the force at one point



FRAME OF ELECTRICAL MACHINES 327

Pull Push

of the pole as a function of the time. At the side of Fig. 195

the diagram of force as function of position is drawn, the force

variation not being necessarily sinusoidal.

Since N and T are the variable parts of NI and Ti, their inte-

grated values over a full cycle are zero (Fig. 192). In particular,

in Fig. 195 it is seen that the pull between pole and rotor along
one half of the pole length is com-

pensated by a push on the other

half of the pole length.

With a machine built as in Fig.

195, it is clear that no excitation at

all is given to the modes of Figs.

194a, b, and c, irrespective of the

number of teeth per pole. Now,
however, trouble is to be expected
from the motion of Fig. 194d. It

is true that the total integrated

value of the forces N and T over the

whole pole length is zero, but that

is of no consequence in connection with Fig. 194d. The total force

is zero only because it is pulling down on one side and pushing up
on the other side. The motion 194d, however, is also up on one

side and down on the other side, which creates the possibility of

a great input of energy.

In order to circumvent this

difficulty,
"
herringbone

" skew-

ing has been proposed in the

fashion of Fig. 1966, where the

slope of the teeth is at the rate

of one full tooth pitch over half

^ne r t r length. In this ar-

rangement the force diagram

(which again may or may not

be sinusoidal) is shown in Fig.

FIG. 195. Variation of the time-
variable part of the magnetic force

along a generating line of a rotor
with whole-pitch skewing.

(<a)

FIG. 196. Force diagram for herring-
bone skewing.

196a. The radial velocity diagram of the various points along

the pole is a straight line (Fig. 194d). It can be easily verified

that the work input per cycle, which is proportional to the inte-

grated product of the two curves of Fig. 196a, is zero. It is also

seen that the force by itself, integrated over the pole length, is

zero. A herringbone skewed rotor of full tooth pitch over half

the rotor length will make the frame free from vibration in any
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of the four modes of Fig. 194, independent of the number of teeth

per pole.

53. Vibration of Propellers. Since the introduction of alumi-

num-alloy propellers in airplanes, a number of fatigue failures

have occurred. Some of these were noted in time to avoid

failure, being seen in the form of cracks, but in other cases either

an entire blade or the tip of a blade has blown away in mid-air.

The fact that these failures were unmistakably due to fatigue

makes it certain that they were caused by vibration. Before

entering into the possible excitations to which a propeller blade

may be subjected, it is of interest to consider the determination

of its natural frequencies. These are different for various

running speeds, because the centrifugal force tends to force the

vibrating beam back to its middle position, thus acting like a

spring force.

A propeller blade is a complicated system. It can be idealized

as a cantilever beam, but the mass per unit length and the

bending stiffness El vary along the length. An exact calcula-

tion of the natural frequency, even without the centrifugal

effect, is out of the question. For each particular case we can

calculate the frequency by Rayleigh's method by choosing

some probable shape of the deformation and determining the

potential and kinetic energies. In this case the potential energy
will consist of two parts, one due to bending and one due to the

centrifugal effect. As is always true with Rayleigh's method,
the answer thus found for the natural frequency is somewhat
too large (pages 181 and 200).

The actual evaluation of the frequency in this manner requires

involved calculations, which can be avoided by applying the

following theorem:

Theorem of Southwell: If in an elastic system the spring forces

can be divided into two parts so that the total potential energy
is the sum of the two partial potential energies, then the natural

frequency co of that system can be calculated approximately
from

CO
2 -

a>? + col (154)

where o>i and co 2 are the exact natural frequencies of the (modi-

fied) system in which one of the spring effects is absent. The
value w thus found is somewhat too small.
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A very simple case illustrating this statement is that of a single

mass m connected to a wall with two coil springs ki and A*2 in

parallel (Figs. 32a, 6, page 49). The natural frequency of

this system is o>
2 =

(ki + k)/m which is exactly equal to

co? + o>5 = -|
- The answer is exact in this case because12 mm

the configuration of the vibration is not changed by omitting one

of the springs.

Applied to the propeller blade, the theorem states that a good

approximation for the natural frequency when rotating (co) can

be derived by the relation (154) from the exact natural fre-

quency at standstill (o>i) and the exact natural frequency of a

chain without bending stiffness of the same mass distribution as

the blade and rotating at full speed (co 2).

For the proof of Southwell's theorem we apply Rayleigh's procedure to

the exact shape of the vibrating blade while rotating. In that shape let

/Jben = potential energy due to bending,

Pccn = potential energy due to centrifugal forces,

co
2A' = kinetic energy, where co

2 is the (exact) natural frequency of

vibration.

Then,

2 /'ben + /'ecu /V.i
,

/'CPU
ea,t

= K
-
K -r-

~

K

We find the exact answer for the natural frequency because the exact con-

figuration was assumed (see page 172). But the exact shape of vibration

while rotating is different from the exact shape at standstill and also differs

from the shape of the rotating chain. Yet the first shape may be considered

as an approximation to the latter two. Thus the two terms on the right side

of the above equation are Rayleigh approximations of coj and o> 2 (i.e., of the

exact standstill frequency and the exact chain natural frequency). Since

Rayleigh's approximations are always too large,

I- * -J + -J

the error being of the same order as usually obtained with Rayleigh's
method.

The usefulness of the theorem lies in the fact that the standstill

frequency coi can be easily determined by experiment on the

actual propeller. The chain frequency co 2 ,
which expresses the

effect of rotation, can be calculated without much difficulty.
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In the case of a central hub of negligible dimension compared
with the blade length we find for the chain frequency the remark-

ably simple result

o> 2
= (155)

i.e., the natural frequency of vibration of a chain rotating about

one of its ends as a center is equal to the angular velocity of its

rotation. This is true independent of the mass distribution

along the chain, which can be understood as follows.

Since the flat side of a propeller blade lies practically in the

plane of its rotation, in the slowest type of vibration the various

particles will move nearly perpendicular to the plane
of rotation, i.e., parallel to the axis of rotation.

Assume that the deflection curve of the chain is a

straight line at a small angle <p with respect to the

plane of rotation OA (Fig. 197a). Consider an ele-

ment dm at a distance r from 0. On this element

are acting the tensions above and below (which are

/T*A
frdm in line with the chain) and the centrifugal force 2

?r

dm. If v is small, equilibrium in the vertical direc-

tion requires that the tension below exceeds the

tension above by this amount. In the horizontal

direction there is a resultant force of (p 12
2r dm

Fio. I97a. toward the equilibrium position. The deflection of
--Calculat-

{.ne ejcment dm from equilibrium is <pr, since the
ing the natu-

.

'

ral frequency "curve was assumed straight. Thus this excess
of a rotating foreo cail be considered as a spring force with a spring
heavy chain. * />

constant A- = Wdm. The frequency of vibration of

this particle is un = *\/li/m,
= \/tt

2
dm/~dm = 12. The same

answer is found for any particle along the line. Hence we may
conclude that the assumed straight line is the exact deformation

curve, for, if this were not so, we should have found different fre-

quencies for the individual particles. (In Rayleigh's procedure a

nonexact curve is presupposed; in this case the individual particles

have different calculated frequencies. In integrating the energies

over all the particles, Rayleigh finds some sort of average of all

these frequencies.)

We have proved that the first natural frequency of the small

vibrations of a chain, as shown in Fig. 197a, equals its angular

speed, and, since in the proof no mention was made of the mass

distribution, the result is true for any distribution of the mass.
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Another manner of showing this is by means of Rayleigh's method. Again
assume a straight line for the deformation curve. On a particle dm the

centrifugal force is 12V dm. When moving from the equilibrium position A
to the position C of Fig. 1976, the particle travels against the centrifugal

force over a distance AR = /v 2
/2. Thus the potential energy in the element

is 12
2r dm r<f>*/2 and the total potential energy of the chain is

Pot ^1 f -12V/0

If the chain is vibrating harmonically with a frequency co 2 ,
the kinetic

energy of the particle dm is ^2 fan -
1>
2 = K dm ' %C 2 '

">\

and for the whole chain

Kinin = ^~- I

^ /0
r 2 dm = -

Equating the two energies gives the desired result, w 2
=

it,

which is independent of mass distribution.

We obtain finally as an approximation for the first

natural frequency of the rotating propeller blade

For higher modes the result is quite similar; it can

be expressed generally by

+ ail 2
(150)

---Potential

energy of an
clement of a

where 12 is the speed of rotation and a a numerical rotating

factor which differs for the different modes and

which has been found to be approximately as follows:

Mode 1,

Mode 2,

Mode 3,

a

a

a

1.5

6

12

The principal source of excitation of blade vibration is found

in torsional impulses on the crank shaft of the engine. A com-

mon manner in which the relation (156) is plotted is shown in

Fig. 198, in which two families of curve are given. The first

set are parabolas showing the relation between the natural

frequencies of a blade in its various modes and the speed of

rotation as expressed by Eq. (156). The other set is a star of

straight lines passing through the origin, expressing the rela-

tion between the exciting frequency and the speed. These
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straight lines have slopes equal to the order of vibration, i.e., to

the number of oscillations per revolution. For four-cycle,

internal-combustion engines, such as are commonly used on

aircraft, the orders occurring are either integer or half-integer

numbers, as shown in the figure. Any intersection of one of the

straight lines of exciting frequency with one of the curves of

natural frequency indicates a possible condition of resonance in

torsional vibration.

The determination of the natural frequencies of the non-rotat-

ing blade, i.e., the intersections of the parabolas with the ordinate

axis of Fig. 198, is not so simple as appears on first sight. This is

because the bending frequency of a blade cannot be considered

SpeedA
FIG. 198. Diagram showing straight lines of exciting frequency and parabolas

of natural frequency. Intersections are points of resonant speed.

separately from the torsional oscillation of an engine crank

shaft; the two effects are coupled together. Thus the frequency
of vibration of a blade is different for different engines attached.

Still it is desirable to have a criterion by which to determine

the characteristics of an arbitrary propeller, independently of

the engine to which it is attached. This is possible by means
of the reasoning shown in connection with Figs. I99a, b, and c.

Imagine the shaft cut at the hub of the propeller, as in Fig.

199a. The amplitude of torque transmitted through the cut

is Mo sin co/ and the amplitude of torsional oscillation at the

cut is <pQ sin co/. Looking at the propeller alone, i.e., at the left-

hand side of Fig. 199a, there is a definite ratio between M and

<po which is independent of the magnitude of ^o but which will

be a function of the frequency of oscillation. This ratio MO/<PO,

sometimes known as the mechanical impedance of the pro-

peller, is plotted in the full line of Fig. 1996. The various shapes
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of natural vibration belonging to various frequencies are shown
in their proper positions in Fig. 199c. The curve of Fig. 1996

shows a number of points of zero ordinate and another series of

points of infinite ordinate. In the first set of points the torque
at the propeller hub is zero, so that these points are the natural

frequencies of the propeller with a free hub. The other series of

points of infinite ordinate show a zero angle for a finite torque
and therefore are the natural frequencies with clamped hub.

The actual condition of the hub lies between that of completely

M,

FIG. 199a. The system divided

into two parts for purpose of

analysis.

FIG. 1 99fr. Impedance diagram for

the left half of Fig. 199 (full line) and
for the right half of Fig. 1 99u (dashed
line). FIG. 199c. Shapes of blade
vibration at various frequencies.

free and that of completely clamped and depends on the proper-

ties of the engine to which it is attached.

Now turning our attention to the right-hand half of Fig. 199a

and again plotting the ratio of torque to angle (with a negative

sign), we obtain the dotted line of Fig. 1996. This is the curve

for the (negative) "mechanical impedance" of the engine and

is the usual resonance curve for the single-degree-of-freedom

system of Fig. 40. For a natural frequency of the combined

system, Fig. 199a, it is necessary that the moment-angle ratios

to the left and to the right are the same. In other words, the

natural frequencies of the combined system are the intersections

between the dotted curve and the full curve of Fig. 1996. These

are the frequencies that must be inserted on the ordinate axis

of Fig. 198, and then Fig. 198 determines the critical speeds
of the system caused by a purely torsional excitation.
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Vibrations due to other causes have been observed in propeller

blades. When the engine is out of balance, the center of the

propeller hub may move back and forth laterally, which is a

motion entirely independent of torsion, and associated with a

displacement of the center of gravity of the engine. The primary
cause of such a condition is of course unbalance, but it has also

been found as a direct result of torque variation. If, for instance,

there is a certain clearance in the main bearings of the engine, or if

the crank-shaft structure is flexible, the periodic thrust variations

on the crank pin due to the firing cylinders may cause the crank

shaft to deform and move within its bearing clearance so that the

center of gravity is displaced. Since all of

this is due to internal forces in the system,
a displacement of the center of gravity of

the rotating parts must be associated with

a displacement of the center of gravity of

the stationary parts, which include the

bearing near the hub of the propeller. In

this manner, lateral motions of the center

of the propeller hub with the firing frequency
are possible.

A lateral motion of the center of the propeller hub with a

frequency co does not, however, cause stress variations in the

propeller of that same frequency, but rather of the frequency
w + Oprop or w ftprop, as will be explained presently. If, as

usual, the propeller is geared to the engine so that the propeller

speed is related to the engine speed by a fairly complicated
fraction such as % 6 ,

then an observation of the frequency of

stress variation in the propeller makes it possible to distinguish

between a vibration caused by pure torsional excitation and one

caused by lateral excitation. In order to understand the fre-

quency relation just mentioned, consider Fig. 200. A propeller

blade is shown to rotate with angular speed ftprop ,
while its hub

is moving back and forth laterally through the distance x sin cot.

The displacement XQ sin cot is now resolved into its components

along the blade and perpendicular to the blade. The displace-

ment along the blade does not excite any bending in it, but the

displacement across the blade is entirely responsible for just that.

Thus the displacement of the blade root in a direction perpendicu-
lar to that of the blade is

x sin cot sin ftpr0p2
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which, by means of the trigonometric relations of page 17, is

equal to
/v /v

-<r cos (w l>prop) -H- cos (a? + Oprop)2

This lateral motion of the blade root will cause bending vibra-

tions in the blade of the same frequencies as the root displace-

ment, which proves the contention made above. If the lateral

displacement of the blade root had been assumed vertically

or in a different phase with respect to the rotation, exactly the

same result would have been obtained, as can be easily verified.

Still another possible excitation of bending vibrations in

propeller blades is that due to aerodynamic forces. In the usual

construction of large airplanes a propelle^ is mounted in front

of a wing and consequently each blade comes close to the wing
twice in the course of one revolution. The velocity field of the

air close to the wing is different from that at some distance

from it so that the aerodynamic forces acting on the propeller

blade will pass through a periodic change twice per revolution.

This has been found to cause bending vibrations in the blade.

Summarizing, it may be stated that bending vibrations in a

propeller blade caused by torsiorial excitation have a frequency

equal to an integer or a half-integer multiple of the engine speed ;

those caused by lateral vibration of the propeller hub have a

frequency equal to an integer or a half-integer multiple of the

engine speed the propeller speed; and finally, the bending
vibrations caused by aerodynamic excitation have a frequency
which is a multiple of the propeller speed.

The internal friction in propeller blades of steel or aluminum
is very small and the only damping that the vibrations experience

is aerodynamic and is of the same nature as that discussed with

reference to ship propellers on page 262. In Fig. 161, a vibra-

tory motion of the blade in its limber direction causes periodic

variations in the angle of attack a and consequently periodic

variations in the aerodynamic lift force. The reader is urged
to follow this phenomenon in detail and to verify the statement

that the lift-force variation caused by this motion will be directed

against the velocity of the motion and thus constitutes a true

damping. This is true only for relatively slow frequencies,

for the reasoning leading to this conclusion concerning damping

presupposes a "
succession of steady states/' It xvill be seen in

Chap. VII, page 392, that for very fast frequencies and high air
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speeds this reasoning is no longer valid and that under such

circumstances the blade may experience "negative damping
"

and get into a state of "flutter." When such a condition obtains,

the aerodynamic forces become very large, of the same order

almost as the spring forces and the inertia forces, so that even

the frequency of the fluttering blade is considerably different

from the natural bending frequency as calculated without air

forces.

Not only aircraft propellers but also ship propellers have been

responsible for serious cases of vibration during the last decade.

The excitation of a ship propeller falls into two classes: torsional

and linear. When an individual blade pusses close by the hull

of the ship or by the "bossing" that holds the propeller tube in

place, it finds itself in a region of flow which is different from

that in the more or less open water. Consequently the hydro-

dynamic forces are different so that these forces experience

variations with the blade frequency, i.e., the frequency of revolu-

tion of the propeller multiplied by its number of blades. The

torque variation caused by this effect is more serious when the

bossings are close to the propeller than when they are cut away.
At present there is not a great deal of detailed knowledge avail-

able on the subject but a figure which represents a good average
condition is a torque variation equal to 7.5 per cent of the total

propeller torque. This effect is responsible for the fact that

even in steam-turbine drives the main propulsion shafting of a

ship has been found to experience definite resonant speeds. It

has become standard practice to precalculatc these speeds, as

discussed on page 247 and in Problem 92.

The other effect caused by the variation in the hydrodynamic
forces of the propeller is found in their reactions on the ship's hull

and on the bossings. These force variations were determined by
F. M. Lewis on an experimental model in a tank and were found

to be as large as 12.5 per cent of the total propeller thrust.

Naturally, this figure is very much dependent on the bossing
clearance and the tip clearance of the propeller but it represents
a good average figure for ships of conventional design up to

date. These hull forces are responsible for the vibrations

usually observed on the afterdecks of steamships. They were
not considered to be of any great importance until the great
French liner "Normandie" brought the matter into the lime-
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light. In that case it happened that the propeller forces were of

the same frequency as one of the natural frequencies of the entire

ship as a "free-free" beam (page 193) so that oscillations of con-

siderable magnitude were set up. The trouble was cured prima-

rily by replacing the three-bladed propellers by four-bladed ones

which eliminated this resonant condition. The reader is further

referred to the interesting literature on the subject.

54. Vibration of Steam-turbine Wheels and Blades. In the

mechanical construction of large-reaction stoam turbines we can

distinguish two principal types, which may be designated as the

disk type and the drum type. In the disk type the rotor or

spindle consists of a shaft on which a number of disks are shrunk.

The diameter of these disks is about four times as large as the

shaft diameter, and the turbine blades are attached to the rim

of the disks. With the drum type the spindle consists of a hollow

forging of a diameter equal to the outside diameter of the disks

in the disk type, and the blades are fastened directly to the out-

side of this spindle.

In both types fatigue failures of the blades have occurred.

Whereas in the drum type the failures huvo been restricted to

the blades themselves, in the disk type the breaks have been

found to extend into the solid parts of the disks as well.

As in the case of the airplane propeller we have a resonance

phenomenon between the natural frequency of vibration of

the disk and some multiple of the running speed. Before pro-

ceeding to an explanation of the origin of the disturbing forces,

it is necessary to have a clear understanding of the natural

modes of vibration. First consider a disk at standstill (i.e.,

without rotation). The center is clamped on the shaft, and

the periphery with the blades is free to vibrate. In such a system
there are infinitely many modes of natural motion, of which only

a few are of importance for this problem. The four modes which

have caused failures in the past are those in which the periphery

bends into a sine wave with 4, G, 8, or 10 nodes designated as

the flexural modes of n =
2, 3, 4, 5, respectively.

The first two of these, being the most important ones, are

illustrated in Fig. 201. In producing these figures the disk is

held in a horizontal plane and evenly covered with light sand.

Vibration is excited (usually by an alternating-current magnet of

variable frequency), and at resonance the sand is thrown away
from the vibrating parts of the disk and accumulates on the nodal
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lines. The circumference of the disk thereby divides up into

an even number of equal parts which alternate in moving up and

down. The signs + and written in at the locations of the

antinodes pertain to a certain instant of time. At that instant,

the plus sign indicates that the disk is deflected upward and the

minus sign that it is deflected downward. After half a vibration

period these signs are reversed. At the nodes, of course, no

motion takes place at all. The 8- and 10-noded motions are not

illustrated but can be easily visualized. The deflections along

the circumference are such that, if the perimeter is developed into

n-3

FIG. 201. The four- and six-nodcd modog of vibration of a turbine disk.

a straight line, the deflections appear approximately as sine

curves with n full cycles for the 2n-noded vibration.

In the rotating disk the conditions are only slightly different.

The whole Fig. 201 now revolves with the angular velocity 12 of

the wheel. Moreover, the centrifugal forces which are set up

by the rotation will raise the frequency of the vibration and also

alter the shape of the natural mode. The latter effect is of little

importance and will not be considered. The rise in the natural

frequency co follows the same trend as in the propeller blade of

the previous section, i.e., it is expressed approximately by the

parabolic relation

" 2 =
CoLa-rot + BW (157)

where is the angular velocity of rotation and B is a numerical

factor which is greater than unity and has different values for

different modes of vibration, as discussed on page 331. The
derivation of this formula is very similar to the derivation of

Eq. (156); only it is much more complicated on account of the

substitution of a plate for the beam of the previous problem.
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A vibration in the modes of Fig. 201 may be excited in the

rotating disk by a constant force standing still in space, e.g.,

by the steam jet of a stationary nozzle playing on the disk.

This can be understood from Fig. 202, which represents one nth

part of the developed perimeter of the disk vibrating in its

2n-noded mode. The amplitude varies periodically with the

I---
FIG. 202. A steady, stationary force F can put work into a rotating and

vibrating disk.

time between the full-drawn and the dotted curves. Simul-

taneously the curve (with its nodal points A , C, and E) moves to

the right with the circumferential speed of the wheel. The force

F remains fixed in space. Let the period of vibration and the

circumferential speed be related in such a mariner that when
the point C has arrived at A one- half period of oscillation has

passed so that the periphery will then have the dotted shape.

To be more precise, let the; relation be such that, when the

force F is

opposite A
,
the full curve exists;

opposite B, 110 deflections exist anywhere;

opposite C, the dotted line is the shape;

opposite D, no deflections, etc.

Thus while the piece A C of the curve passes by the force F,

that curve goes from its full-drawn to its dotted shape. During
this time all points of the curve AC have an upward velocity

so that F does positive work. But while CE passes by F, the

shape goes from the dotted to the full line, which again is associ-

ated with upward velocities in the stretch CE, so that F again
does positive work. The stretch AC in that interval of time

goes downward to its full line position, but then it is not situated

opposite F.

The speed at which this relation holds is called the "critical

speed" of the disk; it exists when I/nth revolution occurs during
one vibration period :

r -p 'S -
=
n ;

" =
^ I (158)

, +o
2 = .,
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As was stated before, B is larger than unity, so that this equa-

tion coincides with (156). Therefore, it can be represented

by Fig. 198, with the understanding that resonance in the

2n-noded mode occurs at the intersection point of the parabola
with the line of slope n. In particular we see that the two-noded

mode (n = 1, one nodal diameter) can never be excited by a

constant force F. Also, excitations of half-integer order do not

occur in the turbine.

It is clear from Fig. 198 that a great number of critical speeds

are possible. The disks in a turbine vary considerably in size

from the high-pressure to the low-pressure ends, and in most

cases there will be one or more disks among them in which

the cluster of critical speeds ranges around the operating speed.

This accounts for the great number of failures which occurred

before the cause was understood.

To overcome the trouble, the disks are so designed that their

criticals do not coincide with the running speed. Since in the

first place the analysis is too crudely developed to permit great

accuracy in this calculation, and since the frequency depends

quite sensibly on the amount of shrink pressure at the center,

the design is carried out in an empirical manner by comparison
with previous constructions. After the turbine is built and

assembled, the frequencies of those disks in which trouble may
be expected are determined by experiment (excitation at vari-

able frequency either by a mechanical vibrator or by means of

an alternating-current magnet). In case such a frequency lies

too close to the service speed, it is changed by a "
tuning

"

process consisting of machining a thin layer of metal from the

disk, usually near its periphery. The minimum difference

between the critical and the running speed which is tolerated

in practice is given as 15 per cent for the 4-noded mode and as

10 per cent for the 6- and 8-noded vibrations.

With turbines of the drum type fatigue failures of the indi-

vidual blades or of groups of blades have occurred repeatedly.

The explanation is exactly the same as for the disks; a drum with

a row of blades can be regarded as a disk of which the central

portion is infinitely stiff. There exist, however, other possi-

bilities of resonance than the one just described. Imagine a

turbine (disk or drum type) in which the blades are attached only
at their base and are not connected either by a shrouding ring or
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by lashing wires, so that each blade can vibrate individually.

If there is a single nozzle, the first mode of vibration of the blade

(without nodes except at the base) can be excited if the rotational

speed is such that an integer number of vibration cycles occurs

during one revolution. This is because if the blade passes by the

jet, while the blade is receding in its vibratory motion, the jet

does positive work on it. If the number of vibrations per revolu-

tion is an integer, the phase of the vibratory motion is the same

each time the blade comes in contact with the jet. This opens

up a large number of possibilities for trouble. In practically

all turbines, however, the blades are connected either completely
or else in groups of approximately eight blades. Such a group
of blades has natural frequencies that may be excited in the

manner just described.

This particular phenomenon has been responsible for a series

of serious failures during the last few years. The blades in

question were in the first impulse stage of turbines of very high

pressure and temperature: 1,200 Ib./sq. in. pressure at 900F.
The blades themselves were about 1 in. high and 1 in. deep,

and under the influence of the very thick steam at high velocity

developed 100 hp. each. They are found to fail in fatigue

after an operation of some 5 hr. The natural frequency of the

blades was such that approximately GO full cycles occurred

during one revolution. This put the various consecutive critical

speeds only 1.5 per cent apart so that it was impossible to avoid

resonance by tuning. Ordinarily it would be expected that a

blade, after having passed the steam nozzle and having acquired
a certain amplitude of vibration by the steam impact of that

nozzle, would execute a damped vibration from there on and
in the ensuing 60 cycles practically lose all of its amplitude.

Then, coming back to the nozzle, it would get a new impact.
The blades in question were calculated to be sufficiently strong
to stand this variable loading. It was found, however, that the

internal damping in the blades were so small that at the end of

60 cycles, i.e., at the end of a full revolution, the amplitude
of vibration had hardly diminished so that the blade would

enter the jet with a substantial amplitude. Thus with proper

phase conditions the amplitude could be pushed up to a value

many times greater than that caused by a single exposure to the

jet. The surprising fact was brought to light that the internal
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hysteresis at temperatures approaching that of the red-hot

state is considerably smaller than the hysteresis at room tem-

perature. A partial cure for the trouble consists in rounding off

the edges of the steam jet by providing suitable leakage passages

in the nozzle. For further details, the reader is referred to the

publications by Kroon quoted in the Bibliography.

In reaction turbines no actual nozzles exist in the blading such

as would account for the definite force F of Fig. 202. However,

any deviation from radial symmetry of the pressure distribution

acts in the same manner as a nozzle. While rotating, the blade

passes through a periodic pressure field of which the fundamental

component has the frequency of revolution, and in which most of

the higher harmonics are present as well. Consider as an exam-

ple the nth harmonic of this field. It is capable of exciting

vibration, if the blade rotates at the rate of n natural periods per

revolution. The phase of the motion will be such that while

passing through the regions of great nth harmonic pressure, the

blade recedes in its vibratory motion, whereas in regions of low

pressure it is coming forward. We see that, in principle, reso-

nance can occur if any natural frequency of a blade or blade

group is an integer multiple of the speed of rotation, provided the

pressure is unevenly distributed around the circumference.

Problems

99. On a horizontal platform arc two small motors A and B, their shafts

parallel and horizontal, at distance 2a apart. The motors are unbalanced,
each producing a rotating centrifugal force. The motors rotate at equal

speeds in the same direction and their two centrifugal forces are equal in

magnitude, but one of them runs by the constant angle a. ahead of the other.

a. If C denotes the instantaneous intersection of the two centrifugal forces

through A and B, prove that the locus of C is a circle passing through A and
B with its center somewhere on the perpendicular bisecting A B.

b. Using this result, prove that the resultant of the two centrifugal forces

is a single rotating force rotating about a fixed point located on the per-

pendicular bisector of AB at a distance a tan a/2 from A B.

100. Find the critical speed in revolutions per minute of the system shown
in Fig. 167 in which the disk is made of solid steel with a diameter of 5 hi.

and a thickness of 1 in. The total length of the steel shaft between bearings
is 20 in., and its diameter is J in. The bearings have equal flexibility in

all directions, the constant for either one of them being k = 100 Ib./in.

101. The same as Problem 100 except that the bearings have different

vertical and horizontal flexibilities: khf)T
= 100 Ib./in. and Avert = 2001b./in.

for each of the bearings.
102. Figure 203 shows a machine with a rigid overhung rotor. The initial

unbalance consists of 1 in. oz. in the center of the main rotor and of 2 in. oz.
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on the overhung disk, 90 (leg. away from the first unbalance. Find the

corrections in the planes I and II.

I-

103. A rotor is being balanced in the machine of Fig. 175, pivoted about

the fulcrum FI. The following amplitudes of vibration are observed at the

critical speed:

1. 14 mils for the rotor without additional weights.

2. 10 mils with 3 oz. placed in location dog.

3. 22 mils with 3 oz. placed in location 90 dog.

4. 22 mils with 3 oz. placed in location 180 dog.

Find the weight and location of the; correction (Pig. 176).

104. In the balancing process we make the following observations:

ao = amplitude of vibration of the unbalanced rotor "as is."

ai = amplitude with an additional one-unit correction at the location

Odeg.
02 = same as i but now at 180 deg.

The ideal rotor, unbalanced only with a unit unbalance (and thus not con-

taining the original imbalance), will have a certain amplitude which we
cannot measure. Call that amplitude x. Let the unknown location of the

original unbalance be <p.

Solve x and <p in terms of
, ai, and a, and show that in this answer there

is an ambiguity in sign. Thus Jour runs are necessary to determine com-

pletely the diagram of Fig. 176.

105. In a Thearle balancing machine (page 298), the total mass of the

rotating parts is M, the eccentricity e, the mass of each of the balls at the

ends of the arms is m, and the arm radius r. Find the angle a which the arms

will include in their equilibrium position when released about the resonant

speed.

106. A steel disk of 5 in. diameter and 1 in. thickness is mounted in the

middle of a shaft of a total length of 24 in. simply supported on two rigid

bearings (Fig. 167). The shaft diameter is J^ in.; it is made of steel also.

The shaft has filed over its entire length two flat spots (Fig. 183a), so that

the material taken away on either side amounts to ^QQ part of the cross

section (total loss in cross section M,5o)- Find the primary and secondary

critical speeds.

Find the amplitude of the secondary alternating force, and calculate the

unbalance which would cause an equal force at the primary critical speed.

107. A shaft of length 21 and bending stiffness El is supported on two

bearings as shown in Fig. 204. The bearings allow the shaft to change its
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angle freely but prevent any deflection at those two points. The disk at the

end has a moment of inertia Ip about its axis of rotation. (Thus / is meas-

ured in in. 4
,
and Ip in Ib. in sec. 2

). The mass of the disk is ra. Find the

critical speed.
I

-
t -1

A

FIG. 204.

LU

108. Calculate the abscissas and ordinates of several points on the curves

of Fig. 198 by means of Eq. (156).

109. A solid disk of mass M and radius R is keyed to a stiff and weight-

less shaft, supported by springs k\ and k2 at distances a\ and a 2 . The nearer

Fro. 205a.

spring is the stiffer one, so that k Lai = k zaz (Fig. 205a). The shaft rotates at

speed V. Calculate the natural frequencies of the system and plot them in

the form co/co against fi/coa ,
where co~ =

(ki + k2)/M and cog
= (kia\ +

110. Generalize the problem of page 318 by dropping the assumption that

the disk whirls at the same speed as its rotation. Let the rotational speed be

co as before and the whirl speed be cow , positive forward and negative back-

ward. Show that there are four natural frequencies; plot them against the

speed co for the special case where the shaft length equals the disk diameter.

111. A cantilever shaft has a stiffness ET over a length I and is completely

stiff over an additional distance h (Fig. 2056). The stiff part has a total

h / ---/, *

FIG. 205b.

mass m while the flexible part is supposedly massless. Calculate the natural

frequencies as a function of l\/l between the values < l\/l < 1, and plot

the result in a curve.

112. In a laboratory experiment one small electric motor drives another

through a long coil spring (n turns, wire diameter d, coil diameter D). The

two motor rotors have inertias /i and 1 2 and are distance I apart.
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a. Calculate the lowest torsional natural frequency of the set-up.

b. Assuming the ends of the spring to be "
built in

"
to the shafts, calculate

the r.p.m. of the assembly at which the coil spring bows out at its center,

due to whirling.

113. The drive of an aerodynamic wind tunnel consists of a driving motor

1 1 coupled to a large fan J 2 which drives the air through the wind tunnel.

The torsional elasticity between the motor and the fan is fc, and the tunnel

is idealized as an organ pipe of length I and cross section A (Fig. 205c).

FIG. 205c.

The coupling between the fan and the air column is expressed by two con-

stants Ci and Cz with the following meaning: C\ is a pitch constant relating

the air displacement in the tunnel to the angular displacement of the fan :

= Civ?2. The second constant (7 2 relates the forward torque on the fan

to the pressure variation in the air column at the fan, so that the fan torque
variation is Ctflt-fdx. In both these expressions x is the distance along the

tunnel measured from left to right and is the alternating component of the

air displacement, positive to the right.

Set up the differential equations of the system and from it deduce the

frequency equation.
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CHAPTER VII

SELF-EXCITED VIBRATIONS

66. General. The phenomena thus far discussed were either

Tree vibrations or forced vibrations, accounting for the majority
of troublesome cases which occur in practice. However, dis-

turbances have been observed which belong to a fundamentally
different class, known as self-excited vibrations. The essence of

the difference can best be seen from a few examples.

First consider an ordinary single-cylinder steam engine, the

piston of which executes a reciprocating motion, which may be

considered a
"
vibration/' Evidently the force maintaining this

vibration comes from the steam, pushing alternately on the two

sides of the piston.

Next consider an unbal-
a
52 anced disk mounted on a

flexible shaft running in two

bearings (Fig. 206). The
center of the disk vibrates,

FIG. 206. Unbalanced shaft as an ex- ,1 ,. i . . . . i

ample of forced vibration.
the motion being maintained

by the centrifugal force of the

unbalance pushing the disk alternately up and down.

The steam engine is a case of self-excited vibration, while the

disk executes an ordinary forced vibration. Imagine that the

piston is prevented from moving by clamping the crosshead or

the flywheel. Then the valves do not move either, and hence

no alternating steam force acts on the piston.

On the other hand, let us prevent the disk from vibrating.

This can be done, for example, by mounting two ball bearings

a, a on the shaft adjacent to the disk and attaching their outer

races to a solid foundation, thus preventing vibration of the disk

but leaving the rotation undisturbed. Since the unbalance is

still rotating, the alternating force remains.

Thus we have the following distinction:

In a self-excited vibration the alternating force that sustains the

motion is created or controlled by the motion itself; when the motion

stops the alternating force disappears.
346
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In a forced vibration the sustaining alternating force exists inde-

pendently of the motion and persists even when the vibratory motion

is stopped.

Another way of looking at the matter is by defining a self-

excited vibration as a free vibration with negative damping.
It must be made clear that this new point of view does not contra-

dict the one just given. An ordinary positive viscous damping
force is a force proportional to the velocity of vibration and

directed opposite to it. A negative damping force is also pro-

portional to the velocity but has the same direction as the veloc-

ity. Instead of diminishing the amplitudes of the free vibration,

the negative damping will increase them. Since the damping
force, whether positive or negative, vanishes when the motion

stops, this second definition is in harmony with the first one.

Examine the differential equation of a system having a single

degree of freedom with negative damping:

mx - ex + kx = (ISA)

Since this equation differs from (18) on page 49 only in the sign

of c, its solution can be written as

x = e 2m (A cos qt + B sin q) (24A)

which is clearly a vibration with exponentially increasing ampli-

tude (Fig. 207).

A system with positive damping is sometimes said to be

dynamically stable, whereas one with negative damping is known
as dynamically unstable. There is a difference between static

and dynamic stability. A mechanical system is statically

stable if a displacement from the equilibrium position sets up a

force (or couple) tending to drive the system back to the equi-

librium position. It is statically unstable if the force thus set

up tends to increase the displacement. Therefore static insta^

bility means a negative spring constant k or, more generally, a

negative value of one of the natural frequencies co
2

.

Figure 207 shows the behavior of a system in three different

stages of stability. It is to be noted that dynamic stability

always presupposes static stability (Fig. 207c), but that the

converse is not true: a statically stable system may yet be

dynamically unstable (Fig. 2076).
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Regarding the frequency of the self-excited vibration, it may
be said that in most practical cases the negative damping force

is very small in comparison to the elastic and inertia forces of

the motion. If the damping force were zero, the frequency would

be the natural frequency. A damping force, whether positive

or negative, lowers the natural frequency somewhat, as expressed

by Fig. 36, page 54. However, for most practical cases in

mechanical engineering this difference is negligible, so that then

the frequency of the self-excited vibration is the natural frequency

of the system. Only when the negative clamping force is large

in comparison with the spring or inertia forces does the fre-

quency differ appreciably from the natural frequency. Such

\7
Time

(b) (c)

FIG. 207. The free motion of a system in various states of stability, (a)

Statically unstable; (6) statically stable but dynamically unstable; (c) statically

and dynamically stable.

cases, which are known as
"
relaxation oscillations," are discussed

on page 439. The steam engine is an example, as the nega-

tive damping force of the steam is very much greater than the

spring force (which is wholly absent). Hence, for the engine,

the frequency of vibration differs appreciably from the natural

frequency (which is zero).

A consideration of the energy relations involved will also

serve to give a better understanding. With positive damping,
the damping force does negative work, being always opposed to

the velocity; mechanical energy is converted into heat, usually

in the dashpot oil. This energy is taken from the vibrating sys-

tem. Each successive vibration has less amplitude and less

kinetic energy, and the loss in kinetic energy is absorbed by the

damping force. In the case of negative damping the damping
force (which is now a driving force) does positive work on the

system. The work done by that force during a cycle is converted

into the additional kinetic energy of the increased vibration.

It is clear that self-excited vibration cannot exist without an

extraneous source of energy, such as the steam boiler in our first

example. The source of energy itself should not have the alter-
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nating frequency of the motion. In most cases the energy comes
from a source without any alternating properties whatever, for

example, a reservoir of steam or water under pressure, a steady

wind, the steady torque of an engine, etc. However, there are

a few cases (discussed on page 449) where the source is alternating
with a high frequency, much higher than that of the vibration

it excites.

With a truly linear self-excited system the amplitude will

become infinitely large in time, because during each cycle more

energy is put into the system (Fig. 2076). This infinitely large

amplitude is contrary to observation. In most systems the

mechanisms of self-excitation and of damping exist simultane-

ously and separately. In Fig. 43 the energy per cycle is plotted

against the amplitude of vi-

bration. For a linear system
this energy follows a parabolic

curve since the dissipation per

cycle is TTCCO (see page 68).

If the negative damping force

is also linear, another parabola
will designate the energy input

per cycle. The system is self-

excited or is damped accord-

ing to which parabola lies A
. .

, ,
B c

,., T i, x. ,
Amplitude x

higher. In all practical Cases, FlG> 43.-Work per cycle performed

however, either the input or by a harmonic force and by a viscous

the damping, Or both, are
^-P-^orce for various amplitudes.

non-linear and the input and dissipation curves intersect.

If in Fig. 43 the amplitude happens to be OA, more energy
is put in than is dissipated, so that the amplitude grows.

On the other hand, if the amplitude happens to be OC,
there is more damping than self-excitation and the vibration

will decrease. In both cases the amplitude tends toward

OB where energy equilibrium exists. The motion thus executed

is an undamped steady-state free vibration.

Since the non-linearity of the damping or input forces leads to

great mathematical complication (see Chap. VIII), we usually

assume linear systems of very small amplitude and determine

whether the damping or the energy input is the stronger. If

the system is found to be unstable, it means merely that the

amplitude will begin to build up; how far this building up will

develop depends on the nature of the non-linearity.
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In electrical engineering, self-excited vibrations are of even greater impor-

tance than in the mechanical field. The electrical analogue of a forced

vibration was seen to be an LC circuit with an alternator all in series (Fig.

25, page 38). An electrical self-excited system is exemplified by an o&cil-

lating vacuum-tube circuit. The B-battery is the non-alternating source of

energy; the frequency is determined by the L and C values of the plate cir-

cuit, and the negative damping or feed-back is supplied by the grid.

56. Mathematical Criterion of Stability. For single-degree-of-

freedom systems, such as are discussed in Sees. 57 to GO, a simple

physical reasoning usually suffices to show the negativity of the

damping constant c. Thus the criterion of dynamic stability

can be derived by physical rather than by mathematical means.

With systems of two or three degrees of freedom, a physical con-

ception is always very helpful but usually does not give a com-

plete interpretation of what happens. A mathematical approach
is necessary, and this involves at first the setting up of the differ-

ential equations of the problem. As long as we deal with small

vibrations (and thus disregard any non-linearities that may
exist), the equations are all linear and of the second order, of the

type (52) or (89). Their solution, as usual, is found by assuming

(159)

where s is a complex number the real part of which determines

the damping and the imaginary part of which is the natural fre-

quency. Substituting (159) into the differential equations of

the free vibration transforms these equations into a set of n

homogeneous, linear algebraic equations in the (complex)
unknowns ximlix . . . xnm&*. A process of algebraic elimination

is then performed with the result that one equation is obtained

which does not contain any of these variables. This equation,
known as the

"
frequency equation/

7

is generally of t,he degree
2n in s. Thus, for a two-degree-of-freedom system we obtain

a quartic; for a three-degree-of-freedom system we obtain a

sixth-degree equation, etc.

An algebraic equation of degree 2n in the variable s has 2n
roots or 2n values of s. Real roots of 5 would lead to terms e

st

in the solution, which rarely occur in ordinary vibrating systems
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(Fig. 34, page 52). The roots of s are usually complex and then

they always occur in conjugate pairs:

Si = pi + jqi

$4 = P*
-~

,?<?2

The solution of the first differential equation is

From Eqs. (21), (23), and (24), page 53, we know that these

terms can be combined by pairs as follows:

Cie lt + C2e
Sllt = e plt (A sin qj + B cos qd)

so that the imaginary part of s is the frequency, and the real

part of s determines the rate of damping. // the real parts of

all the values of s are negative, the system is dynamically stable; but

if the real part of any one of the values of s is positive^ the system is

dynamically unstable.

Therefore the stability can be determined by an examination

of the signs of the real parts of the solutions of the frequency

equation. It is not necessary to solve the equation, because

certain rules exist by which from an inspection of the coefficients

of the equation a conclusion regarding the stability or instability

can be drawn. These rules, which were given by Routh in 1877,

are rather complicated for frequency equations of higher degree,

but for the most practical cases (third and fourth degree) they are

sufficiently simple.

Let us consider first the cubic equation

s3 + A 2s
2 + Ais + A, =

(160)

which occurs in the case of two degrees of freedom where one

mass or spring is zero (in a sense one and one-half degrees of

freedom). If its roots are $1, s2 ,
and s 3 , (160) can be written

(S Si) (S S2)
'

(S S3) =0
or

= (161)
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A comparison with (160) shows that

s 3 )

(162)

One of the three roots of a cubic equation must always be real,

and the other two are either real or conjugate complex.

Separating the roots s 1; s 2 ,
s 3 into their real and imaginary parts,

we may write

Substituted into (162) this leads to

A 2
= -fai + 2p 2

= 2Plp 2 + p\ + q\\ (163)
= -Pi(p

The criterion of stability is that both p\ and p 2 be negative.

It is seen in the first place that all coefficients A 2 , A\, and A must

be positive, because, if any one of them were negative, (163)

requires that either pi or p 2 ,
or both pi and p 2 ,

must be positive.

This requirement can be proved to hold for higher degree equa-
tions as well. Hence a frequency equation of any degree with

one or more negative coefficients determines an unstable motion.

Granted that the coefficients Ao, Ai, and A 2 are all positive,

the third equation (163) requires that pi be negative. No
information about p 2 is available as yet. However, on the

boundary between stability and instability, p 2 must pass from a

positive to a negative value through zero. Make p 2
= in

(163) and

A 2
= -p!

(164)

These relations must be satisfied on the boundary of stability.

By eliminating pi and #2 ,
we find

AQ = AiAz

We do not know yet on which side of this relation stability exists.

That can be found in the simplest manner by trying out one

particular case. For example let S L
= 1 and s 2(3

= 1 j,
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which obviously is a stable solution. Substitution in (163)

gives

so that
A 2

= 3

complete criterion for stability of the cubic (160) is that all

coefficients A are positive and that

AiA 2 > Ao (165)

Practical examples of the application of this result are given in

Sec. 61 and 62.

Next consider the quartic

s 4 + A 3s
3 + A 2s

2 + A lS + Ao = (166)

for which the procedure is similar. Since a quartic can be

resolved into two quadratic factors, we may write for the roots

si = pi + jq

Sz = Pi jq

3
= Pi + jq

$4 = pz jq*

and substitute in (166), which leads to

(166a)

q\ q\

A, = -2Pl
Ao =

(Pi +
(p\ + q*)

9?) (p\ +
2p 2 (pl + (167)

The requirement for stability is that both pi and 7^2 be nega-

tive. Substitution of negative values of pi and p% in (167) makes

all four A's positive, so that the first requirement for stability

is that all coefficients A be positive. Granted that this is so,

the first equation of (167) requires that at least one of the quanti-

ties pi or p 2 be negative. Let pi be negative. We still need

another requirement to make p% also negative. On the boundary
between stability and instability, p% =

0, which substituted in

(167) gives

2piq%

(p\ + ql)ql

(168)

being four equations in the three variables pi, q\, and #2-

Elimination of these variables leads to a relation between the
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To find out on which side of this equality stability exists, we

try out a simple stable case, for example,

si >2
= -1 j s 3 ,4

= ~ 2 2J

which, on substitution in (167), gives

A 3
= 6 A 2

= 18 Ai = 24 Ao = 16

so that

AiAoAs > Al + A'Ao

The complete criterion for stability of the quartic (166) is that

all coefficients A are positive and that

AiA 2A 3 > Al + A'Ao (169)

Applications of this relation are made in Sec. 61, 63, and 64.

Systems with three degrees of freedom generally have a sextic

for their frequency equation and in degenerated cases a quint ic.

In such cases there are three real parts of the roots s, and besides

the requirement of positive signs for all coefficients A there are

two other requirements, each of which is rather lengthy. For

further information in this field the reader is referred to the origi-

nal work of Routh, mentioned in the Bibliography.
57. Instability Caused by Friction. There are a number of

cases where friction, instead of being responsible for positive

damping, gives rise to negative damping. One of the well-

known examples is that of the violin string being excited by a

bow. The string is a vibrating system and the steady pull of

the bow is the required source of non-alternating energy. The
friction between the string and the bow has the characteristic

of being greater for small slipping velocities than for large ones.

This property of dry friction is completely opposite to that of

viscous friction (Fig. 208). Consider the bow moving at a

constant speed over the vibrating string. Since the string moves
back and forth, the relative or slipping velocity between the

bow and the string varies constantly. The absolute velocity
of the bow is always greater than the absolute vibrating velocity
of the string, so that the direction of slipping is always the same.

However, while the string is moving in the direction of the bow,
the slipping velocity is small and consequently the friction force

great; but during the receding motion of the string, the slipping

velocity is large and the friction small.

We note that the large friction force acts in the direction of

the motion of the string, whereas the small friction force acts
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against the motion of the string. Since the string executes a

harmonic motion, the work done by the friction force during

one-half stroke in 2F#
,
where

F is an average value of the

friction force and X Q the ampli-

tude of vibration. Since F
\

if greater during the forward

stroke (when the friction does

positive work on the string)

than during the receding stroke

(when negative work is done),

the total work done by the fric-
Velocity -*-

tion over a full cycle is positive -p ono ^ . ,
. .

r ra. JOS. Damping forces with posi-
and hence the Vibration \Vlll tively and negatively sloping char-

build Up.
acleristics.

In mechanical engineering certain vibrations, usually referred

to as "chatter," can bo explained in the same manner. The

cutting tool of a lathe may chatter and also the driving wheels

of a locomotive. When starting a heavy train these drivers are

sometimes seen to slip on the rails. While, as a rule, the slip-

ping takes place in a uniform manner, "chattering slip" has been

sometimes observed. Besides the major slipping rotation, the

wheels then execute torsional oscillations which may cause very

large alternating stresses in the crank pins and side rods. A nega-
tive slope (Fig. 208) of the friction-velocity characteristic between
the wheels and the rails is essential for this phenomenon.
The phenomenon may be observed in many homely examples

such as the door that binds and screeches when opened, and the

piece of chalk that is held perpendicular to the blackboard while

writing. Another case is the familiar experiment in the physics

laboratory of rubbing the rims of water glasses with a wet finger

to cause them to sing.

A torsional vibration of this type has been observed in ships
'

propeller shafts when rotating at very slow speeds (creeping

speeds) . The shaft is usually supported by one or two outboard

bearings of the lignum-vitae or hard-rubber type, which are

water-lubricated. At slow speeds no water film can form and the

bearings are "dry," causing a torsional vibration of the shaft at

one of its natural frequencies, usually well up in the audible range.
The propeller blades have natural frequencies not too far removed
and act as loud-speakers, making this "starting squeal" detect-

able at great distances under water.
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A striking technical example of the self-excited vibrations

caused by dry friction is shown in Fig. 208a which represents a

drawbridge of rather large dimensions. The bridge deck a is

counterbalanced by a large concrete counterweight b which,

together with its guiding links and the supporting tower, forms a

parallelogram as shown.

After about a year's operation one of the towers of this

bridge broke and on inspection the failure proved to be unmis-

takably caused by fatigue. Experiments with the other half

of the bridge, still standing, showed that, when the deck was

raised and lowered, violent vibrations of the whole structure

took place at a very slow frequency, of about six cycles during
the entire time of raising the bridge deck. The explanation was

found in the bearing c which carries the tremendous load of tho

counterweight b. Whatever grease hap-

pened to be in this bearing at the begin-

ning of the life of the bridge was soon

squeezed out and the bearing was found

to be entirely dry. The dry-friction

chatter thus caused was sufficiently vio-

lent to cause the failure.

Obviously the remedy for this case con-

sists in proper grease cups, which have

to be kept in proper order and must be

inspected daily.

Another interesting phenomenon
caused by a

"
negative characteristic" is

shown in Figs. 2086 and c. A fan is blow-

ing air into a closed chamber A of fairly large; dimensions and the

air is leaking out of that chamber through definite orifices B. The

practical case of which Fig. 2086 is a schematic representation was

a boiler room in a ship which was kept under a slight pressure by
the fan, and the orifices B were the boilers and stacks through
which the air was forced out. It was observed that for a certain

state of the opening B, i.e., for a certain steam production, vio-

lent pressure variations of a frequency of about one cycle per
second took place in the boiler room.

The explanation is partly given by Fig. 208c, which is the

characteristic curve of a blower. The volume delivered by the

blower is plotted againt the pressure developed by it. The point
P of the characteristic obviously refers to the condition where the

orifice B is entirely closed so that no volume is delivered, but a

'/////,

FIG. 208a. Draw-
bridge which failed struc-

turally because of a nega-
tive friction characteristic

in the pin bearing c.
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maximum of pressure is developed. The point Q of the charac-

teristic refers to operation of the fan in free air where no pressure

is developed but a large volume is delivered. By changing the

opening at B in Fig. 2086, operation of the fan can be secured

over a range in Fig. 208c from the point P almost down to Q. It

is seen that most of this curve has a slope descending from P to

Q but that there is a short section between C and D in which the

B

I

FIG. 2087>.~ Fan blowing air through a long tube into a chamber A.

slope is reversed. This is a characteristic of the construction of

the fan and it is very difficult to build a fan in which the charac-

teristic curve drops from P to Q with the slope in one direction

only, and at the same time have good efficiency in the region

between Q and 7), for which the fan is built primarily.

Volume
FIG. 20Sc. Pressure-volume characteristic of a fan. At point P the dis-

charge opening is closed, while at Q the fan discharges freely into the open
atmosphere. Between C and D the slope of the characteristic is reversed, causing
unstable operation.

It can be shown that operation near the point A in Fig. 208c

is stable, whereas operation near the point B is unstable and will

lead to the surging condition just described. Imagine operation

near the point A and let the pressure in the chamber of Fig. 2086

be slightly higher than normal. This means a decreased volume

delivered by the fan, as can be seen from Fig. 208c. Thus an
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output of the fan less than normal will cause the pressure in the

chamber to drop again, and since the pressure was higher than

normal, the equilibrium condition tends to be restored. Similarly,

if by an accident the pressure were temporarily lower than normal

at A, the volume delivered would be increased, which tends to

boost the pressure and restore the equilibrium.

On the other hand, consider operation near the point B of Fig.

208a. If now the pressure in the chamber is higher than normal

instantaneously, the fan delivers more volume than in the normal

condition and thus increases the pressure in the chamber still

more. Therefore, if the pressure in the chamber is increased by

accident, the fan operation will immediately increase it still more,
which means an unstable condition.

Imagine an operation which consists of a sliding up and down
of the point B in Fig. 208c along the characteristic curve. Start-

ing from the normal position of B and rising along the curve to

the maximum height, then coming back down again to the normal

position of B, constitutes a period in which more than the usual

volume is delivered to the chamber. Consequently at the end

of this period the pressure in the chamber will be higher than

normal, and we find ourselves at the point B f

'. Now going from

B' down along the curve to the bottom position, and back up
again to the normal position, is a period in which less than the

normal volume is delivered, so that at the end of this period the

pressure in the chamber will be less than normal; i.e., we are at

the point B". Consequently, instead of sliding up and down
the characteristic curve, we describe a closed curve of some ellipti-

cal form in a counterclockwise direction. The work done

by the air on the fan is the area of this closed curve and, since it is

run through in a counterclockwise direction, this work is negative.

Consequently, the work done by the fan on the air is positive and

the phenomenon is seen to be unstable.

An important case of dry-friction excitation, which repeatedly
has led to serious trouble in practice, is the so-called "shaft

whipping" caused by a loose guide or by a poorly lubricated

bearing with excessive clearance. In Fig. 209 let the circle A
designate the inside of a bearing or guide and B the cross section

of the vertical shaft rotating in it. Let the shaft be rotating
clockwise and be temporarily deflected from its equilibrium posi-

tion in the center of A so that it strikes A at the left. On account

of its rotation the shaft sets up friction forces F and F', of which
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F is the force acting on the shaft and F f = F acts on the guide
or bearing. The force F can be replaced by a parallel force of

equal magnitude through the center of the shaft B and a couple
Fr. The couple acts merely as a brake on the shaft, which is

supposed to be driven at uniform speed, so that the only effect

of the couple is to require some increase in the driving torque
and is inconsequential. The force F through the center of the

shaft, however, drives it downward or rather in a direction tan-

gent to the circle A. The direction of F
changes with the position of the shaft B in A,
so that the shaft will be driven around as

indicated by the dotted circle. It will be

noticed that the shaft is driven around the

clearance in a direction opposite to that of

its own rotation. If the shaft rotates in the

center of the guide without touching it, the FIG. 209. Shaft

shaft is stable; but as soon as it strikes the
1̂ (

?t

r

|on
caused by dry

guide for any reason, the shaft is set into

a violent whirling vibration.

This effect is present in many modifications. A very simple
model for demonstrating it is as follows. Take a shallow conical

cup (Fig. 210) and a steel ball

of about 1 in. diameter. Spin
the ball between the fingers

at the bottom of the cup.

This position is an unstable

one for the rotating ball

FIG. 210. The ball whirls around on because, if it is accidentally
account of the friction at the point of

displaced a very gmall dis-
contant. ^ J

tance from the center of the

cup, the point of contact with the cup no longer coincides with the

(vertical) axis of rotation. There will be slip and a friction

force perpendicular to the paper tending to drive the ball around

in a circle. The direction of rolling of the ball will be opposite

to the direction of spin.

The phenomenon is Hot restricted to cylindrical guides or

bearings but has also been observed on thrust bearings. Figure

211 represents schematically a thrust bearing and shaft, of which

the equilibrium position is central and vertical. Suppose that

the elastic system of which the shaft forms a part is capable
of a natural mode of motion whereby the shaft center line whirls
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Collar

LZZI

around the vertical with an eccentricity <5 and an inclination a.

The center A of the collar disk describes a circle of radius 6 and

the shaft a cone of apex angle 2a. This mode of motion will be

self-excited by friction, because during the vibration the collar

rests on the bearing on one side only. This causes a tangential

friction force on that side urging the point A around the center

line in a direction opposite to that of the rotation of the collar

disk. The obvious way to prevent this sort of disturbance is

to make the bearing support so flexible that, in spite of the angular

deviation, the pressure on the various parts of the bearing remains

uniform.

A very instructive model demon-

strating this effect may be built as

follows (Fig. 212). A small motor A
carries a disk B on the end of its

horizontal shaft and is supported very

flexibly on three springs lying in a

plane through the center of gravity

and perpendicular to the shaft.

When running, this motor is capable

of a large number of natural modes

of vibration, two of which are

particularly interesting. They are
FIG. 21 1.-

:
Whirl on account of illustrated by Fig. 212c and also by

dry friction in a thrust bearing.

Fig. 189 (page 321.) The shaft de-

scribes a cone characterized by d and a and whirls either in the

direction of rotation or opposite to it. The natural frequencies

of these two modes of motion are shown in Fig. 190.

Imagine a piece of felt or paper C held against the front side

of the disk near its circumference. It will strike (or press hard)

when a (and consequently d) is just in the position shown in

Fig. 2126*. Assume B to be rotating clockwise in Fig. 212a.

The obstacle C will cause a friction force tending to push the

disk down. As in the argument given with Fig. 209, this friction

force is replaced by a retarding couple and a force through the

shaft center. The retarding couple merely retards the motion

slightly, but the force through the center of the disk pushes that

center down, i.e., in a direction of clockwise whirl. Thus
friction on the front side C of the disk will encourage a precessional

motion in the same direction as the rotation.
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A

-J 6 U-
(c)

oU

On the other hand, if D is pressed against the back of the

rotating disk B, it will strike and cause friction when a and d

have reached the position just opposite to that of Fig. 212c.

The friction again kicks the disk down, because the direc-

tion of rotation is still clockwise.

This downward force now excites

a counterclockwise whirl, because

the deflection d is opposite to that

shown in Fig. 212c.

The experiment consists of rubbing
the front of the disk and noticing

the self-excitation of the mode of

vibration of rather high frequency
with the precession in the same

direction as the rotation. Then, tak-

ing the rub from the front and

applying it to the back side, this

motion is scon to damp out very

fast, and the second mode (preces-

sion against the rotation) with a

much slower frequency is seen to

build up. This latter motion can be

damped very effectively by again

rubbing the front of the disk. The
difference in the two frequencies is

caused by the gyroscopic action of

the disk as explained on page 321.

58. Internal Hysteresis of Shafts

and Oil-film Lubrication in Bearings

as Causes of Instability. Another

highly interesting case of self-excited

vibration is that caused by internal

hysteresis of the shaft metal. Hys- (a)

teresis is a deviation from Hooke's Fiu 212.- --Seif-excitedwhiri caused11 j. by friction on the disk B.
stress-strain law and appears in most

materials with alternating stresses. In the diagram 213a

Hooke's law would be represented by a straight line, and

a fiber of a vibrating shaft, which experiences alternately

tension and compression, should move up and down that line

between Pi and P 3 . Actually the stress-strain relation is repre-

sented by a long narrow elliptic figure which is always run through

(b)

C-1
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in a clockwise direction. The ellipse as shown in Fig. 213 has

its width greatly exaggerated; in reality it is so narrow that it

can hardly be distinguished from the straight line PiP 3 .

Consider a vertical rotating shaft in two bearings with a central

disk as shown in Fig. 2136. During the whirling motion the

center of the shaft >S describes a circle about the point B on the

bearing center line. The point B is the normal or equilibrium

position of S when no whirl exists. Figure 213c shows a cross

section of the middle of the shaft, PiQiP2P^P^ being the outline

of the shaft and the dotted circle being the path of S during the

Fi. 213. Shaft whirl caused by interim! hysteresis.

whirl. The deflection BS of Fig. 213c is a practical possibility;

that of Fig. 2136 is enormously exaggerated.

It is assumed that the rotation of the shaft and the whirl are

both clockwise as shown. The shaft is bent, and the line AA
divides it in two parts so that the fibers of the shaft above AA are

elongated and those below AA are shortened. The line AA
may be described as the neutral line of strain, which on account

of the deviation from Hooke's law does not coincide with the

neutral line of stress.

In order to understand the statement just made consider the

point PI in Fig. 213c which may be thought of as a red mark on

the shaft. In the course of the shaft rotation that red mark

travels to Q\, P2 , P3 ,
etc. Meanwhile the shaft whirls, whereby

S and the line AA run around the dotted circle. The speed of

rotation and the speed of whirl are wholly independent of each

other. In case the speed of rotation is equal to the speed of

whirl, the red mark PI will always be in the elongation of the line

BS, or in other words, PI will always be the fiber of maximum
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elongation. In case the rotation is faster than the whirl, PI will

gain on S and consecutively reach the position P2 (of no elonga-

tion), P 3 (of maximum shortening), etc. On the other hand, if

the rotation is slower than the whirl, PI will go the other way
(losing on 5) and go through the sequence PI, P 4 ,

P 3 ,
P 2 ,

etc.

First, investigate a rotation faster than the whirl. The state of

elongation of the shaft fibers of the various points PI, P2 ,
P 3,

P 4 of

Fig. 213c is indicated by the same letters in Fig. 213a. In

Fig. 213a the point Qi of no stress lies between PI and P2 . The

point Qi is now drawn in Fig. 213c and the same is done with

Qz between P 3 and P 4 . Thus the line Q\Qz is the line of no stress

(neutral line of stress) and all fibers above QiQ2 have tensile

stress while those below QiQ 2 have compressive stress. The stress

system described sets up an elastic force P, as shown. This

elastic force P has not only a component toward B (the usual

elastic force) but also a small component to the right, tending
to drive the shaft around in its path of whirl. Thus there is a

self-excited whirl.

The reader will determine for himself the truth of the state-

ment that, if the rotation is slower than the whirl, the inclination

of QiQz reverses and the elastic force has a damping instead of a

driving component.
The whirling motion is determined primarily by the elastic

force of the shaft toward the center B combined with the inertia

forces of the disk (see page 321) and therefore takes place with

the natural frequency. The very small driving component of the

elastic force merely overcomes damping. Internal hysteresis

of the shaft acts as damping on the whirl below the critical speed,

whereas above that speed a self-excited whirl at the critical fre-

quency may build up.

Internal hysteresis in the shaft material is usually very small,

but a more pronounced hysteresis loop is found in cases where

actual slipping occurs, as in loose shrink fits or other joints. Thus

a shaft with a loosely shrunk disk will probably develop a whirl

at the natural frequency above the critical speed.

A self-excited vibration known as oil whip is caused by certain

properties of the oil film in generously lubricated sleeve bearings.

In order to understand this phenomenon, it is necessary to know

that a horizontal shaft rotating in a counterclockwise direction

in an oil-film lubricated bearing does not seek a central position
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but is deflected somewhat to the right (Fig. 214). The direction

of this deviation can easily be remembered by noting that it is

opposite to the direction in which one would expect the journal

to climb. Since on such a journal the load or \veight W is acting

downward, as indicated in the figure, the resultant P of the oil

pressures on the journal is equal and opposite to W and makes a

certain angle a with the line OA connecting the center of the

bearing and the center of the journal.

Consider a vertical guide bearing with a shaft in it. If there

are no lateral loads acting, the shaft will seek the center of the

bearing. If, for some reason, the shaft starts

whirling around in the bearing, it will occupy
an eccentric position at any instant. More-

over, if during that whirling the oil pressures

are the same as in Fig. 214 (where W now
must be replaced by a centrifugal force in

the direction OA), there is no equilibrium

between P and the centrifugal loading, but

there is a small resultant force tending to

drive the journal around in the bearing in a

., counterclockwise direction. Thus the oil-
FIG. 214. Oil- ... ,

film lubrication in a pressure distribution will encourage or seli-

bearing causes excite a whirl in the direction of rotation but
whirling because the . , . . . . ...

weight W and the will damp a counteiTotating whirl, if one ever
axis of symmetry se g {n<
OA are not in line. ,-,,

*

j. i i 1^1 i j.

Ihere remains to bo considered the condition

under which the oil-film pressures during the whirling will be

the same ns in the steady-state case for a horizontal bearing

with gravity loading. Consider two extreme cases, namely
those in which the ratio of the angular velocity of whirl to the

angular velocity of rotation is either very small or very great.

In the first case the shaft makes say 100 revolutions while the

whirl moves forward 5 deg. It is clear that such a slow drift can

have no effect on the pressure distribution, so that for a slow whirl

the succession of steady states actually occurs and the oil whip
will develop. In the second case the journal center whirls around

while the journal itself hardly rotates. Then, of course, no oil

film develops at all and the shaft merely vibrates in a bath of

oil, which effectively damps the motion.

Therefore we recognize that for whirl frequencies which are

slow with respect to the angular velocity of rotation the oil
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whip develops, while for comparatively fast whirls all vibratory
motions are damped. The ratio of owation/Whiri, at which the

damping passes from a positive value to a negative one, can be

determined only by experiment.
It has been found in this manner that if the co of the whirl is

equal to or smaller than half the co of the shaft (i.e., if the shaft

runs faster than twice its critical speed), the oil whip develops.
This constitutes a serious trouble for high-speed machines with

vertical shafts in oil-lubricated guide bearings, which is very
difficult to overcome.

An interesting justification for this result is due to Hagg (see

Bibliography). In Fig. 21 4a let the radial clearance be e and the

radius of whirl be 5, the diameter of the 1

journal D. For a slow whirl, the velocity

distribution across the oil film is linear,

and, with the journal peripheral velocity

being V, the volume of oil (per unit shaft

V
length) transported up at A is -

(e d),

while the volume passing
y

through B is -

(e + 5).

i

downward

Fjo> 214a>

Thus assuming no end leakage, the net transport of oil into the

lower half of the film is Vd. Now the journal whirls with a

frequency / and the whirl velocity v of the journal center is

v f
- 2ir8. The area of the lower half of the oil film increases

at the rate vD =
f2irdD. If the whirl frequency is slow enough,

the rotation of the shaft will wipe enough oil into the lower half

of the film to fill the cavity caused there by the upward whirling

motion. For faster whirl the rotation will not transport enough
oil and the film breaks. This occurs therefore at Vd =

f2irbD.

The peripheral velocity V is related to the shaft speed by V =
-jrD -

r.p.s. Substituting this we obtain

r.p.s.
; 2

This shows that if the whirl is faster than half the shaft speed,

the oil film breaks down and no self-excitation can take place.

In the presence of end leakage this breakdown will occur at a

whirl frequency below half the shaft rotation.

Comparing Fig. 214 with Fig. 209 we note that while for dry



366 SELF-EXCITED VIBRATIONS

friction the direction of whirl is opposite to that of shaft rotation,

the two directions are the same for oil-film excitation.

For horizontal bearings with a certain loading, the oil whip

appears also for speeds above twice the critical. The explanation
is along the same lines as for the vertical shaft. During the whirl

the oil pressures will not have a purely radial direction but will

have a tangential component as well. That tangential compo-
nent may be driving during a part of the whirling cycle and

retarding during another part. For excitation it is necessary

merely that the total work done by the tangential force compo-
nent on the motion during a whole whirling cycle be positive, i.e.,

that the average value of the tangential force component be

positive or driving.

59. Galloping of Electric Transmission Lines. High-tension

electric transmission lines have been observed under certain

weather conditions to vibrate with great amplitudes and at a

very slow frequency. The line consists of a wire, of more or less

circular cross section, stretched between towers about 300 ft.

apart. A span of the line will vibrate as a half wave (Fig. 109a)

with an amplitude as great as 10 ft. in the center and at a rate of

1 cycle per second or slower. On account of its character this

phenomenon is hardly ever described as a vibration but is com-

monly known as
"
galloping." It has never been observed in

countries with a warm climate, but it occurs about once every
winter in the Northern states and in Canada, when the tempera-
ture hovers around 32F. and when a rather strong transverse

wind is blowing. In most cases sleet is found on the wire. A
rough calculation shows that the natural frequency of the span
is of the same order as the observed frequency. The fact that,

once started, the disturbance is very persistent and continues

sometimes for 24 hr. with great violence makes an explanation on

the basis of "forced" vibration quite improbable. Such an

explanation would imply gusts in the wind having a frequency

equal to the natural frequency of the line to a miraculous degree

of precision. For example, letting T = 1 sec., if in 10 min.

there were not exactly 600 equally spaced gusts in the wind but

601 instead, the vibration would build up during 5 min. and then

be destroyed during the next 5 min. To keep the line vibrating
for 2 hr. would require an error in the gustiness of the wind of less

than 1 part in 7,200, so that this explanation may be safely

dismissed,
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Wind

We have a case of self-excited vibration caused by the wind

acting on the wire which, on account of the accumulated sleet,

has taken a non-circular cross section. The explanation involves

some elementary aerodynamic reasoning as follows.

When the wind blows against a circular cylinder (Fig. 215a),

it exerts a force on the cylinder having the same direction as the

wind. This is evident from the symmetry. For a rod of non-

circular cross section (Fig. 2156) this in general does not hold

true, but an angle will be included between the direction of the

wind and that of the force. A well-

known example of this is given by an

airplane wing where the force is nearly

perpendicular to the direction of the

wind (Fig. 215c).

Let us visualize the transmission line

in the process of galloping and fix our

attention on it during a downward
stroke. If there is no wind, the wire

will feel air blowing from below

because of its own downward motion.

If there is a horizontal side wind of

velocity V, the wire, moving down-

ward with velocity v, will experience

a wind blowing at an angle tan- 1 v/V
slightly from below. If the wire has a

circular cross section, the force exerted

by that wind will have a small up-

ward component (Fig. 210). Since

the wire was moving downward this

upward component of the wind exerts a force in opposition to the

direction of motion of the wire and thus damps it. However, for

a non-circular cross section, it may well be that the force exerted

by the wind has a downward component and thus furnishes nega-
tive damping (Fig. 2156).

Considering the conditions during the upward stroke of the

vibration, it can be seen in a similar manner that the relative

wind felt by the wire comes obliquely from above, and the force

caused by it on a circular wire has a downward component
which causes damping. For a non-circular section, it may be

that the force has some upward component, and this component
being in the direction of the motion acts as a negative damping.

;. 215. The diioctions

of the wind iind the force it

causes include an angle for

iioiisymmetrical cross sections.
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If the sleet on the wire gives a cross section exhibiting the rela-

tion between the wind and force directions shown in Fig. 2156,

we have a case of dynamic instability. If by some chance the

wire acquires a small upward velocity, the wind action pushes
it even more upward, till the elastic or spring action of the wire

stops the motion. Then this elastic force moves the wire down-

ward, in which process the wind again helps, so that small vibra-

tions soon build up into very large ones.

There remains to be determined which cross sections are

dynamically stable (like the circular one) and which are unstable.

This brings us into the domain of aerodynamics, a science which

unfortunately is still very little developed. Usually all we can

do is to make a direct test, but in some very pronounced cases

wTfl
d

FIG. 21G. A horizontal side wind appears to come from below if the line moves
in a downward direction.

a qualitative reasoning may give information. The most

"unstable" section so far known is the semicircle turned with its

flat side toward the wind. Figure 217 shows such a section in a

wind coming slightly from above, corresponding to the upward
stroke of a galloping transmission line. The air stream leaves

the wire at the sharp edge at the bottom but can follow around the

upper sharp edge for some distance on account of the wind coming
from above in a slightly inclined direction.

The region indicated by dots is filled with very irregular

turbulent eddies, the only known property of which is that in such

a region the average pressure is approximately equal to atmos-

pheric. On the lower half of the circular surface of the cylinder

we have atmospheric pressure, &.#., the pressure of the air at some

distance away from the disturbance created by the line. Above
the section the streamlines curve downward. This means
that the pressure decreases when moving from a to &, which

may be seen as follows. Consider an air particle in a streamline.

If no force were acting on it, the particle would move in a straight

line. Since its path is curved downward, a force must be

pushing it from above. This force can be caused only by a
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a/

greater pressure above the particle than below it, so that the

pressure at a must be larger than at b. Since at a there is atmos-

pheric pressure (being far away from the disturbance), the pres-
sure at b must be below atmospheric. Thus the semicircular

section experiences an upward force on account of the pressure
difference below and above, and, since

the upward force is caused by a wind

coming from above, we recognize the case

of Fig. 217 as definitely unstable.

This may be shown by a simple experi-

ment. A semicircular bar of very light

wood (2 in. diameter and 15 in. long) is

suspended by four springs so as to have a

vertical natural frequency of about 6

cycles per second (Fig. 218). If sufficient

care is taken to reduce damping to a mini-

mum in the connections between the

springs and the frame or bar, the appara-
tus will build up vibrations with more

than one radius amplitude when placed in front of an ordinary

desk fan. The bar in this device is made as light as possible

Avhich, for a given frequency and amplitude, makes both the spring

force and inertia force small. The input force of the wind is

determined only by the shape and size of the bar and is indepen-
dent of the weight. Thus, by making the bar light, the ratio

FTO. 217. The flow of

air round a semicircular

cylinder.

FIG. 218. Apparatus for demonstrating transmission line galloping.

between the wind force and the spring force is made as great as

possible.

Another cross section which is known to be unstable is an

elongated rectangle exposed with its broad side to the wind. The

explanation is the same as for the semicircular bar (Fig. 219), only

the effect is less pronounced. It can be observed easily by means

of any flat stick held in the hand at one end and dipped vertically

into a tub of water. When the stick is pulled through the water

with the broad side of the rectangle perpendicular to the motion,
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it moves in zigzag fashion. On the other hand, when pulled

with the narrow side perpendicular to the motion, it moves for-

ward quite steadily.

If, instead of mounting the unstable section in springs as shown
in Fig. 218, it is pivoted in the middle and placed before a fan

(Fig. 220), we have a case of self-excited rotation. While the

apparatus stands still, the wind evi-

dently exerts no torque on it, but, as

soon as it starts rotating, the torque
of the wind urges it on in the same
direction. The direction of rotation

naturally is determined only by the

direction at the start, i.e., by accident.

This very interesting toy is known as

Lanchester's
"
aerial tourbillion."

In aerodynamic work it is customary
to resolve the total air force on an

object into two components:
a. In the direction of the wind (the

FIG. 219. The effect for a

rectangle is less pronounced
than that for a semicircle.

drag or resistance D).

6. Perpendicular to the wind (the lift L).

These two forces can be measured easily with the standard wind-

tunnel apparatus.
Let Fig. 221 represent a section moving downward in its vibra-

tional motion so that the wind appears to come from below at an

angle a = tan" 1
v/V. The lift and drag forces L and D have

vertical upward components (i.e., com- .

ponents opposite to the direction of the
i I I I

*

motion) of L cos a and D sin a. The total
.ill

upward damping force F of the wind is

F = L cos a + D sin a

We are not interested in the force F
itself but rather in dF/dct, i.e., in the varia-

tion of the upward force with a variation in

a or in v/V. Assume that F has a large value and that dF/da is

zero. The result would be that part of the weight of the line

would not be carried by the towers but by the wind directly.

Any vibration or galloping of the line would not change the wind-

carried weight (dF/da = 0) so that the vibration would not be

affected. On the other hand, assume that dF/da is negative,

FIG. 220. The Lan-
chestor tourbillion.
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which means that the upward wind force increases for negative a

and decreases for positive a. Then clearly we have the case of

an encouraging alternating force as

already explained. The criterion for

dynamic stability is

and

dF
da (unstable)

=- > (stable)

Fie. 221. The total wind
force resolved into a lift L
and a drag D.

In performing the differentiation on

(170), it is to be noted that, for small

vibrations, v is small with respect to V
y
so that a is a small angle

of which the cosine equals unity and the sine is negligible with

respect to unity:

dF dL T . . dD . . _
I =

~T~
" cos a L sin a H r- sin a + D cos a

da da eta

/L

Thus the system is unstable when

dL D <0 (171)

The values of the lift and drag of an arbitrary cross section can-

not be calculated from theory but can be found from a wind-

tunnel test. The results of such tests are usually plotted in the

form of a diagram such as Fig. 222. In words, (171) states that

A section is dynamically unstable if the negative slope of the lift

curve is greater than the ordinate of the drag cutve.

In Fig. 222 it is seen that an elongated section is always stable

when held "along" the wind (a =
0), whereas it is usually

unstable when held "across" the wind (a = 90 deg.). A trans-

mission line which is being coated with sleet at approximately

freezing temperature has the tendency to form icicles that are

more or less elongated in a vertical direction, corresponding to

a = 90 deg. in the diagram.
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At this angle, for small amplitudes of vibration (say varying

between 89 and 91 deg.), there is energy input during a cycle.

This will increase the amplitude, and the increase will continue

so long as there is an excess of energy furnished by the wind.

At some large amplitude this excess of energy will become zero

so that we have energy balance and reach the final amplitude. In

Fig. 222 this will take place presumably at a varying between

30 and 150 deg., say. Near the ends of each stroke, energy is

put in; but in the middle of the stroke, energy is destroyed by

FIG. 222. Lift and drag as a function of the angle of attack for an elongated,

symmetrical cross section.

damping, since
-j-
+ D is larger than zero at these places (see

also Fig. 268, page 440). The final amplitude can be found by a

process of graphical or numerical integration over the known
curve of the diagram, in the manner already indicated.

Thus far in the discussion the system has been assumed to be

one of a single degree of freedom, which certainly is not the

case with a span of transmission line, of which each point vibrates

with a different amplitude (large in the center of the span and

small near the towers). Since the wind force is small in compari-
son to the elastic and inertia forces of the vibration, the form of

the motion is the same as if the wind force were absent; in other

words, the line vibrates in its first natural mode. The final

amplitude can be determined by finding the energy input for the

whole span. If for a certain assumed amplitude this energy
comes out positive, the amplitude assumed was too small;
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whereas, if the energy comes out negative (damping), the assumed

amplitude was too great. The determination of the energy
involves a double graphical integration, first with respect to a
for each point of the line and then with respect to the position x

along the line. This process is straightforward and involves no

difficulties, though it may require much time.

The phenomenon discussed so far is one of very slow frequency
and large amplitude in the transmission line. It has been

observed but rarely, where the weather conditions brought

together sleet deposits as well as a lateral wind of considerable

strength. There is another case of vibration of transmission lines

characterized by high frequency and small amplitude which is

much more common and for the occurrence of which only a lateral

FIG. 222a. Kdrmdn vortices in a wake.

wind is necessary. The explanation of this phenomenon Is found

in the so-called "Karman vortex trail/
7

illustrated in Fig. 222a.

When a fluid flows by a cylindrical obstacle, the wake behind

the obstacle is no longer regular but in it will be found distinct

vortices of the pattern shown in Fig. 222a. The vortices are

alternately clockwise and counterclockwise, are shed from the

cylinder in a perfectly regular manner, and are associated with

an alternating sidewise force. This phenomenon has been

studied experimentally and it has been found that there is a

definite relation among the frequency /, the diameter of the

cylinder D, and the velocity v of the stream, expressed by the

formula fD/v = 0.22, or the cylinder moves forward by about

five diameters during one period of the vibration. It is seen

that this fraction is dimensionless and that therefore the value

0.22 is independent of the choice of units. The figure 0.22 is not

a very rigid quantity. It depends somewhat on the velocity of

flow but the value always lies between say 0.18 and 0.27.

As an example, consider a transmission line of 1 in. diameter

exposed to a sidewise wind of 30 m.p.h. The frequency of eddy
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shedding thus is 0.22 X 528 = 116 cycles per second. If a

transmission line vibrates at this frequency, the span will be

subdivided into many waves; i.e., the span will be excited at one

of its high harmonics. Vibrations caused by this phenomenon
have been responsible for fatigue failures in many a transmission

line. On account of the high frequency and comparatively small

amplitude, it is possible to use friction dampers of the Lanchester

type with advantage. Telephone wires have considerably smaller

diameter and consequently higher frequency, which is the expla-

nation of the musical tones given off by them.

An example of technical importance has been discussed in the

literature recently. A steel smokestack of 11 ft. diameter had a

natural frequency of cantilever vibration of about 1 cycle per

second. It was found that with a wind of about 40 m.pih. the

stack would sway violently in a direction perpendicular to that

of the wind, which necessitated the construction of guy wires.

Checking on the Kiirmdn frequency with the above formula gives

a constant of 0.19, which differs but slightly from the constant

given above.

Submarine periscopes, being cylindrical cantilever beams of

some 20 ft. exposed length and some 8 in. diameter, have shown

vibrations of considerable amplitude in a direction perpendicular
to that of the motion through the water when the submarine was

proceeding submerged, with only the tip of the periscope pro-

truding from the water. Resonance of the Kdrm&n frequency
with the natural cantilever frequency of the periscope in many
instances has occurred at service speeds with the result of blurring

the picture scon by the observer.

Another phenomenon of considerable practical importance is

that of the
"
singing propeller.

"
Ships' propeller blades have

been observed to go into a violent vibration at one of the natural

frequencies and in one of the natural modes. Usually the fre-

quency is in the audible range, say 200 cycles per second, and the

resulting noise is so great that it makes the aft spaces in the ship

unlivable. The noise also carries through the water so that the

ship can be detected at great distances by underwater listening

devices, which in wartime is not comfortable. In extreme cases

the propeller blades have broken in fatigue as a result of the

singing. It is obviously a case of self-excited motion caused by
the water stream as the source of energy, but the exact details

are not well understood at present. In the olden days the cross
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section of a propeller blade usually was "ogival," i.e., flat on one

side, and with a circular arc on the other, with presumably sharp

leading and trailing edges, and singing was practically unknown.

The influence of airplane wing theory brought about a change
in the cross section towards an airfoil shape with a definitely

blunt, rounded leading edge. It is with sections of this sort that

singing has often been found to occur and a practical remedy for

the trouble is known to be a sharpening of the leading edge.

This suggests a rough theory of what takes place. Obviously

during the self-excited vibration the water stream changes its

flow pattern periodically with the frequency of the vibration and

presumably the dividing point of the flow on the loading edge

(the
"
stagnation point") jumps back and forth across that edge.

When the edge is sharpened, this is prevented and the dividing

point is forced to remain at the sharp edge, thus effectively

impeding the s'jlf-excited singing vibration.

The singing has been observed not only in ships' propellers but

also in large Francis turbines. Here again it has boon found by

experience that sharpening of the leading edges of the buckets

of the Francis runner eliminates the trouble.

60. Autorotation ; Instability Caused by Finite Speed of

Formation of Turbulence. Perform the following three experi-

ments. First, take a strip of paper about 1 by 4 in. and drop
it in a room with tolerably still air. The strip is seen to rotate and

to descend along an inclined path. Second, make a rectangular

vane of thin metal plate and pivot it about its longitudinal axis

with the smallest possible friction. Blow air against this vane

perpendicular to the axis of rotation by means of a fan. It will

be observed that, once started, the vane is capable of sustained

rotation in either direction. Third, take a piece of wood 2 by
10 by y$ in., and fasten a 3-ft. length of string to one end. Take
the end of the string in one hand and swing the board in a circle

above the head in a horizontal plane. When the string has been

given some initial twist, the board will spin about its axis very

rapidly and emit a roaring sound. Moreover, the string is seen

to describe not a plane but a cone with the hand as apex. This

cone opens alternately toward the floor and toward the ceiling;

at each transition the spin of the board is observed to stop

and to start again in the reverse direction. This is a toy, which

has been called a "bullroarer."

The aerodynamic explanation of these experiments is based on
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the fact that a turbulent flow takes a certain time for its forma-

tion. If the semicircle of Fig. 217 were held in still air and then

suddenly started moving at a uniform speed to the left and

slightly upward, the flow pattern during the first instant would

not look at all like Fig. 217. The turbulent region behind the

cylinder would be absent, and only after a few seconds would

complete turbulence have developed.
The picture that is formed at the very
first instant after starting is known as

the potential flow pattern, because it

can be calculated by means of the

potential theory of hydrodynamics.
On the left side of Fig. 223 the

steady-state potential flow around the

vane is shown in five consecutive

positions. It is seen that in position

la no torque is exerted by the wind on

the vane. In position 2a the theoreti-

cal flow has two stagnation points S
of no velocity and of maximum pres-

sure. The position of these is such

that the stream exerts a clockwise

torque on the vane, which in this in-

stance is a driving torque. The flow

in position 3a is symmetrical so that no

torque is exerted. Position 4a looks

the same as position 2a, except that the

torque is now acting counterclockwise

and, since the vane is still rotating

clockwise, this amounts to a retarding

torque. We see that in the quarter

revolution between la and 3 the

stream does positive work on the vane,

but between 3a and 5a it does exactly

the same amount of negative work on it.

For a potential flow, or for any other flow where the pictures

2 and 4 look alike, the stream performs zero work during a full

revolution, so that neither damping nor self-excitation takes

place. However, the actual flow differs from the potential one

and is shown in the right half of Fig. 223. Between Ib and 3b

turbulence behind the vane builds up gradually and between 36

Fia. 223. The flow around
a rotating strip shown in five

positions during one-half
revolution.
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and 5b this turbulent air is washed away with the stream. On
account of this, the pictures 2b and 46 differ; 26 resembles the

potential-flow picture much more than 46 does. The effect of

turbulence on the pictures in the position 2 is primarily to

diminish the torque exerted by the stream on the plate. Simi-

larly in picture 46 the retarding torque is less than that of 4a.

But the "less" is more pronounced in 4 than in 2. Thus there

is more positive work done between 16 and 36 than negative work

between 36 and 56, and a net positive work results for a full

revolution. This explains the self-excited rotation or "autorota-

tion" of the strip.

Besides a torque, the stream also exerts a sidewise force on the

strip. Figure 26 resembles the flow around an airplane wing, and

as such the vane experiences a lift force to the right. Similarly

in 46 there is a lift force to the left, but this force is smaller than

in 26 because the turbulence is so much further developed

("stalled" airplane wing). Thus there is a net lift force to the

right during a full revolution. This furnishes the explanation

for the inclined fall of the paper strip in the first experiment and

for the conical paths of the string in the third one. There the

string is twisted on account of the rapid rotation of the vane and

exerts an elastic countertorque, which after some time stops the

vane and then reverses the rotation. With this reversal of rota-

tion the direction of the lift is also reversed, so that the vane is

pushed alternately up and down.

This last experiment may be described as a self-excited vibra-

tion having the poriod of the reversals in the rotation of the

vane. Briefly, any object capable of self-excited rotation in

either direction can be transformed into a self-excited vibrating

system by mounting it in springs.

61. Hunting of Steam-engine Governors. Quite interesting

self-excited vibration phenomena have been observed in steam

engines or turbines operating in conjunction with an inertia

governor of the direct-acting type. By this is meant that the

speed-sensitive part of the governor, i.e., the flyballs, is in direct

mechanical connection with the steam-supply throttle valve.

In very large engines or turbines too much power is required to

open and close the throttle directly, so that the governor merely

operates electric contacts or oil valves (a relay) which in turn

set the throttle valve in motion. Such indirect governor systems

will not be discussed here.
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In Fig. 224 the system is shown schematically. When the

speed of the engine a increases for any reason, the flyballs lift

the sleeve b of the governor somewhat higher, thereby reducing

the opening of the main steam valve c. In this fashion less steam

is admitted to the engine, and its speed falls. Since there is

inertia in the system, the speed will decrease below normal, which

will result in the governor opening the valve more than normal.

In this manner, oscillations in the speed of the engine occur,

which may be damped or self-excited, depending on the circum-

stances. The unstable case

has occurred repeatedly.

Technically it is known as

hunting, and if such a hunt-

ing engine drives an electric

generator, its voltage will

fluctuate so that a marked
flicker in the lights is

observed.

In order to understand this

phenomenon in greater

detail, it is convenient to

start from the differential

equations. In the first place,

the governor is an ordinary vibrating system consisting of a

mass, a spring, and a dashpot. This will give three terms in

the differential equation. Moreover, the governor is coupled
to the engine in such a manner that, when the engine speed <p

increases, an additional upward force on the governor mass

ensues, caused by the centrifugal action of the flyballs. This

gives the equation
mx + ex + kx = Cij> (172)

where x = upward displacement of the governor sleeve, measured
from the normal position at a certain load.

m equivalent mass of the governor sleeve.

c damping coefficient at the governor sleeve.

k = stiffness of governor spring.

<p
= difference between the instantaneous engine speed

and the normal or average speed at a certain load.

Ci = increase in the upward force on the governor sleeve

(from centrifugal action) caused by an increase in

engine speed of 1 radian per second.

Boiler.

FIG. 224. Watt governor directly

coupled to a throttle valve regulating the

steam supply to a turbine. Without

damping this system is unstable and will

hunt.
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It is seen that the two coordinates x and <p are based on a

certain
" normal" condition which exists when the engine is

running at a constant speed with a constant load and constant

throttle opening, while the governor sleeve stands vertically

still. In this condition x =
0, so that x is positive when the

governor sleeve is higher than normal and negative when lower

than normal; similarly, <p is negative while the engine is tem-

porarily running at a speed slower than normal.

Properly speaking, the engine in itself is not a vibrating system
since it has no spring pulling it back into an equilibrium position.

There is, however, a mass or rather a moment of inertia /. The

damping torque of the engine will be neglected in this investi-

gation. The engine is coupled to the governor in the sense that,

when the governor sleeve is lower than normal (negative #),

the throttle is opened wider than usual so that an extra positive

or driving torque is exerted on the engine. Its equation of motion

becomes
lip

= -Cix (173)

where / = equivalent moment of inertia of the engine.

Cz increase in steam torque of engine caused by a

lowering of the governor sleeve by 1 in.

Equations (172) and (173) represent the free vibrations of the

engine-governor system, since no periodic force is present. The
solution therefore must be a function of the shape

ept cos qt (174)

where q is the (damped) natural frequency and p is a measure for

the damping, which may be positive or negative. Instead of

writing the solution in the form (174), we may write

the real part of which is the same as (174); or, still shorter, we

may assume that

I = ""'} (159)

where s is a complex number (the
"
complex frequency").

Substitute (159) in the differential Eqs. (172) and (173), which

then can be divided by e", giving

E + /sVmax =
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These are a set of homogeneous algebraic equations which have a

solution for ow* and <pmax only if

m8 2 + cs + k __ CiS

c7~
~~

~7?2

or if

j + s * + JL8 + W* =
o, (175)mm ml J

Equation (175) is the frequency equation of the set (172) and

(173). On account of the absence of a "spring" in the engine

system, the equation is a cubic and not a quartic as would be

expected for an ordinary two-degree-of-freedom system.
Of the two criteria for stability on page 353, the first one,

requiring all coefficients to be positive, is satisfied. The other

criterion, expressed by (105), becomes

h >
C
-l 2

in m ml
or

hi

If the damping in the governor dashpot is greater than the

value indicated by this formula, the system will come to rest

after a sudden change in load, but for any damping less than this

the system is inoperative (Fig. 2076).

In case the engine is rigidly coupled to an electric generator

feeding a large network, the problem becomes more complicated.

Then, there is an "engine spring," since the network tends to

keep the generator rotor in a definite angular position. Any
deviation from that synchronous position is opposed by a torque
caused by the magnetic spring in the air gap of the generator.

In such cases Eq. (173) contains one more term A:,<p, and, if

there is generator damping in an electric, damper winding, Eq.

(173) contains two more terms. The two simultaneous differ-

ential equations of the problem are

mx + c
s;
x + kax =

I* + W + k,.<p
=

where the subscript g stands for governor and e for engine.

Clearly / means the inertia of all the rotating parts, i.e., of the

engine and generator combined.
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The damper winding in the generator just mentioned is a

device invented by Leblanc in 1901 with the object of alleviating

the hunting trouble. It consists of a short-circuited copper

winding in the pole faces of the rotating part of the generator.

As long as the generator runs at constant (synchronous) speed,

no current flows in this winding and consequently it docs not

impede the motion. With changes in speed, however, currents

are induced in the winding, which together with the magnetic,

field in the air gap produce a torque proportional to the deviation

of the angular velocity from synchronous (<) and directed oppo-
site to <, i.e., braking while the engine temporarily runs too fast

and driving while it runs too slow.

Assuming the solution of (177) in the form (159) and sub-

stituting in (177), the frequency equation becomes

s 4 + s
Sc c < \

(k <:
k, c,

-

_rA
VI

+ m)^*\I
^ m^ Im )

+ ,. + + = ()m I I m Im Im ^

in which all coefficients are seen to be positive. The criterion of

stability (IfiO) becomes

(c e c\
(k, ka CrCflVo/ k, . c e k

tj

C
}
C<\

\I
~*~

m) \I ni Tm)\m 1
^

7 ni

'

Im )

.k, + c,.k.
cic,y

jwA a 2

/ / m Im ) lm\L m)
^

which depends on the governor damping c
r//m, on the engine

damping c -//, on the natural frequencies a>g
= fc r/7 and coj

= k (}/m,

and on the
"
coupling

" dd/Im. The only simple conclusion

that can be drawn from (179) is that, when no damping exists

at all (cg
= ce 0), the left-hand side is zero, while the right-hand

side is (CiC 2//w)
2

,
so that the inequality is violated. Without

any damping the system hunts.

In order to see the physical meaning of (179), consider first

the special case where engine damping is absent, cc
= 0. Equa-

tion (179) reduces to

c.7>4>2 ~
"f) > 1 (180)

In case the governor frequency ug is less than the engine fre-

quency co e ,
the left-hand side is negative and the inequality is
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violated, which means unstable operation even if cg is very large.

Conversely, when cog is greater than coe ,
the left-hand side is posi-

tive and stable operation prevails if the governor damping is

larger than

>

It is seen that (176) is a special case of this more general result.

The second simple case to be considered is when the only

damping is in the engine and none is in the governor, c = 0.

The large form (179) can then be reduced to

m
(c,

2 -
o>

2
) > 1 (181)

which shows that instability exists if the governor frequency
is greater than the engine frequency. When the opposite is the

case, the system may be stable if the

engine damping is sufficiently large.

Summarizing, if a system deter-

mined by Eqs. (177) is found to be

unstable, it should be cured by increas-

ing the damping in the governor

dashpot in case the governor frequency
is greater than the engine frequency;
on the other hand, if the governor fre-

quency is the smaller of the two, damp-
ing should be introduced in the engine
or generator.

62. Diesel-engine Fuel-injection

Valves. A common construction of a

liquid fuel-injection valve and nozzle

for Diesel engines is sketched in Fig.

225. The chamber V is permanently
filled with liquid fuel oil and is connected to the fuel pump
through a short passage B. The normal position of the valve A
is on its seat N. At the instant that the engine piston is ready
to start on its firing stroke the fuel pump pushes a certain

amount of fuel into F, where the pressure rises greatly. Since

the valve stem has a greater diameter above than below, this

pressure tends to push the valve up. As soon as the pressure is

sufficiently large to overcome the force of the set-up in the spring

Cylinder

FIG. 225. Diesel-engine
fuel-injection valve. Without

clamping? the valve is dy-
namically unstable.
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S, the stem will go up and the liquid is forced through the nozzle

N into the cylinder head. At the end of the pump stroke the

pressure in V falls and the spring S closes the valve again.

With this mechanism self-excited vibrations of the valve have
been observed of the type shown in Fig. 226, I. In these figures

the upward displacement x of the valve has been plotted against
time. The shading refers to the interval during which the fuel

pump is delivering, i.e., during which fuel is actually flowing

through the passage B. Case III is

that of positive damping, case II is

neutral, and case I shows negative

damping.

The physical action may be under-

stood as follows. During the vibra-

tion, part of the valve stem retreats

from the chamber V, oil flows in at B
and out at N, all of which affects the

pressure in V. In case the average

pressure is greater during the upward
stroke than during the downward
stroke of the valve stem, there is a

feeding of energy into the vibration.

If this energy is greater than the friction loss in the gland, the

vibration is self-excited.

Indeed, in the absence of gland damping, the system is unstable,

which can be seen physically as follows. Consider only the

period during which the fuel pump is operating, and assume that

the fuel oil is flowing in at a constant rate through the passage B.

The outflow of oil through the nozzle is varying, depending on

the position of the valve stem. Let the valve stem vibrate

about some average position. In this average position the

outflow through the nozzle equals the inflow through B] while

FIG. 226. Oscillations of an
unstable (I), neutral (II), and
stable (III) valve system.

the stem is
(higher)
\ ,

-
f than the average position, the outflow is

{ , > than the inflow. The pressure in the chamber V
(greater)

*

depends on the amount of oil in it; the more oil, the greater the

pressure. Consider the valve stem in the neutral or average

position in the act of going up. During the next two quarter

cycles of vibration, the outflow exceeds the inflow and the pres-

sure diminishes. Thus, when the valve stem finds itself in the
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neutral position going down, the pressure is at a minimum. In

the same manner it can be shown that, when the stem is in the

middle of its upward stroke, the pressure is a maximum. Thus

the pressure does work on the vibration.

In the above argument one fact has not been mentioned,

namely, that, on account of its motion, the valve stem changes
the volume of oil in the chamber V, thus causing pressure vari-

ations. The total pressure caused by the fuel pump is so great

that these variations are supposed not to affect the outflow, which

is determined by the nozzle opening only. Moreover, these pres-

sure variations are in phase with the valve displacement and thus

act as an oil spring and not as a damping.

Mathematically we coni2 to the same conclusions. Our two

dependent variables are the upward displacement x of the valve

stem and the pressure p in the chamber, both measured as devia-

tions from their average values during a vibration cycle; the

independent variable is the time. There are three upward forces

acting on the valve stem:

1. The spring force F^ kx.

2. The damping force ex.

3. The pressure force +p^l +3. The pressure force +p^l +
In the first expression, FQ is the set-up force of the spring S

and k is its stiffness; in the third expression, A is the cross sec-

tion of the stem at the gland and p is the average value of the

pressure. The constant forces Fo and +po/l are equal and

opposite; they keep each other permanently in equilibrium.

Thus the equation of motion of the valve stem is

mx + kx + ex - pA = (182)

in /which both variables a* and p occur.

The second equation is found by considering the change in

volume of the oil in the chamber V and correlating it with a

change in the pressure. It is assumed that the flow of oil in the

passage B occurs at constant speed during the stroke of the

pump. It has also been found with a good degree of approxima-
tion that the velocity of oil flow through the nozzle is proportional
to the distance of the valve from the nozzle. This distance con-

sists of the average distance x with the variation x superposed on

it. The amount of fuel flowing out of the nozzle for a valve set

at XQ equals the amount coming in through B. Thus the excess
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volume of fuel oil flowing in per second is Co:, where C is the

total volume flowing through the nozzle per second when XQ

equals one unit of length. However, the volume of the chamber

V does not remain constant, since the stem moves in and out of it.

The change in volume per second on account of this motion of the

stem is Ax. The difference

~~~
C/X ~~~

^T.X

is the excess rate of fluid flow inward for a constant volume V.

It can be written as dV/dt = V. The definition of the modulus

of elasticity E of a fluid in compression is

rfV _ dp
V

"
E

from which follows that

Y_ P
V E

so that the second differential equation is

x + Ax) (183)

The variable p can be eliminated between (182) and (183) by

differentiating (182) and then substituting (183), giving

mx + ex + (k + ~)x +^ x =
(184)

A substitution of (159) leads to the frequency equation:

o3 JL C
o2 _i_ I

'"
_J_

"" "
1 Q i_ 11: n (\9&\o ^ o ^ I ^ ^j~ 16 T X7 U I lOOj

nyi \ rwi /Wl %/ I \l ^ '

in which all the coefficients are positive, so that the stability

criterion (165) becomes

-~ .

m \m mV / mV
or

. CE mA

Only when the damping in the gland or elsewhere is as large as is

shown in this expression is the motion stable.
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It is of interest to note that the bracket in the denominator is

the combined spring constant due to S and to the oil chamber,
and also that the combination CE/V means the rate of increase in

the oil pressure caused by a deflection of 1 in. from the average

position of the valve stem. In this light it can be seen that the

frequency equations (175) and (185) for the apparently widely
different problems of Watt's governor and the Diesel nozzle have

exactly the same structure. The coefficient At is a measure of

the damping, AI is the square of the natural frequency, and A Q

determines the intensity of back-feeding of energy.

To condenser

FIG. 227. Steam turbine showing dummy piston D, labyrinth B, thrust bearing
F, G, and equilibrium pipe E.

63. Axial Oscillation of Turbine Caused by Steam Leakage.
A case quite similar to the one just discussed has been observed

on some large reaction steam turbines in an electric generating

station. The turbine spindle and the rigidly coupled generator

rotor were found to be oscillating in an axial direction in the

bearings at a frequency of the order of 20 cycles per second.

The explanation of this trouble was found in a pressure variation

in the space behind the
"
dummy piston" and was caused by

leakage of steam into this space. As with the Diesel valve, the

rate at which this leakage takes place depends on the longitudinal

position of the turbine spindle.

The construction is roughly indicated in Fig. 227. The high-

pressure steam enters through A and passes to the left through
the blading to the condenser. On account of the pressure differ-
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ence between the boiler and the condenser, an appreciable force

to the left is exerted on the spindle and this force has to be bal-

anced. This is done partly by the dummy piston D and partly

by the thrust bearing F.

A very small quantity of high-pressure steam leaks by the

labyrinth B into the chamber C, which is connected by the
"
equi-

librium pipe" E (of some 16 ft. length) to the condenser. Thus
the pressure in C is about equal to (slightly above) the condenser

vacuum, and this results in a force tending to pull the dummy
piston D to the right and thus partly balances the steam thrust.

The details of the labyrinth B vary widely in construction, but

usually they are such that an axial displacement of the rotor

changes the rate of leak. Since the pipe E is rather long, longi-

tudinal oscillations of its steam column are associated with pres-

sure variations in (7, whicli

react on the spindle motion.

To have damping of the axial

oscillation, it is necessary that

the average pressure in C

during the spindle motion to

the left be smaller than during
the stroke to the right. The

frequency at which the motion

takes place is practically the natural one of the spindle on the

springs G of the thrust-bearing structure, since the steam forces

are usually small compared with the spring forces.

The vibration of the steam column in the equilibrium pipe

E becomes rather complicated if the length of this pipe approaches

one-quarter wave length of the standing sound wave having the

frequency of the axial turbine oscillation (Figs. 1116, c). In

most cases, however, the length is appreciably less than this,

which means that the steam in the pipe surges back and forth as

an incompressible body. The spring on which this steam mass

oscillates is found in the volume C, where the pressure changes

as a result of an alternating motion of the steam column in E.

Thus the system is as shown schematically in Fig. 228, where

the mass m may be regarded as a piston (made of steam) sliding

back and forth in the equilibrium pipe. There is a general drift

of steam in the pipe m to the right. For our analysis we subtract

from the total steam velocity its average value so that only the

variable part of the velocity of m is considered.

228. Jupalizcnl system of the

axially vibrating turbine.
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In the actual construction, the volume V is very small, and

thus some physical reasoning on the behavior of Fig. 228 for zero

volume V is of interest. Assume the mass M (being the turbine

spindle and the generator rotor) to be vibrating back and forth

according to Fig. 229. Since the volume V is assumed to be zero,

the motion of m is directly determined by the amount of steam

leaking past M. Thus the velocity of m to the right is maximum
when the leakage is maximum or when M is in its extreme left

position (point A of Fig. 229). While M is in its extreme right

position, the leakage is minimum, less than average, so that

m has its maximum velocity to the left (point B of Fig. 229).

In this manner the curve determining the position of m is found.

There is no spring acting on

m, so that its motion is wholly
caused by the steam pressure

in (the small volume) V.

Between A and B the steam

column is being accelerated

to the left, which means that

the pressure in V is less than

the average. This in turn

means that between A and B
FIG. 229. Motion diagrams of Fig. 228 ,1 , f xr 11 TI/T

for the case of zero volume V. thc steam force m V Pulls M
to the right. But in this

interval AB, M is moving toward the right also, so that we con-

clude that the motion is self-excited.

On the other hand, suppose the volume V is very large. Then

any variation in leakage can hardly affect the pressure in V,

so that the variation in the steam force on M, be it positive or

negative, is very small. A little friction in the system is then

certain to neutralize any small negative damping that may exist.

The trouble in the actual machines was cured by the insertion

of a chamber of about 2 cu. ft. volume between the space C and

the equilibrium pipe E (Fig. 227).

The more precise theory in mathematical form leads to the

same results. If the variable part of the pressure in V be denoted

by p (a function of the time), the dummy-piston area by A, and

the displacement of M to the left by x, the equation of motion

of M is

MX + CM + kx = Ap (187)
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If the displacement of the steam column to the right be y, its

equation of motion is (Fig. 228)

my + cmy = ap (188)

where a is the cross-sectional area of the pipe.

We have only two equations with the three variables a:, y,

and p. The third equation is found by considering that p is

affected by the steam flow.

The amount of steam flowing through the labyrinth leak can

be considered as consisting of two parts, one, the average flow,

remaining constant with the time, and the other a more or less

harmonic function of the time. The latter flow is negative during

half the time, i.e., it is backward from V into the high-pressure

chamber. This takes place while the total leakage is less than

average. Let x be considered the displacement of M from

the average position. Then the volume of steam (more than

average) flowing per second through the leak is roughly propor-

tional to Xj say it is bx, where b is a constant of the dimension

in.
2
/sec. The volume flowing out (more than average) per second

is the velocity (more than average) y of the steam column times

its area a. Thus the volume per second more in than out is

bx ay = dV/dt. If the modulus of elasticity of the steam in

compression be denoted by E,

=
E

"
V

r
"~E

Thus the third differential equation is

bx ay _ p
y

-
J,

or

p - ~(bx -
ay) (189)

For a solution of the set (187), (188), and (189), assume

y =
y<>c

8t

p =
poc

at
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Substitute this in Eqs. (187), (188), and (189), and eliminate

p, x, and y. The frequency equation thus obtained is

4 4. .si
c *f

_j_
c
^n -L. .2 A. _i_

a
*fH. _i_ ^y M

S

L Af m]
*

[Jf 'mV ~mJ\I\

4. [A r- 4.
aJ^ C" __M6

1"^ S

[_M

'

m "*" WV
' M 3/V J

[a^ ft AEb cm l _+
L^V M ~"MV m]

~ U9U;

The similarity between this result and (178) is striking. The

quantity a^E/mV is the natural frequency of the steam column
m on the spring a^E/V of the steam chamber (Problem 121). The

quantity AEb/MV, being proportional to the leakage constant 6,

represents the coupling or backfeed. The only differences

between (178) and (190) consist in the negative sign in the coupling
term and in the added appearance of this term in the constant

of (190).

For stability it is necessary in the first place that all coefficients

in (190) be positive, which means that

. .M m mV M MV
and

-
m AEb

Equation (191) shows that, if no damping exists anywhere,
the system is always unstable. Even with a small amount of

damping in m and M, instability may exist if V is sufficiently

small. By increasing the volume V, the right side of the inequal-

ity (191) can be made small enough to satisfy that stability

requirement.
The second equation, Eq. (192), states that the damping in the

steam pipe has to be smaller than a certain amount if stability

is to be had. This apparently strange result becomes clear when
it is noted that the right side is the product of the two natural

frequencies divided by the backfeed term. This ratio will be very

large, so that the inequality (192) is always satisfied. In this
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connection it may be noted that the entire analysis is based on

the assumption (16Ga), which implies a true vibration. In case

a damping constant becomes greater than critical, no true vibra-

tion occurs and the analysis is no longer applicable.

The other requirement for stability, expressed by (169), is

a very complicated form like (179). To understand its physical

meaning it is more useful to investigate the special cases where

one of the two dampings is absent. In the case of no damping in

pipe (cm =
0), the criterion is

v < - L
(188)^ J

where the bracket must be a positive quantity by virtue of ( 191 ).

When the engine damping is absent (CM =
0), the stability

requirement becomes

A FA) a?E

n

m\Af

c.m 2\

^)
(194)

It is understood that stability exists only when all three inequali-

ties (191), (192), and (193) or (J94) are satisfied simultaneously.

In case the steam damping is absent, the volume V has to be

below a certain limit (193), whereas for non-existing engine damp-

ing that volume has to be made greater than a certain amount

(194). This complicated relation is due to the fact that by

changing the volume V we really change two quantities:

1. The frequency of the steam column a 2E/mV.
2. The coupling constant AEb/MV.

The inherent significance of the expressions (193) and (194) is

disclosed better by writing them in a slightly different form as

follows:

A 2E _ k_
AEh M

raV M MV CM

A _ a *E > AEb
.
"* _ I ^ 1 (W4n}M raV 7I^7
~

V / u^tt /

Thus, if we depend only on the engine damping to prevent

instability, the frequency of the steam column has to be made

greater than the engine frequency (by decreasing V). If only
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steam-column damping is available, the engine frequency has to

be the greater of the two (which can be attained by increasing

the volume V).

64. Airplane-wing Flutter. In certain airplanes flying at very

high speed, particularly when diving, the wings have been

repeatedly observed to develop a very violent vibration. On a

number of occasions this "flutter" has been so excessive that it

has caused the wing to break off in mid-air.

An explanation on the basis of the phenomenon of Sec. 59

might be attempted. For wings in a "stalled" position the

slope of the lift curve is negative (Fig. 222), and the up-and-
down motion of a cantilever wing is unstable. This has been

observed; however, it is not a condition of actual flight and in the

typical "flutter" cases on record the angle of attack of the wing
is small and the slope of the left curve decidedly positive. This,

by the argument of Sec. 59, leads to a definite positive damping.

Any attempt at an explanation along the lines of Sec. 60 or

61 is not adequate, because in regular flight the air about the

wing is practically in a state of potential flow and very little

turbulence exists. In fact any attempt at an explanation in

terms of a single degree of freedom (for example, where the wing
vibrates up and down only, like a cantilever beam) does not

succeed. We have another case of a coupled two-degree-of-

freedom system, since the wing not only vibrates up and down,
but simultaneously executes a twisting motion. The interplay
of the vertical and twisting vibrations with the air stream as the

source of energy may lead to instability. The possibility of

such an occurrence can be explained physically in a rather

simple manner.

For a certain value of the angle of attack a (defined in Fig. 230c)

the wing experiences an aerodynamic lift and also a clockwise

twisting moment. While the wing executes a twisting vibration,

the angle a varies; and therefore we are interested in knowing
how the lift and the moment vary with this angle.

Figures 230a and b show these relations are obtained by a

wind-tunnel test. For the angles a at which flight takes place

(0 to 10 deg.), these characteristics are practically straight lines.

Assume that the vertical and the twisting motions of the

wing are coupled in such a manner that during the upward stroke

the angle a is larger than during the downward stroke. Accord-

ing to Fig. 230a the lift during the upward motion is larger than
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during the downward stroke, which means that the wind feeds

energy into the vibration. An energy input is also possible by
virtue of Fig. 2306. This follows from the fact that even without

any twisting motion the angle of attack varies on account of

the vertical vibration as explained in Fig. 216. Due to this

effect the angle of attack and consequently the twisting moment
are made larger during the downward stroke and smaller during

the upward stroke. Thus, if during the downward motion the

wing twists clockwise, energy will be put into the system and the

vibration will grow.
A form of flutter which occurred commonly a few years ago

was that of bending of the wing associated with flapping of the

aileron. Suppose the aileron is hinged about an axis not passing

46
<x Deg.

8246
<x Deg. -

<a) (b)

FKJ. 230. The lift and moment diagrams of an airfoil are practically straight
lines for small angles of attack.

through its center of gravity and suppose the wing to be vibrating

up and down. Independent of any aerodynamic forces the

alternating vertical motion of the hinge axis will force the aileron

to execute an angular motion, since the hinge axis does not pass

through the center of gravity. The aileron is restrained from

doing this by the control wires attached to it, which act as springs,

since they are necessarily flexible. Thus the aileron-pendulum
has a natural frequency of its own which may be above or below

the natural frequency of the flutter motion of the wing, so that the

aileron motion may be in phase with or in opposition to the wing
motion (when the difference between the two frequencies is

great) or the aileron motion may have a phase angle near 90 deg.

with respect to the wing motion (when the two frequencies are

close together, page 66). In the latter case the aileron motion

lags behind the force, so that in the middle of the downward
stroke of the wing the aileron is up, causing a downward air force



394 SELF-EXCITED VIBRATIONS

on the wing: hence instability. Trouble of this sort was recog-

nized early and the obvious remedy is to locate the aileron hinge

axis through the center of gravity of the aileron by the addition of

counterbalance weights if necessary. Even this in itself is not

always sufficient to prevent
"
inertia coupling." To understand

this, assume a uniform rectangular aileron hinged about its

center line of symmetry. Add to this aileron two equal weights
in two opposite corners of the rectangle, leaving the center of

gravity where it was. For a purely up-and-down disturbance

of the hinge axis the aileron is still balanced and has no tendency
to rotate; but if this aileron is placed in an actual wing performing
a cantilever vibration with a large amplitude at the tip and a

smaller one in the middle, the inertia forces on the two added

weights will differ from each other and the aileron will have a

FIG. 231.- The airplane wing with its two characteristic points: the center of

gravity G and the center of twist T.

turning moment about its hinge axis. Complete balance against

all possible motions can be obtained by insisting not only that the

center of gravity lies in the hinge axis, but also that the hinge
axis is a principal axis of inertia (so that there is zero product of

inertia about the hinge axis). This is an ideal that the designer

will satisfy as well as design conditions make feasible and as well

as flutter difficulties demand. It applies not only to ailerons, but

to other movable surfaces (rudder and elevators) as well, which

incidentally also have given rise to flutter phenomena in con-

junction with the entire fuselage of the airplane.

We now proceed to a more quantitative analysis of the torsion-

bending flutter of a solid wing without aileron, and start by setting

up the differential equations of motion. In reality the wing acts

more or less as a cantilever beam built in at the fuselage, but for

simplicity we assume the wing to be a solid body supported on

springs so that it can move up and down as well as rotate about

its longitudinal axis. In Fig. 231 the origin of coordinates is
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taken to be at the center point of the span in the position of

equilibrium of the wing. The wing departs from this position

by the amounts x and 6 as shown. Besides the center of the

span C, two other points in the wing section are of importance,

viz., G and T. The point G is the center of gravity, by which

the inertia properties are determined. The location of the point
T determines the elastic properties of the spring suspension.
The point T is known as the "center of twist" and is defined

in one of tho following manners: T is that point on the wing
where a vertical force causes only a vertical displacement and
no rotation. T is also that point of the wing which does not

displace itself if the wing is subjected to a pure torque causing

a rotation of the section. These two properties of T always go

together as can be shown by Maxwell's theorem of reciprocity.

Let kx be the up-and-down spring constant and ke the torsional

spring constant per unit length of wing, let L be the aerodynamic
lift force (a function of x, 0, and the time), and let M (also a

function of x, 0, and f) be the moment of all aerodynamic forces

about 0, positive when clockwise, again per unit span. Then the

equations of motion are

m(x + 0,8) + kx(x + bO) = L )

k eO + k*(x + bO)(b
-

a)
- M -

La)

The combinations (x + ad) and (a; + b0) occurring in these

equations are the vertical displacements of G and 7
T

, respectively.

The symbols m and Ia not only refer to the inertia of the wing
itself but include that of the surrounding air as well. Usually
we take for this a cylinder of air of radius c/2. Although this

effect is rather insignificant for propeller blades, it is important
for airplane wings, which may weigh not more than three times

as much as the cylinder of air around them.

The alternating air force L in actual wings is quite considerable,

of the same order of magnitude as the spring and inertia forces.

In practically all previous cases treated in this book, the exciting

forces (and damping forces) were small in comparison to the

inertia and spring forces, so that the resonant frequency was

determined by k/m only and was independent of the exciting

force. Here the exciting force L, being of the same order of mag-
nitude as the spring force, does affect the frequency and the

system will flutter at a frequency distinctly different from any of

the natural frequencies of the structure in still air.
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The expressions for the air force and moment per unit length of the

flapping wing have been derived by a complicated analysis with the result

L =

M =
(196)

in which the worst complication is that the quantity Y not only is complex
but depends on the frequency of flutter as well:

Y = F + (197

where both F and (7 are functions of toc/2F, in which co is the circular fre-

quency of flutter. The values of F and are given in Fig. 231a, taken from

Theodorson's paper. In these expressions for F and G it has already been

assumed that the wing is fluttering, /.., that it is on the borderline between

positive and negative damping and hence executing a purely harmonic

COC/2V-
*-

FIG. 23 la. The functions F and G of Eq. (197).

motion. The s of page 351 therefore is already assumed to be without real

part p and the imaginary part q is identified with the flutter frequency co.

This, of course, makes stability conditions such as Eqs. (165) or (169)

inapplicable.

If still we would proceed to set up the frequency equation, in the manner
outlined on page 350, that equation would contain F and G and hence, also,

s or w in a much more complicated manner than a fourth degree algebraic.

Theodorsen in the paper quoted in the Bibliography proceeds to set x = x eivt

and = Ooc^t into Eqs. (195) and then eliminates X Q and 0o by setting the

determinant zero as before. The frequency equation now contains real and

imaginary parts, each of which must be zero individually. In this manner
two equations are found, which must be true on the border between positive
and negative damping. These two equations are in terms of two unknowns :

the flutter speed V and the flutter frequency co, but they are not linear in

either V or
co, since they contain the curve Fig. 23 la. The details of Theo-
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dorscn's solution of V and co from this pair of equations arc too complicated
to be reproduced here and the reader is referred to the original publication.
In a subsequent paper by Kassner and Fingado a nomogram is given, based

on an analysis similar to Theodorsen's, by which the Hut tor speed of any
individual wing can be determined in a few minutes after the constants

have been found.

Another method, originally suggested by Bleakney and Hamm, and now
in extensive use, consists of assuming numerical values for the (hitter speed

F, and for the flutter frequency co. Then the forces (190) can be calculated

and substituted into Kqs. (195), which of course are not satisfied by the

substitution because V and co are not correct. But they can be made to

satisfy Kq. (195) by assigning proper values to the stiffnesses A*x and A>,

which appear linearly in (195) and thus can be calculated very easily. This

means physically that the arbitrarily chosen V and co are the true flutter

speed and frequency for a wing with stillnesses different from those of the

wing we arc considering. The result of this calculation is plotted in Fig. 231/>

in the form of two points marked 1, one each in the F-, co-diagram and in the

kx-, /ce-diagram. The entire calculation is then repeated for a different value

v

t

Fit;.

of the nutter frequency co with the same flutter speed V (point 2 in the

V-j co-diagram) and the result plotted as point 2 in the A;x-, ^-diagram. A
third calculation for the points 3 follows. The actual wing has stiffness

values designated by point A in the diagram. Looking at the relative

positions of the points, we then pick point 4 in the co-, F-diagram as a likely

next approximation. These trials are continued until we have found a point
in the F-, co-plane whose image in the kx-, fo-planc is sufficiently close to the

desired point A.

So far the problem has been one of two degrees of freedom only, i.e., of a

wing in which the amplitudes are constant along the span. An approximate
value for the flutter speed is obtained by replacing the actual wing by one of

the same stiffness but with all its inertia concentrated at a point 70 per cent

of the span length distant from the root of the wing, and thus reducing the

structure to that of Fig. 231. A better result can be found by numerical

integration over the length of the wing. Assume, as with the Kayleigh

method, a likely shape of deformation. In practice we take for this the

shapes of the bending and torsion modes of the wing without air forces,

Kq. (196), and assume that the bending and torsion motions occur in phase
with each other at the same frequency of flutter co. Assume, next, with

Bleakney and Hamm, numerical values for V and co. Then the air force,

Eq. (196), the inertia force co
2
?/ dm, and the elastic force Efy ( *>

[Kq. (106),

page 185] are all known numerically. Also the corresponding moments are

known numerically. // the assumed shape were the correct one, the sum
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of all these three forces would be zero for each individual element of the

beam, as expressed by the first equation of Eq. (195), and likewise the sum
of the inertia, elastic

,
and air moments at each element would be zero as

expressed by the second equation (195). Since the assumed shape is not

the correct one, the equilibrium is violated for each individual element dx,

but, with Rayleigh, we can integrate along the entire length of the beam and

satisfy the over-all equilibrium. Thus the individual terms of Eq. (195)

become integrals extending over the length of the wing:

(195a)

These equations are written for a wing of non-uniform cross section in which

the mass M> the bending stiffness El, the torsional stiffness C, the deflection of

the center of gravity y = x -f- aO, the angle 0, and the distance a are all

functions of x, variable along the length from to I. The bending stiffness

at the root EI and the torsional stiffness at the root Co have been brought
outside the integrals, Eq. (195a). Instead of the constants kx and ke we

plot in Fig. 2316 against the stiffness factors EI Q and Co at the root of the

wing. Calculations carried out with this procedure come out with errors

in the flutter speed of the order of 10 per cent.

Obviously this is a prodigious job, no longer within the power of an engineer
with his slide rule. It is rather in the class of a large, well-lighted, chromium -

fixtured office, filled with 20 young ladies and 20 electric calculating

machines working full time for a week to find the flutter speed for a single

wing.
Another approach is by model testing. Consider a model of the wing to a

reduced scale, made of the same material as the original, but scaled down

equally in all dimensions and details. Put this model in a wind tunnel

with the same air-speed as the original wing. In. order to leave the values

in the square brackets of Eq. (196) unchanged, it is necessary to assume

that the time unit is reduced by the same scale as the length unit. Hut

then, as the reader should reason out carefully for himself, the spring force,

air force, and inertia force on the model wing all are reduced by a factor /
2

,

i.e., by the square of the scale ratio for length and time. Thus the flutter

speed V (having the dimension l/t) will remain unchanged, and the flutter

frequency u will go up by the scale ratio. Such a test has the additional

advantage of still being valid for air speeds near to or exceeding the velocity

of sound, where the expressions (196) break down completely. However, a

model test as described involves very careful building of the model and

elaborate testing apparatus in a wind tunnel. For subsonic air speeds the

chromium-appointed room with its charming occupants may be preferable,

but for sonic and supersonic air speeds the model test is the only possibility

at the present time.

A spectacular case of flutter failure under unusual circum-

stances occurred when the great suspension bridge across the

Narrows near Tacoma, Wash., broke down under the influence
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of lateral winds of moderate speed, about 30 m.p.hr. This was
a case of flutter with a very low frequency, as the bridge was

seen, and photographed, to exhibit large amplitudes both in the

bending and in the torsional modes. As with airplane wings the

remedy lies in increasing the torsional stiffness, and in post-
mortem publications it was recognized that this particular bridge

was much more flexible torsionally than any other suspension

bridge built. Since future suspension bridges undoubtedly will

have greater torsional stiffness, the Tacoma bridge very probably
will be the only case of its kind.

65. Automobile "Shimmy." The familiar phenomenon of

shimmy in automobiles, which consists of a rotary oscillation

of the front wheels about vertical axes, is usually a self-excited

vibration. For a proper explanation it is necessary to consider

three degrees of freedom, so that the problem is more compli-

cated than any of those previously discussed.

Let Fig. 232a represent an elevation looking from the front

of the car, A being the axle and B the
"
king-pins.

" The axle is

capable of tilting in a vertical plane (through the angle <p with

respect to the road) by virtue of the vertical elasticity in the tires.

It is also capable of shifting sidewise with respect to the body or

the road (deviation x) on account of the lateral flexibility of the

main springs or of the tires. Looking in Fig. 2326 from the top,

the wheels can flutter through an angle ^, which constitutes the

motion usually referred to as shimmy. Since the two wheels

are connected to each other by the rigid steering connecting rod

Cj the angle of flutter \l/ has to be the same for both wheels.

Several other motions are possible, but these may be neglected

for the purpose in hand.

There are thus three degrees of freedom, <p, ^, and x. In order

to show the possibility of self-excited vibration, it has to be

demonstrated that these three are coupled to one another and also

that some source of energy is available.

The mass of the front wheel and axle is considerably smaller

than that of the spring-supported body of the car. Since the

shimmy vibration takes place at a rather rapid rate, the body
is practically unable to take part in the motion. In the following

discussion it will be assumed that the car body moves forward in

a straight line along the road while the front wheels and axle

vibrate.

Consider the sidewise vibrating motion x = XQ sin ut of the
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wheels with respect to the body or to the road. This takes

place by distorting the main springs laterally and sets up an

alternating external force on the axle. A part of this main-

spring force is used to accelerate the axle in the ^-direction

and the rest of it finds a reaction which can occur only in the

form of lateral road friction at the tires. This reaction force

causes a couple in the plane of Fig. 232a, tending to set up an

alternating angular motion <p. The motion <pj on the other hand,

ngle of shimmy
t \

\

^

Lateral displace*
meni~

FIG. 232. Illustrating tho roupling botvveon tho shimmy motion !/ the tramping
motion v", and tho lateral vibration .r.

is coupled to the shimmy \f/ by the gyroscopic action of the rapidly

rotating wheels. If, for example, the wheel has a "tramping"
velocity <p, a gyroscopic couple will be created tending to make \l/

smaller. (Incidentally the gyroscopic coupling is responsible

for the fact that when one wheel rides over a bump in the road

the steering wheel gets a rotational jolt.) Finally, the alternating

shimmy angle \f/ causes the front wheels to follow a wavy path
and thus sets up a lateral displacement x. Thus each one of

the three degrees of freedom is definitely coupled to the two
others.

A source of energy can also be readily found. It was seen
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that the sidewise motion x is associated with lateral friction forces

at the tread of the tires. These forces in turn cause slipping,

if not over the whole area of the tire in contact with the road, at

least over a part of it. Therefore the sidewise displacement x

and the lateral force F on the tire do not bear to each other the

simple spring relation F kx but this relation is much more

complicated. Without entering into technical details, it is clear

that with certain phase relations between the motion .r and the

road force F this force may do work on the vibration. The
ultimate source of energy naturally is the forward kinetic energy
of the car.

In case the proper phase relations for instability do exist, the

vibration will be all the more violent the smaller the flexibilities

and the stronger the coupling. The most important change in

the front -wheel construction of the last few years has consisted

in the introduction of balloon tires, the great flexibility of which

make large ^-motions possible. The general application of

superballoon tires, which are very desirable for the riding quality,

has been retarded for a number of years on account of this

shimmy trouble.

A mathematical analysis of the problem is possible, but even

in the most elementary case (where many important simplifi-

cations have been made) it leads to a sixth -degree frequency

equation, whereas a more complete investigation gives an equa-
tion of the eighth degree. The complications of such calculations

make them hardly worth while. A cure of the trouble is better

effected by the experimental approach, it is possible to make
modifications in the construction of the steering gear so as to

alter the various flexibilities, and this may change the phase

angles between the various motions with the result of rendering

them stable. Also damping may be introduced.

Though most cases of shimmy are self-excited vibrations,

this is not invariably so. The disturbance may be excited by
unbalance of the wheels, which always exists to a certain extent,

especially with unevenly worn tires. Suppose the unbalance

weight at the left wheel to be on top, while at the right wheel

it is at the bottom. Then the centrifugal forces of these unbal-

ances will cause a tramping <p-vibration and this in turn causes a

shimmy. At a speed such that the frequency of rotation of the

wheels coincides with the natural shimmy frequency, the dis-

turbance will be great, as we have an ordinary resonance phe-
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nomenon. Since the diameters of the two wheels are different,

say by 1 part in 500, the unbalances in the two wheels will be

in the same direction after 250 revolutions and then excite only

an up-and-down motion, which is not coupled with shimmy.
In this manner typical and very slow beats are observed, as indi-

cated in Fig. 233.

The most effective method of eliminating shimmy, whether

forced or self-excited, is to do away with the gyroscopic coupling.

This has been accomplished in some cars by an independent wheel

suspension. There is no front axle and the wheel is supported
in such a mariner that it can move only up and down in its own

(51
Fio. 233. A forced shimmy motion caused by unbalanced wheels.

plane parallel to itself and can execute no ^-deviation. With

such a construction extremely flexible tires and front springs can

be used without any undesirable results.

Finally, it is of interest to mention another self-excited phe-
nomenon very similar to that of shimmy, viz., the

"
nosing

"

of electric street cars or locomotives. This disturbance occurs

frequently with cabs mounted on, trucks with some lateral

flexibility and consists of a violent lateral sway of the cab with

a period of several seconds per cycle. It is obviously a self-

excited vibration with the energy furnished by the rail friction.

However, there is no gyroscopic coupling as in the automobile.

The details of the mechanism of this phenomenon are not fully

understood at the present time.

Problems

114. Test the stability of the following frequency equations:

(a) s 3
4- 5s2 + 3s -f 2 = 0.

(6) s4 + 8s 3 + 10s 2 + 5s + 7 = 0.

(c) s 4 - 2s 3 + 5s 2 - 3s + 2 = 0.

116. The landing gear of an airplane consists of two wheels whose axes

are rigidly attached to the fuselage and a third trailing wheel which is

castored, t.c., can swivel about a vertical axis (Fig. 234a). Necessarily
the center of gravity of the airplane is located so that its projection falls
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within the triangle formed by the three wheels. Prove that, if this gear is

rolling over the ground with the two wheels forward as usual, the operation
is unstable, i.e., a small angular deviation of the rear wheel will increase

and the plane will execute a "ground loop."

Prove that if the castored wheel is located in front of the two steady
wheels

7
as with a so-called "tricycle," landing gear (Fig. 2316), the operation

is stable.

116. A pendulum with a light rod and a heavy weight of mass M at a

distance I from the point of support is hanging on a round shaft S (Fig.

FIG. 23f.

Jf the shaft S is rotating at a largo angular velocity u> and the friction torque

on the shaft is 7
7

,
find:

a. The equilibrium position of the pendulum in terms of the angle

with the vertical.

Discuss the small vibrations which the pendulum may execute about this

equilibrium position for the following three cases:

6. The friction torque T is absolutely constant.

c. To increases slightly with increasing velocity of slip.

d. To decreases slightly with increasing velocity of slip.

117. A weightW rests on a table with the coefficient of friction/ (Fig. 236).

A spring k is attached to it with one end while the motion of the other end is

prescribed by
/ < v =
t > v = vo
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or, in words, at the time t the spring end suddenly starts moving with a

constant velocity V Q . Discuss the motion and construct displacement-time

diagrams of the mass for the three cases b, c, and d of Problem 116.

FIG. 236.

118. A certain cross section has a diagram Fig. 222 with the following

curves:

Lift = Lo sin 2

Drag Do
2

cos 2o

If a piece of such a section is mounted in tho apparatus of Fig. 218 in the

position a = 90 dog., for what ratio L /D does instability start?

I I

FIG. 237.

119. Figure 237 shows a Watt's governor with the dimensions /, a, m, A/,

and k. At standstill the spring k is such that the angle a of tho flyball arms

is 30 dcg. At the full rotational speed 12 the angle ct is 45 dog.

a. Express k in terms of the other variables.

fe. Calculate the natural frequency at standstill.

c. Calculate tho natural frequency while the governor is rotating with

spood 12.

* *

FIG. 237a. FIG. 237Z>.

120. Transform Eq. (179) into a relation between four dimensionless

variables: one frequency ratio f =
cop/coe

,
two damping ratios C e

= (c/ce)eDe

and Cz = (c/c f )gov, and a dimensionless feedback or coupling quantity F.

Plot the results so found on a diagram for one certain value of f; Ce

ordinate, Cg abscissa, and r = parameter for the various curves. Inter-

pret these graphs.
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121. Referring to Fig. 228, find the natural frequency of the steam column
m on the "steam spring" of the chamber V. The mass M is supposed to

be held clamped.
122. A system consists of an engine /i, driving a shaft k\. (Fig. 237 a).

At the other end of ki is attached a fluid-flywheel coupling (page 271), the

''driver" of which has an inertia / 2 . The "follower" is attached to a piece

of driven machinery of inertia 7 3 . Set up the differential equations of

motion, using Eq. (147a), write the frequency equation, and find whether the

system is or is not capable of self-excited oscillations.

123. The same as Problem 122, only the "follower
1 '

of inertia 7 3 drives 8,

shaft & 2 ,
at the other end of which is a flywheel /4 (Fig. 2376).



CHAPTER VIII

SYSTEMS WITH VARIABLE OR NON-LINEAR
CHARACTERISTICS

66. The Principle of Superposition. All the problems thus

far considered could be described by linear differential equations

with constant coefficients, or, physically speaking, all masses were

constant, all spring forces were proportional to the respective

deflections, and all damping forces were proportional to a velocity.

In this chapter it is proposed to consider cases where these con-

ditions are no longer true, and, on account of the greater diffi-

culties involved, the discussion will be limited to systems of a

single degree of freedom. The deviations from the classical

problem (12), page 35, are twofold.

First, in Sec. 67, 68, and 69, we shall consider differential

equations which are linear but in which the coefficients are func-

tions of the time. In the remainder of the chapter non-linear

equations will be discussed. The distinction between these two

types is an important one. Consider the typical linear equation

with a variable coefficient:

mx + ex + f(f)x
= (198)

which describes the motion of a system where the spring constant

varies with the time. Assume that we know two different solu-

tions of this equation :

x =
(pi(t) and x =

<p2 (t)

Then d(p\(t) is also a solution and

x = CWi(0 + C2 v>2 (0 (199)

is the general solution of Eq. (198). Any two known solutions

may be added to give a third solution
,
or

The principle of superposition holds for the solutions of linear

differential equations with variable coefficients.

406
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The proof of this statement is simple.

ro?i(0 +c*i(0 +f(t)<f>i(t) =0
w02 (0 + c0 2 (0 + /(0*i(0 =

Multiply the first equation by Ci and the second by C2 and add:

i(0 4- CW01 =

This shows that [CVi(0 -f CV2 (01 fits the differential Eq. (198) and there-

fore is a solution.

In mechanical engineering it is usually the elasticity that is

variable (Eq. 198). There is, however, one important case where

the mass is variable with time (Fig. 141, page 232). This case

can be discussed on the same mathematical basis as that of

variable elasticity, provided damping is absent. We have

m(0 x + kx =
(200)

where m(t) is the variable mass. Dividing by m(t),

x + --- x = (200a)
m(t)

This equation describes a system of unit mass (constant mass)
and of variable elasticity.

A non-linear equation is one in which the displacement x or its

derivatives do not appear any more in the first power, such,

for example, as

mx + kx 2 = (201)

or more generally

mx+f(x) = (202)

The principle of superposition is not true for the solutions of

non-linear equations.

This can be easily verified. Let x\ <pi(t) and xz <f>i(t) be solutions of

(201):

wp,(0 +fr[*i(OP =

W0 2 (0 + fctaCOl
2 =

Hence, by addition,

m[Vi(t) + ^ a (0] + fc[{*i(0} + 1^(0 I

s
!
=

If (<pi + <f>t) were a solution, the last square bracket should be (<pi -f <Pz)
z

-

But the term 2^i<^>2 is missing, so that (<pi + <p 2 ) is not a solution of (201).

The general solution of (201) or (202) can still be written in a

form containing two arbitrary constants C\ and C2 , since the
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process of solution is, in principle, a double integration. But

although for linear equations a knowledge of two particular solu-

tions immediately leads to the general solution in the form (199),

this is no longer true for a non-linear equation. Very few

non-linear equations exist for which the general solution is known.

As a rule all we can do is to find particular solutions and even

these in an approximate manner only.

67. Examples of Systems with Variable Elasticity. In this

section seven cases are discussed physically and a partial explana-

tion of their behavior is given. The more fundamental treat-

ment is necessarily mathematical and will be taken up in the

next two sections.

First consider a disk mounted on the middle

of a vertical shaft running in two bearings B of

which only the upper one is shown in Fig. 238.

The cross section of the shaft is not completely
circular but is of such a nature that two princi-

pal directions in it can be distinguished, one of

maximum and one of minimum stiffness as,
f , . , ,. A
tor example, in a rectangular section. Assume
the shaft to have two circular spots A, A close

to the disk. These round spots A can slide

without friction in two straight guides restrict-

ing the motion of the shaft to one plane, e.g.,

FIG. 238. A disk to the plane perpendicular to the paper. The
mounted on a shaft jisk on the shaft flexibility is a vibrating systemwith non-uniform

. J
7

TTTI.-I ^ t_ f .

elasticity. The disk ot a single degree ot freedom. While the shaft
is confined to motion

jg rotating, the spring constant varies with the
in one plane only. f -,

time, from a maximum k + A/c to a minimum
k Afc, twice during each revolution, so that the equation of

motion is

mx + (k + Afc sin <akf)x
= (203)

where uk is twice the angular speed of rotation of the shaft and

the subscript k is used to suggest variation in the elasticity k.

Next, place the same shaft horizontal with the guides A vertical

so that the vibration of the disk is restricted to the vertical

direction. The weight W of the disk acts as an additional force

so that Eq. (203) changes to

mx + (k + Afc sin rf)x = W (204)
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If the elasticity were constant, there would be no significant

difference between (203) and (204), because (204) could be trans-

formed into (203) by merely taking another origin for the coordi-

nate x (the distance between these two origins would be the static

deflection of the disk). With variable elasticity, however, this

is not so. Let us take a new variable

y = x + C

where C is a constant to be determined so as to make the result

as simple as possible. Substitute in (204) which becomes

my + (k + A/C sin akt)y
- W + kC + CAfc sin <*kt (205)

If the variation in elasticity Afc were zero, we could choose C

equal to -W/fc and thus transform (205) into (203). With

A* F^ 0, this cannot be done. By imagining W = in the last

result, it is interesting to see that (203) by a mere shift of the

origin of x can be given a right-hand member which can be classed

as an extraneous exciting force of frequency fc [see Eq. (151c),

page 31 1].

We see that (203) and (204) cannot be transformed into one

another; they are definitely different and have to be so

treated.

Assume that the variations in k arc small with respect to k

(A/c is 10 per cent of k or less). Then the elastic force is princi-

pally that of k and the motion of the disk is nearly harmonic

with the frequency wn = \/k]m. When this natural frequency

of motion u n has a proper relation to the frequency of spring

variation uk and when also a proper phase relation exists, it is

possible to build up large vibrations. Consider the curves

Fig. 239a and 6, illustrating the motion x of the disk with a fre-

quency co n and a variation in shaft stiffness taking place at twice

that frequency. These diagrams pertain to the vertical shaft

(no gravity) so that OA is the equilibrium line where there are no

bending stresses in the shaft. The elastic force is therefore the

product of the ordinates of Figs. 2396 and 239a, measured from

OA. With the phase relation shown in the figure it is seen that,

while the disk is moving away from the center position (1-2 and

3-4), the spring force is smaller than its average value, whereas,

while the disk is moving toward the center, the spring force is

greater than its average value (2-3 and 4-5). Thus the spring
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force is small while opposing the motion and large while helping

the motion. Hence, over a full cycle the spring force does work

on the system and the vibration, once started, builds up: we have

instability.

With gravity, the spring force is still the product of k and the

amplitude of Fig. 239a, but this time the ordinate is not measured

from base OA, but rather from the base BB, distant from OA by
the static deflection dsi . The presence of the extra dst does not

change the previous argument with respect to the /j-variation.

shown in Fig. 2396, but it is now possible to obtain work input

j[(WithA
, gravity)

Fio. 239. Explains instability in the flat shaft at half and full critical speed.

with another fc-variation, shown in Fig. 239c, with 2o> = o>n (shaft

running at half critical speed). This is so because the spring

force is small (2 to 4) while the disk is going away from its equi-

librium position BB and large (1 to 2 and 4 to 5) while it is

coming toward BB.

The work input per cycle in general is fF dx = fkx dx, where

x = dst XQ sin co. In the case of Fig. 2396 we write for

k = k Afc sin 2co, and the reader is asked to substitute this

into the integral and verify that the work input per cycle is

+ ^ kkxl, which is independent of 88t . For the case of Fig. 239c

we write for A; = k + Afc cos co, and the work input becomes
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+TT Akxo 8t)
which is seen to exist only in the presence of

gravity.

Thus the physical analysis leads to the following conclusions:

1. In the system described by Eq. (203), i.e., in the vertical

shaft with flats, any small vibrations at the natural frequency
co n

= -\/k/m that may exist will be increased to large amplitudes
if the shaft runs at its full critical speed (cofc

= 2ww ).

2. For the system of Eq. (204), i.e., for the horizontal shaft

with flats, the same type of instability exists at the full critical

speed as well as at half the critical speed (WA?
=

co*).

These conclusions are tentative; an analysis of the equation in

the following sections will show to what extent they have to be

supplemented.
Practical cases in which

shafts of non-circular section

have given rise to critical

speeds of one-half the normal

are illustrated in Fig. 240.

The first of these is a shaft (a) (b)

with a keyway cut in it.
Fl - 24

1

()-~C
:

1808
1

f Il

7
un form flexi'

J J
bility m shafts find rotors.

There the trouble can be

corrected by cutting two additional dummy keyways, sym-

metrically placed, which makes the stiffness uniform in all

directions.

The other example is found in the cross section of a two-pole

turbogenerator rotor, in which slots are cut for the electric wind-

ings, the solid parts forming the pole faces. In this case the

non-uniform elasticity cannot be avoided, so that a two-pole

rotor will always be rough at half its critical speed.

A second case quite r.imilar to the example of the shaft is that

of a string with a mass m in the center. The tension in the string

is varied with a frequency co/c between a maximum T + t and a

minimum T t by pulling at the end (Fig. 241). If we pull

hard while m is moving toward the center and slack off while

m is moving away from the center, a large vibration will be

built up. While m is describing a full cycle, the end of the string

describes two cycles. We have the case of Fig. 2396. If the

string is horizontal a gravity effect comes in, making the system

subject to Eq. (204) and Fig. 239c.
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The periodic change in tension may also be brought about by
a change in temperature. A wire in which an alternating current

is flowing has temperature variations and consequently variations

in tension having double the frequency of the
vtsmuj kt

current. Lateral oscillations will build up if the

^*- natural frequency is either equal to or twice as

! large as the electric frequency.

\ A third case is illustrated in Fig. 242. A
\ pendulum bob is attached to a string of which the

\ other end is moved up and down harmonically.
1

<})
The spring constant k of a "mathematical

I pendulum" is mg/l, so that a periodic change
/ in the length I means a corresponding change in

the spring constant. Thus the sidewise displace-

ments of the bob are governed by Eq. (203).

In order to build up large oscillations by a

FIG. 241.- length variation of wjt
= 2wn = 2\/g/l t

the string

ision^as ^as ^ ^c Pu^cd up in the middle of the swing and
the second ex- let down at the extreme positions, the bob describ-

(203)!

q
*ng a %ure eight as indicated in Fig. 242. The
tension in the string is larger for small angles v

than for great angles on account of two factors. In the extreme

position the tension in the string is the weight of the bob multi-

plied by cos <PJ which is less

than unity. In the center,

the tension is the weight plus /\\

the centrifugal force of the
/ I

\
bob moving in its curved / \
course. Thus the string is / \

pulled up in the center against /^""N. ' *^*~\
a large tension and let down \^_^T^ '

at the extreme positions FlG . 242.-Pendulum of variable length.

against a small tension. In

this way work is put into the system, and this work is con-

verted into the additional kinetic and potential energy of the

larger vibrations.

The fourth example is more difficult to understand physically.

It is nearly the same as the previous one, except that the pendu-
lum is a stiff rod of constant length and the point of support

(about which it can turn freely) is given a rapid up-and-down
harmonic motion by means of a small electric motor. It will be
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Motor --.

T

seen later (on page 422) that such a pendulum has the astounding
property of being able to stand up vertically on its support.
The spring constant of a pendulum rod is again mg/\, but X in

this case is the
"
equivalent length." In this experiment the

length X is constant, but the gravity constant g varies periodically.
This can be understood by considering the pressure of a man on
the floor of an elevator car. While the elevator is standing still

or moving at constant speed, this pressure is equal to the weight
of the man; in an upward accelerated elevator it is more and in a

downward accelerated car it is less. An impartial experimenter
in the accelerated elevator may conclude that the value of g
differs from its value on the

earth. The same is the case

with the pendulum. While it

is being accelerated upward, g

is apparently larger. Thus a

periodically varying spring con-

stant and the validity of Eq.

(203) are shown. A more sat-

isfactory derivation is given on

page 423.

The fifth case to be discussed

is technically the most impor-
tant one. In electric loco-

motives of the side-rod type
violent torsional vibrations in

the drive system have been ob-

served in several speed ranges.

They are caused by a periodic

pulsation in the spring constant, which can be understood from Fig.

243 representing one of the simplest constructions of this type.

An electric motor is mounted on the frame and coupled to a driving
axle by one connecting rod on each side of the locomotive. The
two rods are 90 deg. offset so that the system as a whole does not

have any dead center. With the usual operating conditions the

wheels are locked to the rails by friction, but the motor can rotate

slightly against the flexibility of the two side rods. When a

side rod is at one of its dead centers, it does not prevent the motor
from turning through a small angle, i.e., its share in k is zero.

When it is 90 deg. from its dead center, it constitutes a very stiff

spring since it has to be elongated or the crank pins have to be

FIG. 243. Torsional vibration in eloctrio

side-rod locomotive.
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bent to allow a small rotation of the motor. The spring constant

of one side rod, therefore, varies between a maximum and prac-

tically zero and performs two full variation cycles for each

revolution of the wheel. The variation in the flexibility of the

combination of two side rods is less pronounced and shows four

cycles per revolution. The
curves 1 and 2, Fig. 244,

show the torque at the motor

necessary for one unit of

Angular twisting angle, if only side rod

one Revolution J
5 ' 'On

1 or 2 is attached. Curve 3,

Fio. 244.- The torsional spring con- being the SUm of curves 1 and
stant of Y\K- 243 as a function of the

2, gives the resultant k for
angular position. , , *

, ,* J the whole system.

The torsional oscillations of the motor on its side-rod springs

will take place superposed on the general rotation of the motor.

The phenomenon is represented by Eq. (203) where W& is four

times as large as the angular velocity of the wheels. It is to be

expected, therefore, that serious vibrations will occur when
wn = y2 '

[4(27r r.p.s.)].

A sixth example has been found in the small

synchronous motors of electric clocks (Fig. 245).

The rotating part of these motors usually consists

of a very light piece of sheet metal A running
around the poles B which carry the alternating

current. The rotor can slide axially in its bearing

but is held in a certain position by the magnetic electric dock

field of the poles B. These poles act as magnetic
n

I

l

.

otor is an axi~
1 L

ally vibratory

springs of which the intensity becomes zero 120 system on the

times per second in a GO-cycle circuit, so that the magnetic
1 J '

springs B.
variation in the spring constant is large (100 per

cent) . The trouble experienced consists in a noisy axial vibration

of the rotor.

The seventh and last illustration of (203) is the electrical

analogue. A glance at the table on page 38 shows that we are

dealing with a simple inductance-condenser circuit of which the

condenser capacity is periodically varying, for instance by means
of the crank mechanism of Fig. 246. The x of Eq. (203) stands

for the charge Q on the condenser plates. A constant right-hand
member in Eq. (204) can be provided by a direct-current battery
in the circuit. First consider the system without battery.
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Two charged condenser plates attract each other mechanically.
The current in the L, C circuit will surge back and forth with

the frequency con = \/\/LC. Let the crank mechanism be so

timed that the plates are pulled apart

while the charge Q is large and

pushed together again while Q and

hence the attractive force are close to

zero. Thus the crank mechanism (mov-

ing at double the current frequency:

co/,
= 2con) does mechanical work on the

system and this work is converted into

electrical energy. With a strong bat-

tery and small oscillations the charge

on the condenser never changes its

sign and the crank mechanism has to

operate at the frequency o^ = co u in

the fashion indicated in Fig. 239c.

68. Solution of the Equation. Most

of the problems discussed in the previous section depend for

their solution on the differential equation

;. 240. Klectric circuit

with variable condenser

(spring).

mx + [k + Ak-f(l)]x =
(203a)

where f(t) is a periodic function of the time, usually of the form

f(f)
= sin u/ct. It is known as Mathicu's equation, and its general

solution, containing two arbitrary integration constants, has not

yet been found. In fact, there are very few equations with

variable coefficients of which solutions are known. However,
we are not so much interested in the solution itself, i.e., in the

exact shape of the motion, as in the question whether the solu-

tion is "stable" or
"
unstable." The simplest solution of (203a)

is x =
0; in other words, the system remains at rest indefinitely.

If it is given some initial disturbance (x
= Xo or x =

), it cannot

remain at rest and the distinction between stable and unstable

motion refers to this case. By a stable solution we mean one

in which the disturbance dies down with time as in a damped
vibration, whereas an unstable motion is one where the ampli-

tudes become larger and larger with time (Fig. 207).

If the "ripple" f(t) on the spring constant has the frequency

a;*, the motion, though it may not be periodic, will show certain

regularities after each interval T = 27T/W
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Suppose that the system starts off at the time t = with the

amplitude x = XQ and with the velocity x = VQ. Let the (unknown)
solution be x = F(t) and assume that after the end of one period
T =

27r/o)k the amplitude and velocity of the system are given

by their values at the beginning, multiplied by a factor s (positive

or negative) :

fx \ _ gg A\ _ gy (206)

Whether this assumption is justified remains to be seen. If it

is justified, we find ourselves at the beginning of the second cycle

with an amplitude and velocity s times as great as at the begin-

ning of the first cycle. Then it can easily be proved that the motion

throughout the whole of the second cycle is s times as large as

the motion during the corresponding instants of the first cycle and

in particular that the third cycle starts with an amplitude S 2x .

The proof is as follows: Let x F(t) be the solution of (203a) with the

conditions

and (207)

Take as a new variable during the second cycle y ~ sx. The differential

equation becomes (after multiplication by s)

my + [k + &kf(t)]y - (208)

If the time is now reckoned from the beginning of the second cycle, the

initial conditions are

and (2/)-o (209)

It is seen that (208) and (209) are exactly the same as (203a) and (207) so

that the solution is y = F(t). Therefore, y = sx behaves during the second

cycle in exactly the same manner as x behaves during the first cycle.

Thus, if the supposition (206)

is correct, we have solutions

that repeat in co^-cycles but

multiplied by a constant factor

in much the same manner as

Eq. (24) or Fig. 207. If s is

smaller than unity, the motion

is damped or stable; if s is

larger than unity, the motion

is unstable. For any general periodic /(<), Eq. (203a) cannot

be solved. The particular case of a "
rectangular ripple"

FIG. 247. Variation in elasticity for

which Eq. (203a) can be solved.
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Afc on the spring constant k, however, is comparatively simple

of solution (Fig. 247). In most practical cases the ripple is more

sinusoidal than rectangular, but the general behavior of a system
such as is shown in Fig. 247 is much the same as that of a system
with a harmonic ripple on the spring force.

With the notation k/m = co and f(t)
=

1, the differential

equation (203a) becomes for < u k t < TT,

x + l + ~x = (210)

and for TT < wrf < 2ir,

= (211)

Both of these equations are easily solved, since the coefficient of

x is now constant. The solution for the first half cycle is [see

Eqs. (13) and (14), page 42]

xi = Ci sin pit + C2 cos pj (pi =
<\/w n + (212)

and for the second half cycle

2
= C 3 sin p%t + C\ cos pd ( p 2

= +lu>n
---

)
(213)

These two solutions should be fitted together at u k t TT with the

same amplitude and velocity; moreover, they should describe a

motion which at the end of a full cycle is s times as large as at the

beginning. Thus

(214)

are four equations from which the four arbitrary constants in

(212) and (213) can be determined.

Written out fully the first equation of (214) is

Ci sin 32} + C2 cos^ - C 3 sin ^? _ Ct cos ^ =
W/c &k Uk Uk

and the remaining three are of the same type, homogeneous in

C\. C, Cs, and C 4 . This set of four algebraic equations can have
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solutions for the C's only if their determinant is zero as explained

on pages 105 and 157. Therefore,

sm cos -L- sm - cos ~

COA; COA; COA; COA;

pi cos -1-
pi sm -1

?2 cos ~
p% sm -

COA; COA; COA; CCA; _ Q
. 2lTp2 27T772

s sin -- cos -----

COA; COA;

7?2 cos r> 2 sin
COA; COA;

is a condition that has to be satisfied if our original assumption

(206) is correct. Of all the quantities appearing in this determi-

nant only s has no definite value and is at our disposal. It is

seen that the determinant is a quadratic equation in s. After

a somewhat laborious working out, it becomes

9 o i * . 1 2 ,
., n /o-. r\

s 2 2s<cos- - cos - ~-- sin -J sm- ->+ 1=0 (215)
co/, C

If, for brevity, the expression within the braces be denoted

by A, the solution of (215) is

s = A VA'2 - 1 (216)

In case A > 1, one of the two possible values of s is greater

than unity and the solution is unstable. After each co/c-cyclo

the magnified deflection is in the same direction, so that in each

coArCyclc there have taken place 1 or 2 or 3 . . . cycles of the free

vibration con .

If A lies between 1 and +1, the twTo values for s become

complex, which means that the original assumption (206) is

untenable. However the real part of s is less than unity, so that

we expect a motion which does not increase regularly with the

time: the system is stable.

Finally, when A is smaller than 1, one of the values of s will

also be smaller than 1. This means physically that after one

<OA;-cycle, the amplitude and velocity of the system are reversed

and are somewhat larger. After two co/c-cycles they have the same

sign and are also larger (multiplied by s 2 which is positive and

larger than one). Again we have instability, but during each

we see J^, 1^, 2^ cycles of the free vibration con .
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Thus briefly the system is unstable if \A\ > 1, or if

P? + Pl :,cos - cos - ;

COfc COfc

.

ci t"olll > 1

419

(217)

where the symbol | |

means " numerical value of" and the sig-

nificance of pi and p 2 is given by (212) and (213). In this rela-

tion there are two variables, pi/W and >2/W, or more significantly,

con/Co^ (the ratio of the "free" and "elasticity" frequencies) and

Afc/fc (the "percentage of variation," Fig. 247).

Fio. 248. Fundamental diagram determining the stability of a system with
variable elasticity. The shaded regions are stable and the blank regions are
unstable. (Van der Pol and Strutt).

The result (217) is shown graphically in Fig. 248, where for

convenience the abscissas are taken as (a> n/W)
2 and the ordinates

as (Ak/k)
-

(co n/oj/c )
2

. The reason for this choice of abscissa is that

with the second power, a negative spring constant (such as

appears in the vertical pendulum) can be plotted as a negative

(wn/W)
2 =

/c/racof, whereas with the first power of un/uk the

abscissa for a negative spring would become imaginary. For

the ordinate the case of no steady spring constant, k 0, would

lead to an infinite ratio Ak/k; this defect is avoided by taking
Ak=

2*
J-n ^ne figure the lines where (217) equals +1

are drawn in full, while those along which (217) is 1 are dashed.

In the shaded regions the expression (217) is less than unity,

which indicates stability, while in the non-shaded regions its
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value is greater than unity, denoting instability. The numbers

%, 1, 1^, etc., inscribed in the regions of instability indicate the

number of vibrations of the system during one co^-period of the

variation in stiffness.

69. Interpretation of the Result. From Fig. 248 the behavior

of the various systems of Sec. 67 can be deduced more accurately
than was possible from the simple physical considerations

given in Sec. 67. The examples come in three groups:
a. The shaft, the string, the locomotive, and the variable

condenser all have a frequency of variation co/- which can vary
over a considerable range and have also a small variation per-

centage Ak/k 1 with a positive k.

6. The electric-clock motor has a constant co/-frequency, large

variations (Afc/fc
=

1), and a positive k.

c. The pendulum standing on end has a variable co^-frequency

and a negative k, i.e., it is statically unstable.

Before discussing any one case in detail, it should be remem-
bered that the diagram, Fig. 248, has been derived for a "rec-

tangular ripple/' so that only approximate results are to be

expected from its use for most actual cases where the variation

is nearly harmonic. However, the approximation is a very good
one. Moreover, no damping has been considered.

First we shall discuss the examples of group a. In each case

the percentage of variation Afc//c and the average natural fre-

quency con = -\/k/m are constant. The only variable in the

system is the frequency of variation in elasticity cu&. In the dia-

gram the ordinate is always Ak/k times as large as the corre-

sponding abscissa. Each system, therefore, can move only

along a straight line through the origin of Fig. 248 at an inclina-

tion tan" 1
A/C//V with the horizontal. The line for Ak/k = 0.4

(40 per cent variation) is drawn and marked OA. A slow varia-

tion a>fc corresponds to a point on that line far from the origin 0,

while the points close to the origin have a small value of (con/W) 2

and therefore a large o^. It is seen that most of the points on OA
are in stable regions where no vibration is to be feared, but we
also note that there are a great (theoretically an infinitely great)

number of rather narrow regions of instability. These occur

approximately at con/W = ^, 1, 1J>, 2, 2J4 etc.

Now imagine the electric locomotive to start very slowly and
to increase its speed gradually, until finally the variation in side-

rod elasticity (being four times as fast as the rotation of the
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wheels) equals twice the natural frequency of torsional vibration.

Along OA in Fig. 248 this means a motion from infinity to the

point where (con/coA)
2 =

}\, and it is seen that an infinite number

of critical speeds has been passed.

From Sec. 67 it seems that the two speeds, for un/uk = 1

and con/Co^
= Yi are the most significant and that the other

critical speeds are much less important. Nevertheless it is

impossible to avoid these low-speed instabilities by changes in

the design, unless of course the variation A/c can be made zero.

Vibrations of this sort have caused great trouble in the past.

They were overcome chiefly through introducing torsionally

flexible couplings with springs between the motor gear and its

crank or between the driving wheel and its crank. These

couplings act in two ways. First, they shift the na( ural frequency
co n to a low value so that all critical regions lie below a rather low

speed, say 20 m.p.h. At these low speeds the intensity of the

input cannot be expected to be very great. Furthermore, the

springs, especially if they are of the leaf type, have some internal

friction in them so that they introduce damping.
Similar results hold for any of the other examples in group a.

In particular a shaft with two flat sides will pass through a great

number of critical-speed regions. In the actual experiment,

however, only the highest two of these critical speeds prove to be

of importance, one occurring at half the usual "primary" critical

speed and the other at that speed itself.

In group 6 we have the axial vibrations of the electric-clock

motor caused by a periodically vanishing elasticity. Here

Afc/fc
=

1, which for variable speed Wk is represented by a straight

line at 45 deg. (shown as OB in the diagram). In this case, it

is seen that the regions of instability are wider than the regions

of stability, so that the chance for trouble is far greater than before.

The last case, that of the inverted pendulum, is technically

the least important but philosophically the most interesting.

In the first place, the spring constant k for such a pendulum
is negative. This will be clear if we remember the definition of

fc,

which is the force tending to bring the system back to its equi-

librium position from a unit deflection. The gravity component

attempts to remove the pendulum from the vertical so that k is

negative. Hence w = k/m is also negative. For the hanging

pendulum u% = g/\ where X is the equivalent length (X
= % of
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the over-all length in the case of a uniform bar) . For the inverted

pendulum,

Let the motion of the supporting point be e sin uk t which gives

an acceleration ew| sin wkt. The variation in elasticity amounts
to

and the ordinate in Fig. 248 becomes

AJ

k

being the ratio of the amplitude of the base motion to the equiv-
alent length of the pendulum. The abscissa is

Q

a negative quantity and small for rapid motions of the base.

Figure 249 shows a detail of

the main diagram of Fig. 248

which is important for the

inverted pendulum. To be

precise, Fig. 249 has been

taken from the exact solution

for a sinusoidal ripple (not

given in this book), while

Fig. 248 refers to a rectangular

ripple. Incidentally it is seen

that very little difference

exists between the two.

If the pendulum is started

FIG. 249. Detail of Fig. 248 giving with a given base amplitude
an explanation for the stability of the e an(J with an increasing fre-
inverted pendulum.

quency co*, we move along the

horizontal line from A toward B. For slow 00* the system is clearly

unstable, but at a certain speed it enters the stable region and

remains there until at B the base speed uk becomes infinitely large.

However, when the ratio e/X is taken greater than about 0.5,

-05 +Q5
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there is a large speed at which the pendulum becomes unstable

for the second time, as indicated by the point A" of the line A 'A".

The proof for the statement that the variation in elasticity may be con-

sidered as a variation in the gravity constant can be given by writing down
Newton's laws of motion.

In Fig. 250 let

a = distance between point of support and center of gravity G,

s = e sin ou = displacement of support,

/ = moment of inertia about (7,

= angle with the vertical,

x, y vertical (up and horizontal (to right) displacements of (7,

A', Y vertical (up) and horizontal (to right) reaction forces from

support on pendulum.
Then the displacements of G are

x = s -f- a cos ~ 8 + a (for small 6)

y = a sin aO (for small 0)

The three equations of Newton for the vertical and horizontal motion

of G and for the rotation about G are

X mg = mx = ms
Y = my = maQ
Xa sin Ya cos Xa0 Ya = 18

The reactions A" and Y can be eliminated

by substituting the first two equations in

the third one:

18 msa0 + mga0
or

(/ + ma*)8 - ma(g + s)0 =
FlG 250,-A pendulum with

_. r .
- xu i f a harmonically moving point of

The expression / + ma 2 is the moment of
BUpport is equivalent to a pen-

inertia about the point of support and the dulum with a stationary sup-

spring constant is P rt in a space with a periodic-

ally varying constant of gravity

ma(g -f- s) fl-

it is negative and its variation can be interpreted as a variation in g by the

amount S, the acceleration of the support.

Finally we shall discuss the case of variable mass, illustrated

in Fig. 141, page 232. Consider a simple piston and crank

mechanism coupled through a flexible shaft k to a flywheel of

infinite inertia (Fig. 251). Let the flywheel be rotating at uni-

form speed. This system is a torsional one of a single degree

of freedom with the constant elasticity k and a variable moment
of inertia (mass) .
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It was seen on page 407 that such a system is mathematically

equivalent to one with variable elasticity and constant mass

so that Fig. 248 applies. According to Fig. 248 we ought to

experience critical speeds when the average natural frequency

a)n = \/k/I is J-"2, 1, 1^, 2 times the frequency co& of mass

variation. It can be easily seen that the main frequency of

mass variation is twice the r.p.rn., so that the critical speeds

should appear for co n
=

1, 2, 3 times corpm . The simple

approximate theory culminating in Eq. (138), page 222, gives

only one critical speed occurring at con = 2corpm for a connecting

rod of infinite length.

FIG. 251. A system with periodically varying inertia.

70. Examples of Non-linear Systems. Non-linearity consists

of the fact that one or more of the coefficients m, c, or k depend
on the displacement x. In mechanical cases the most important
non-linearities occur in the damping or in the springs, whereas

in electrical engineering the most common case is that of a non-

linear inductance (mass).

Let us first consider some examples of non-linear springs.

Figure 252 shows three cases where the spring force is not pro-

portional to the displacement, but where the individual springs

employed are yet ordinary linear coil springs. The first case

is the very common one of clearances in the system. The mass
can travel freely through the clearance without experiencing any
spring force at all, but from there on the force increases linearly.

The second case is that in which the springs have an initial

compression and are prevented from expanding by the thin

washers a resting against the lugs b. The mass ra, being loose
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from the washers, cannot move until a force is applied to it equal
to the initial compressive force F of the springs. The third

example is that of a spring with so-called
"
stops." For a small

displacement the system is affected only by one set of springs,

Dispt

(a)

(c)

FIG. 252. (Combination of linear coil springs \ihirh form a non-linear elasticity,

(a) Clearances; (h) set-up springs; (c) stops.

but after that another set comes into action and makes the com-

bined spring much stiffer. The second sot of springs sometimes

consists of a practically solid stop, in which case the character-

istic becomes nearly vertical after the stop is hit.

All three cases shown in Fig. 252

naturally have their torsional equiv-
alents. In particular, set-up springs

(Fig. 2526) are used often in the

construction of torsionally flexible

couplings.

Figure 253 represents a cantilever

spring which, when deflected, lies

against a solid guide, thus shortening

its free length and becoming stiffer.

Hence its force-deflection characteris-

tic becomes steeper for increasing

deflections. More or less curved

spring characteristics occur quite FIG. 253. Spring with grad-

often in practice. In fact, most actu- ually incrcasins stifTne8S -

al springs have a straight characteristic for small deflections only

and then become stiffer for larger deflections.

Next consider some forms of non-linear damping. The linear

damping force is ex, proportional to the velocity. It is known

Displ.
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also as a viscous damping force, because it occurs in a dashpot
with a viscous fluid.

Other types of damping which occur frequently are dry-friction

or Coulomb damping and air or turbulent-water damping. The

FIG. 254. Various damping forces for the case of harmonic motion, a,

viscous friction ex; b, Coulomb friction F; c, turbulent air damping cx 2
.

first of these is independent of the magnitude of the velocity,

but is always opposite in direction to the velocity. The air or

turbulent-water damping is approximately proportional to the

square of the velocity and also is directed against it. The various

forces plotted against the time for a

sinusoidal motion are shown in Fig. 254.

In practical mechanical problems the

mass is usually a constant quantity.

It is possible, however, to imagine a

system w
rhere even this coefficient varies

with the displacement. In Fig. 255,

Water.

FIG. 255. A system with a let the piston be very light and the
non-linear mass. amount of water in the cylinder small

in comparison with that in the tank. Evidently the piston

with the water column above it in the cylinder is a vibra-

tory system since the rest of the water in the tank moves very

little during the oscillation. But the length of the water column

and therefore its mass depend on the displacement x. While

for small oscillations of the piston the mass is practically constant,

this ceases to be the case for larger motions, so that we have a

system with a non-linear inertia coefficient (mass).

This example is of little practical value, and we turn to the

electrical field to find important cases where the mass varies with

x. Consider the simple L-C-circuit of Fig. 256 with or

without alternating-current generator. The coil contains a soft

iron core, which becomes magnetically saturated for a certain
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value of the current. This is illustrated in Fig. 257 where, for

a given frequency, the voltage across the coil is plotted against
the current, giving a distinctly non-linear relation for larger
values of the current. Since the voltage across the inductance

coil is the electrical equivalent of the mechanical inertia force,

it is seen that indeed we have before us a case of a mass depending
on the displacement.

FIG. 256. Non-linear
electric circuit with a

saturated core in the
inductance.

Current

FIG. 257. Saturation
curve of the inductance of

Fig. 2oti.

71. Free Vibrations with Non-linear Elasticity or Damping.
The most important new fact arising in a discussion of the free

vibrations of these systems is that with the non-linearity in the

springs the natural frequency is no longer independent of the ampli-

tude of vibration. With non-linear damping, however (if it is not

too great), the frequency depends very little on the amplitude.

The reason for this can be readily understood. In a sense the

natural frequency is the ratio of the intensity of the spring force to

the inertia force for unit frequency. In the linear case these are

both proportional to the deflection, and their ratio therefore must

be independent of the deflection. If, however, the spring force is

not proportional to the amplitude, as with a non-linear system,

the natural frequency cannot remain constant.

On account of its 90-deg. phase angle a damping force disturbs

the frequency as a second-order effect only (Fig. 36, page 54).

This is true whether the damping is linear or not. Therefore no

appreciable influence of the amplitude on the frequency should be

found in the case of non-linear damping.
Consider the specific case of a motion with clearances a and

springs with a constant k as shown in Fig. 252a. If the amplitude
is smaller than a, there is no spring force whatever and the natural

frequency is zero. On the other hand, for very large amplitudes

armax, the little irregularity between +a and a is completely

buried by the large motion, and we should expect a frequency

wn = \//c/m. To find the complete relation wn = /fena*), we
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fix our attention on the mass at the instant that it is in an extreme

position, x = xmax and x = 0. In the absence of damping, the

only force acting on the mass is the spring force, under the

influence of which the mass will return to its central position in a

certain time which is one quarter period T/4. We now proceed

to calculate T/4, from which con can be found immediately.

With xraax
= a + XQ we introduce the distance XQ, along which

the spring is acting. From x = max to x =
a, the system acts

as a linear one with a frequency \/k/m. The time it takes for

this distance is one quarter period of the harmonic motion or

-7
= ?;*/,- At the end of this interval of time the mass is

4 C0n 2\fc

at x = a and has acquired the maximum velocity cona;o
= x Q\^k/m.

From there to the center no forces act on the mass so that it goes

through the distance a with a constant velocity. This distance a

, ,
Im

takes A /-p sec.
a I

A /-

ffo\fc

The total time, being one quarter period of the non-linear

motion, is

(a

TT\ /m

x~
+

2jVfc"

from which the natural frequency is found as

1 +
~~

(218)

This relation is shown in the full line of Fig. 258. The dotted

line represents an approximate solution obtained by the construc-

tion in Fig. 260. When the clearance a =
0, or the motion

.Tmax = x = oo
,
the natural frequency reduces to -\/k/m, whereas

for x n
= the frequency becomes zero.

For the general case of a curved characteristic this same procedure,

involving the calculation of one quarter period, can be followed. With a

spring characteristic f(x) the equation of motion becomes

mx = J(x)

But

dv dv dx dv
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Integrating,

v 2 rx
N-nT

=
I& JXm&TL

f(x)dx

The limits of integration are from zmax where the velocity is zero, to the

general position x where the velocity is v.

Further,

f x i
dx

Thus
dx

- f(r)dx

which is the time it takes to go from o- IIiax to x.

Clearly t = T/4. when the second integral extends from x,,mx to zero and

dx
(219)

This general formula enables us to calculate the natural frequency of a

non-linear system having any kind of characteristic,. Sometimes the two

integrations can be performed di-

rectly, but, if this is not possible,

they can always be evaluated

graphically or numerically by sub-

dividing the distance between xmax
and into a sufficient number of

steps and assuming that in each

step the spring force is constant.

A rather well-known example of

(219) is the mathematical pendu-
lum with large oscillations. The

equation is

ml 2
ip -f- mgl sin <f>

=
"0 02 04 06 08 10

which for small oscillations is made ^n/ifiT -

linear by setting sin <p equal to <f>. FIG. 258.---Natural frequency as a

The frequency for large vibrations function of the maximum amplitude of

is found from (219) by substituting ^^a)

f r th 8y8tcm with clcarancca

ml2 for w, mgl sin <p for/(x), and <p

for x. In mathematical texts the integration is given as a classical example
of elliptic functions.

If the non-linearity is located in the damping of the system,

the natural frequency is not affected by the amplitude and

remains approximately \/k/m. The only question of interest

here is the rate of dying down of the amplitude. An exact
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solution to this problem can be found by a step-by-step (graphical

or numerical) integration of the equation of motion, but this is

too laborious. (Only for the simple case of Coulomb dry friction

does a simple exact solution exist.)

A sufficiently accurate approximation for practical purposes

is obtained by calculating the energy spent by the friction force

during a cycle and equating this energy to the loss in kinetic

energy of the motion. In order to be able to calculate these

energy losses, we have to know the shape of the motion, which

obviously is not sinusoidal but yet resembles a sinusoid for small

values of the damping. The smaller the damping the better is

this resemblance, because with a harmonic motion the large

spring and inertia forces are harmonic and only the small damping
force causes a deviation from this harmonic motion. Thus we
assume harmonic motion x = X Q sin ut. If the damping force is

represented by/(x), its work per cycle is

W =
ff(x)dx

=
fJfWxdt

= x**f(x) cos

The toss in kinetic energy per cycle is

J^raco
2^ %m<) 2

(xo Ax)
2 = ra

Equating the two expressions we find for the decrease in ampli-
tude per cycle

Ax = = 1 ~"f(x) cos ut d(cort (220)/VH /
* S X ^ ' ^ '

This integral can always be evaluated, even though it may some-

times be necessary to do it graphically.

As an example, consider Coulomb damping, where /(x)
= F.

The velocity and the damping force are shown in Fig. 259. The

integral in (220) is seen to consist of four equal parts,

T

4 f*F cos utd(wt) = 4F

and the decrement in amplitude per cycle is

4F .F k 1 .F ,nn^Ax = - = 4- ._-._. = 4 (221)wo> 2 k m o)
2 k
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or four times the static deflection of the friction force on the

spring. The result is significant in that the amplitude decreases

in equal decrements as an arithmetic series, whereas in the case

of viscous damping the amplitude decreases in equal percentage
ratios as a geometric series (page 54). Incidentally it is of

interest to know that (221)

happens to coincide with

the exact solution before

mentioned.

72. Forced Vibrations with

Non-linear Springs. The

problem is that of an un-

damped system with a curved
FIG. 259. Coulomb damping force.

spring characteristic under the influence of a harmonic disturbing

force or

mx + /Or)
- Po r,os ut (222)

Thus far an exact solution to this problem exists only for the

simple characteristic of Fig. 2526 and is so complicated as to

be without much practical value. In the following pages an

approximate solution will be given, based on the assumption that

the motion x = /() is sinusoidal and has the "forced" frequency.
This is obviously not true, and the degree of approximation can

be estimated only by the seriousness of the deviation from this

assumption. Assume

x = jc cos ut (222a)

The inertia force mx is m.r <*>
2 cos ut, and this force attains its

maximum value ~mu 2
xo at the same instant that the external

force reaches its maximum value PO and the spring force its

maximum f(x ). Equation (222) is a condition of equilibrium

among three forces at any time during the (non-harmonic)

motion. Let us satisfy that condition for the harmonic motion

(by a proper choice of XQ) at the instant that x = XQ. Thus

or

+ f(xo)
=

Po + mo) 2
(223)

At the time when x =
(in the middle of the stroke), all three

forces are zero so that the equilibrium condition is again satisfied.

In case f(x) were equal to kx, all three terms of (222) would be
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B,C

proportional to sin co/, so that (222) divided by sin cot would give

(223) with /OE O)
= kx and the equilibrium condition would be

satisfied at all values of x between and XQ. However, when

/Or) ? kxj this is no longer true, and the equilibrium is violated

at most points between and XQ. To satisfy the equilibrium at

the two points x = and x = XQ is the best we can do under the

circumstances. Thus the amplitude of the forced vibration will

be found approximately from

/A2
the algebraic equation (223).

The most convenient and

instructive manner in which

this can be done is graphical.

Plot the forces vertically and

the amplitude #0 horizontally

as in Fig. 260. The left side

of (223) is the (curved) spring

characteristic, while the right

side of the equation expresses

a straight line with the ordinate

intercept PO and the slope tan"
1

(mar). Where the two curves

Fi<i. 2(>o. Approximate construction
intersect, the left-hand force of

of the amplitudes of forced noii-lmear /0oo\ i 4-U i A u j
vibrations. (223 ) equals the right-hand

force, so that equilibrium exists

(at the end of a stroke). This determines x as the abscissa

of the point of intersection. For slow frequencies (small slopes

wco 2
), there is only one such point of intersection Ai, but

for greater frequencies and the same force P there are three

intersections A^ B%, and C^. In other words, there are then three

possible solutions. To see this more clearly, we plot in Fig. 261

the amplitude X Q against the frequency co for a given constant

value of the force P
,
which gives a resonance diagram corre-

sponding to Fig. 38, page -59, for the linear case. (Incidentally,

Fig. 38 can be constructed point by point in an exact manner
from Fig. 260 with a straight-line characteristic.) It is left for

the reader to develop Fig. 261 from Fig. 260 and in particular to

see that for frequencies below BCs only one solution exists, and

for frequencies above BC 3 three solutions exist; also that the

^.-branch of the diagram represents motions in phase with the

force PO sin at, while the #C-branch is 180 deg. out of phase with

this force. This peculiarity is the same as in Fig. 38.
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Of the three possible motions A, ,
or C, it has been found that

C is unstable, whereas A and B represent stable motions which

can be realized by experiment. In order to make this statement

seem reasonable, it is necessary to complete the diagram of Fig.

261 with curves for other values of P
,
and this is done in Fig. 262.

The central thick curve is the one for P =
0, or, in other words,

for the free vibration. It is found by drawing lines with slopes mco
2

from the origin (Fig. 260) and determining their intersections

with the characteristic. For frequencies o> below a certain value

w the slope in Fig. 260 is too small to give any intersection at all.

For increasing slope the X Q becomes greater and greater. For a

very small exciting force P we obtain curve 1 of Fig. 262, while

for greater values of P the curves 2 and 3 result.

FIG. 201. Resonance dia-

gram for a system with a

gradually stiffening spring.

FIG. 262. Explains the insta-

bility of the G'-branch of Fig.
261.

Consider a point on the A-branch of one of the curves of

Fig. 262. If for a given frequency the force P is increased,

the amplitude X Q also increases (we move along a vertical line

in Fig. 262). The same is true for any point on the /^-branch of

the curves. But on the C-branch an increase in the force PO
means a downward motion in Fig. 262 (from curve 1 toward

curve 2) and this means that an increase in the force results in a

decrease in the amplitude. This cannot happen, however, and

what actually takes place is shown in Fig. 263, representing the

same curve as Fig. 261 with the influence of damping taken into

account. This damping rounds off the resonance peak in the

same manner as with a linear system. If the force amplitude P
is kept constant and the frequency co is gradually increased, the

amplitude X Q suddenly drops from B to C and continues to D.
With diminishing co we pass Z), C, and E, where the amplitude
suddenly jumps up to P, then continues on to A. The unstable

branch BE represents motions that cannot occur.
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The characteristic of Fig. 260 represents a spring which

becomes gradually stiffer with increasing amplitudes. This leads

to a natural frequency which increases with the amplitude, as

shown by the thick curve bending off to the right in Fig. 262.

For a spring of diminishing stiffness (as, for example, Fig. 2526)

the natural-frequency curve bends to the left and the unstable

C-branch of the curves lies to the left of the central curve. In

Fig. 264 the upward jump in amplitude happens with increasing

frequency.

FIG. 263. Discontinuous

jumps in the amplitudes of

a non-linear system with a

gradually stiffening spring.

FiCt. 264. Resonance diagram
for a spring in which the stiffness

decreases with the amplitude.

An interesting method of solving this problem accurately by
successive approximations for any spring characteristic is due to

Rauschcr. Instead of starting with a given frequency and then

solving for the amplitude x
,
as was done in Fig. 260, Rauscher

starts with an amplitude ratio Xo/Po and then solves for the

frequency. In Eq. (222) the frequency co is regarded as not

fixed, and a first guess at the motion is Eq. (222a), in which x

is given a definite value, while co is the frequency of the force, as

yet floating. Then we may write P cos ut = PQX/XQ, which

transforms the exciting force from a time function to a displace-

ment function. The exciting force is now brought to the left-

hand side of Eq. (222) and combined with the spring force /(x).

The problem reduces to one of free vibration, which can be

solved by means of Eq. (219). The displacement-time curve so

obtained will not be the same as the first guess (222a) for it, but it

will have the same maximum amplitude XQ. With this new

displacement function we enter once more into the differential

equation (222), transform the exciting force from a ^-function

to an x-function, and throw it to the left so as to combine it with

the spring force. In this manner the third solution for x =
f(f)
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is obtained. These successive solutions for the motion converge

very rapidly to the exact one. Being a method of
"
iteration"

it is very closely related to Stodola's procedure, discussed on

pages 194 to 205. Again, as in that process, if the first guess for

the motion happens to be the correct one, the second result

will be identical with the first. This can best be shown by apply-

ing Rauscher's procedure to the linear case,

mx + kx = Po cos co/.

The first guess is x = X Q cos co/, which, if j- (, has a definite value,

is the exact motion for some frequency co. Then

Po cos co/ = and mx +

This is a free vibration of a linear system like Eq. (13) with the

solution (222a) in which the frequency co is determined by
k P Ix

co
2 = This is seen to be the exact result (28) of pagem

57. The unusual feature of Rauscher's procedure is that,

instead of finding the intersection of the curves of Fig. 262 with a

vertical line (i.e., solving for XQ with co given), the intersection

with a horizontal line is determined (i.e., co is solved for a given

XQ) which, of course, is just as good.

The analysis of the electric circuit of Fig. 256 follows exactly the same

lines except that the inertia force (inductance voltage) has a curved charac-

teristic, whereas the spring force (condenser voltage) follows a straight line.

In the analysis it was assumed that the motion has the same

frequency as the force, which would be the case in a linear sys-

tem. Though this is the only possible motion for slightly non-

linear systems, it will be seen later (page 448) that for very

pronounced non-linearity motions of a frequency 1, 2, 3, 4 ...
times as slow as the disturbing frequency co may be excited.

73. Forced Vibration with Non-linear Damping. The differ-

ential equation of this case is

mx + f(x) + kx = Po sin coJ (224)

where f(x) is not equal to ex. On account of the presence of the

non-linear damping term f(x), the motion is not harmonic. An
exact solution of (224) is known only for the case of Coulomb

damping, f(x) = F + ex and even then in a limited region of

frequencies only.
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In practical cases the damping is reasonably small, and the

curve of motion is sufficiently close to a sinusoid to base an

approximate analysis on it. The most general method replaces

the term/(:e) by an "equivalent" ex and then proceeds to deter-

mine the "equivalent damping constant" c in such a manner that

with sinusoidal motion the actual damping force f(x) does the

same work per cycle as is done by the equivalent damping force

ex. The value for c thus obtained will not be a true constant but a

funci ion of co and of the amplitude XQ. Therefore, approximately,
the system (224) can be replaced by a linear one, but the damping
constant c has a different numerical value for each value of w

or of XQ.

In carrying out this analysis we first assume for the motion,

x = x sin ut

The work clone per cycle by the equivalent damping force ex is

Trcowo as calculated on page 08. For the work per cycle of the

general damping force f(x) we have already found on page 430:

/*27T

o I f(x) cosco/ dut
/o

Equating the two values we obtain for the equivalent damping
constant c:

1 f2"

c = f() cosorf dut (225)
7TCO.TO JO

The amplitude of tne "linearized" Kq. (224), as given on page

(>4, is

in order to calculate the amplitude, the value (225) for c has to

be substituted in (32a).

This general procedure may be applied to any type of damping,
even if its law is given merely in curve form, where the integral

(225) must be evaluated graphically. As an example we shall

take the case of dry friction f(x) = F. On page 430, the

value of the integral in (225) was found to be 4F. Hence

=
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indeed an equivalent damping constant depending on both

frequency and amplitude. Substituting in (32a) :

X

or

Hence

f .

Xo ~

An ezad solution of this case also exists. The analysis is too

elaborate to be given here in detail, but the results, which do not

differ much from those of (226), are shown in Figs. 265 and 266.

The reader should compare these with Fig. 42, page 66.

With Coulomb friction (below the value of F/P$ = T/4), the

amplitudes at resonance are infinitely large, independent of the

damping. At first sight it seems strange that a damped vibration

can have infinite amplitude. The paradox is explained, however,

by considering that the exciting force P sin cot performs work

on the system, and, since work is the product of force and dis-

placement, this energy input is proportional to the amplitude.

The energy dissipated by damping is also proportional to the

amplitude since the friction force F is constant. Thus, if the

(
friction force is small with respect to the exciting force I F < -ri

the work input by the latter is greater than the dissipation by the

former, no matter how great the amplitude becomes. Thus the

amplitude increases without limit, which is another way of saying
that it is infinitely large in the steady state. With viscous damp-
ing, however, the friction force itself is proportional to the ampli-

tude, so that its work dissipation is proportional to the square
of the amplitude. Hence, even for a very small friction constant

c there will always be a finite amplitude at which the dissipation

by damping is equal to the energy input by the exciting force.

In connection with the fact that infinite amplitudes occur

at resonance with Coulomb damping, the phase angle shows a

discontinuous jump at resonance, as can be seen in Fig. 266.
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For Coulomb friction the (non-linear) friction force is constant,

whereas the (linear) inertia and spring forces increase with the

18 2.0

FIG. 205. Resonance diagram for a system with dry friction damping. Com-
pare with Fig. 42a on page 66.

FIG. 266. Phase-angle diagram with dry friction damping. Compare with

Fig. 426.

amplitude. Thus for large amplitudes the motion will be prac-

tically sinusoidal and the approximation (226) should be very
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satisfactory. For smaller amplitudes the curve of motion

becomes very much distorted and consequently the approxima-
tion for the amplitude is poor. Below the dotted line running

through Fig. 265 we have motions with one "stop" per half

cycle, as shown in Fig. 267o. In the blank part in the left-hand

lower corner of Fig. 265 the motion has

more than one stop per half cycle as shown

in Fig. 2676. No solution could be obtained

in that region. For all motions of the

types of Fig. 267 the approximate formula

(226) is unreliable. In practice, however,
we are interested only in the conditions , . .

near resonance, and here the errors of (226) FlG 267 _]?orcea mo-
are of the order of a fow per cent. Thus tion with one (a) or two

the general method of (225) and (32a) is <J^ "^Uh"" Si
of great practical value. Its consequences Coulomb damping at

for the case of turbulent-air damping, i.e.,

elow fre<>uende8 -

f(x) = ex 2
,
have been worked out in the form of diagrams like

Figs. 265 and 266. For further details the reader is referred to

the literature.

74. Relaxation Oscillations. A linear vibratory system with

negative damping builds up oscillations of infinite amplitude

(Fig. 2076). Of course, this is physically impossible and in all

actual systems the damping becomes positive again for suffi-

ciently large amplitudes, thus limiting the motion. An example
of this is the electric transmission line discussed on page 372.

The actual relation between the damping coefficient and the

amplitude varies from case to case, but for a general under-

standing it is useful to write down the simplest possible mathe-

matical expression that will make the damping force negative for

small amplitudes x and positive again for larger ones. Such an

expression is

Damping force = -(Ci -
C*x*)x (227)

The damping coefficient as a function of x is shown in Fig. 268.

It is seen that zero damping occurs at an amplitude x

The differential equation of a single-degree-of-freedom system
with this type of non-linear damping is

mx -
(Ci

- C*x*)x + kx = (228)
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Since we shall now give a general discussion of this equation, it is

of importance to simplify it as much as possible first, by reducing
the number of system characteristics of which there are now four,

viz., m, Ci, C2 ,
and k. To this end we divide by ra, and with the

notation k/m = w* we obtain

J x -
m m

= (228a)x

Of the three system characteristics now

remaining, two can be absorbed by

making the variables x and t dimension-

less. First consider the time t, which

is measured in seconds. Instead of

FIG. 208. simplest mathe- usin this standard unit, we shall now
matical expression for a non- measure time in terms of a unit inher-
linear damping coefficient . . . , . /. i m /r

which is negative for small ent in the system, for example, T/2w.
amplitudes and becomes posi- This means that for a slowly vibrating
tive for greater amplitudes. . ,, . . ., . -. -, .,

system the new time unit is large, while

for a rapidly vibrating system it is small. The time is measured

in
u
periods/27r

"
rather than in

"
seconds." Let the new time

(measured in vmits of T/2ir) be denoted by t' and the old time

(measured in seconds) by t.

Then

The new differential coefficients become

d*x = d*x t'
2

eft
2

dt'
2

'

t*

2
^"X

"n 'dT2

and
dx dx

Tt
= Wn

dt'

Substituting in (228a) and dividing the equation by co,

1

where the dots now signify differentiation with respect to the

dimensionless time t'.

There are now only two parameters, Ci/mo>n and C\/C*. The

amplitude x still has the dimension of a length, and in order to
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make it dimensionless we measure it also in a unit inherent in

the equation. A convenient unit is indicated in Fig. 268, viz.,

the amplitude \/C
Y

i/C 2 ,
for which the positive and negative

damping forces balance. Thus we take for our new " dimension-

less displacement"

y

which gives the differential equation in the form

y
-

e(l
-

y*)y + y =
(229)

The equation is finally reduced to a single parameter e = (7i/wo> w ,

which has an important physical significance. For harmonic

motion this quantity equals the ratio between the maximum

negative damping force and the maximum spring force:

d _ input force-- 6 ~ -----------
f

---- (ZoU)
wco n spring force

This can be shown as follows. Let jc = x n sin CO M /, and x = .r co rt

cos (*) n t. From (227) the maximum negative damping force in

the middle of a stroke (x = 0) is Ci.rmnx = CVnco,,. The maximum

spring force kxnmx = kx Q
=

tfjnxv, so that (230) is verified.

In all cases thus far discussed, the input force was much smaller

than the spring force, so that e was a small quantity, e 1.

This implies a motion practically harmonic and of the natural

frequency co re . The final amplitude to which the motion will

build up can be found from an energy consideration. For

amplitudes smaller than this final one, the damping force

F e(l y^y puts energy into the system; while for ampli-

tudes greater than the final one, the damping dissipates energy.

At the final amplitude we have for a full cycle:

=

The motion is harmonic:

y =
7/0 sin wnt = 2/0 sin t'

Hence

= e r\\ -
yl sin 2

t')y\ cos 2
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or

t' cos 2
t'dt'

7r/4

(The evaluation of these integrals is discussed on page 16.)

Thus for small values of the parameter e the amplitude of vibra-

tion x is

\fi

(231)

or, in words, the amplitude is twice as large as the amplitude at

which the damping force just becomes zero. Figure 268 shows

that this is a reasonable result : the energy put in by the negative

damping force in the center part of the motion is neutralized by
the energy dissipated by the positive force near the end of the

stroke.

So far the introduction of the differential equation (228) or (229)

has not brought us anything new. The importance of these

equations is centered rather in the case where the input force or

negative damping force is great in comparison with the elastic

force:

Then the non-linear middle term in (229) becomes more impor-
tant than the other two, so that the assumption of a harmonic

motion (which was justified for a small middle term) is untenable.

Thus we should expect the motion to be very much distorted,

containing a great number of higher harmonics, and we also expect
the frequency to differ from con .

The shape of the motion can be obtained by means of a

graphical integration as follows. In (229) we may write for the

first term:

.. dy_ _ dydy_ dy .

y
di' dijdt' dy

y

so that after a division by y, Eq. (229) becomes

y f\ />.2\ y /ooo\
~T~

==
^1 y ) r \&&&)

in which only the (dimensionless) amplitude y and the (dimen-

sionless) velocity y appear, the time having been eliminated.
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t5 e-io

10

5 -

Take a coordinate system in which y is plotted horizontally and

y vertically, as in Fig. 269. Then (232)

states that the slope dy/dy at each point

in the diagram can be calculated directly

from its coordinates y and y and the

parameter e. This enables us to draw in

a set of tangent directions. For example,

for?/ = (the horizontal axis) the slope

dy/dy becomes infinite, i.e., vertical,

whereas for y = (the vertical axis) the

slope is given by dy/dy = e. Having the

whole field of tangents, a solution can be

found by starting from any arbitrary point

(i.e., with any arbitrary initial displace-

ment y and velocity y) and constructing

a curve following the tangents. Figure

269 (e
= 10) shows, for example, that

starting at y = 15 and y = -2 the curve

goes down, bends up, then goes down

again, and thereafter describes a closed

figure continuously. Also when starting

from rest (i.e., from the origin), it reaches

the same closed curve after a short run.

An ordinary steady-state harmonic vibra-

tion would be pictured as a circle in this

diagram, so it is seen that for = 10 the

motion is far from harmonic.

Next transform Fig. 269 into the cor-

responding diagram in terms of y =
f(t'),

as shown in Fig. 270. The abscissa of a

point in Fig. 269 corresponds to the

ordinate of Fig. 270, whereas the ordinate

of that point in Fig. 269 is the slope of

Fig. 270. Thus the construction of Fig.

270 from Fig. 269 amounts to a second

graphical integration.

Our expectations regarding the nature

of the motion are fully corroborated by the
gration of Eq (229) for

final result, Fig. 270. The motion is seen relaxation oscillations in

to be distinctly non-harmonic. The pe-
the case that

riod is not 2ir units of time (the unit being T/27r) but rather 2

-15 -

FIG.

1 2
y - "

269. First into-
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units or 2e - T/2v sec. This, by virtue of (230), is

Period = = = 2 sec. (233)

?'.e., the period no longer depends on the ratio of mass to spring

constant but rather on the ratio of negative damping coefficient

to spring constant. The expression (233) is twice the relaxation

time (see page 54) of a system with a positive coefficient C\.

For this reason oscillations of the nature of Fig. 270 have been

called relaxation, oscillations.

FIG. 270. A typical relaxation oscillation, being an integration of Fig. 269.

The result (233), as well as the general shape of the vibration,

Fig. 270, can be made to seem reasonable by a physical analysis

as follows.

For e = 10 the damping action is largo in comparison to the spring action.

Follow the motion in Fig. 270 starting from the point A where the amplitude

is x 2^/Ci/C*. On account of Fig. 208 the damping coefficient at A is

positive and remains positive until the amplitude has diminished to one-

half its value (point B). Between A and B the velocity will be very small

because the weak spring force is opposed by a damping force of which the

coefficient is large. Hardly any inertia effect will come in during that time.

At the point B the damping reverses, and becomes negative and large, which
hurls the mass at a high speed through the point (7, where the damping force

again reverses. Between B and C the negative damping force has done work
on the mass and thus has given it considerable momentum. This momen-
tum is destroyed by the positive damping force from C on, until the mass
comes to rest again at D. That the point D should be approximately at

x = 2 y/Ci/Cz seems reasonable from the result (231) for the case of harmonic
motion.

Since it takes hardly any time to move from B to D we might calculate

the period by taking twice the time between A and B. The answer thus
found would be slightly too small.

In simplifying the calculation we see in Fig. 268 that the damping coeffi-

cient between x = \/Ci/C* and x = 2\/rU^/C 2 can be expressed very well

by a straight-line relation.

O/^

Damping coefficient = 3Ci H
1

x
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The damping force is

'-3d +

and this force is opposed only by the spring force kx. Thus the differen-

tial equation of the creeping or relaxation motion between A and B is

012345
y >"

FIG. 271. First integration of Eq. (229) for a small damping force, e = 0.1.

20 40 60 80 100 120 140 160 180

FIG. 272. Second integration of Eq. (229) for e =0.1, showing the building up of

a non-linear, self-excited vibration to its final amplitude.

In integrating this expression we notice that the time progresses from to

T/2 (half period), while x goes from 2-v/C
f

i/C 2 to \SCi/Ct, so that

or / \ A/Fv/TT, T/2

3^[-log.*+ i_
\/cyc 2

.

After substitution of the limits we find

3CV ,
T
2
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T = 6(1
-

log. 2)^
= 1.

With the slight additional time taken in going from B to D it is seen that

(233) is verified.

The corresponding results of the graphical integration for

the more usual case e = 0.1 are shown in Figs. 271 and 272.

Relaxation oscillations have been found to occur very often

in radio engineering, and the reader is referred to the original

papers of Van der Pol for quite a number of applications in that

field. In mechanical engineering thus far they have been of

little importance.

A case on the border between the electrical and mechanical

fields is that of the periodic speed reversals of a separately excited

direct-current motor fed by a direct-current series generator
driven at a constant speed (Fig. 273).

> constant spff&f
The voltage generated in a constant-

speed generator is proportional to its

magnetic field strength. If there were

no magnetic saturation, this field

strength would be proportional to the

Motor

FIG. 273. A separately ex-

cited motor driven by a series

generator has periodic speed
reversals of the character

shown in Fig. 270.

Current

FIG. 274. Voltage-current
characteristic of a constant-

speed series generator.

field current i, which in a series machine is the same as the

main current. The influence of saturation amounts to a less rapid

increase of the field strength, and the characteristic of the

generator (Fig. 274) may be expressed approximately by the

relation
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This generated voltage overcomes first the inductance of its own

field coils
[L-r\

second the resistance of the circuit (Ri), and

third the countervoltage of the motor. The motor has a constant

magnetic field and a variable angular speed co. Its voltage is

proportional to the speed, C3co. No effect of saturation enters

since the field is maintained constant. The voltage equilibrium

equation is

Cii - CV3 = Csco
+l2fi

+ Ri (234)

Another relation between i and co is obtained from the fact that

the energy input per second in the motor is given by its voltage

<7 3co multiplied by its current i. Since the motor drives no load,

this energy is used in accelerating its rotating parts of which the

moment of inertia is 7. The kinetic energy of the motor is

H^co
2 and

3

or

a-
- T

The angular speed co can be eliminated from (234) by differ-

entiating and substituting (235), giving

C
*' _ 3CJ& = Cat + d + RSdt dt dt dt

2 dt

L~^
-

(ft
- fi - 3C2i

2
)~ + j*i

=

This equation is equivalent to (228). Moreover, the values of

Ci R, Cs, and / in the usual motor are such that e = -^
- /-

^3 \Jj

is much larger than unity. Thus the current i will reverse periodi-

cally according to Fig. 270, and the velocity of rotation co will

also show periodic reversals on account of Eq. (235). By
Eq. (233) the period of these reversals is

T - g
Cl "" R

T1 _ ^ L
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that is, proportional to the inertia of the motor. If the oscillation

were harmonic its period would be proportional to the square root

of the inertia.

76. Subharmonic Resonance. In this section some cases will

be discussed for which the motion differs greatly from a harmonic

motion on account of some non-linearity in the system. It does

not matter where this non-linearity appears, whether it be in the

spring or in the damping.
In linear systems subjected to an "impure" disturbance,

large amplitudes may be excited at a frequency which is a multi-

ple of the fundamental frequency of the disturbance. The most

important technical example of this was discussed in Chap. V,

namely the torsional vibration in internal-combustion engines.

The converse of this, i.e., the excitation of large oscillations of

a lower frequency than (%, % H f) the fundamental

frequency of the disturbance, never happens in a linear system.

In non-linear cases, however, this may occur. Consider,

for example, a self-excited relaxation oscillation as in Fig. 270.

Subject this system to a small harmonic force of a frequency

2, 3, 4 ... times as fast as the free or natural frequency
^6

Since the free motion contains all higher harmonics generously,

the disturbance (if phased properly) will do work on one of these

harmonics and excite it. But this harmonic is an integral part

of the whole motion of Fig. 270 and will pull all other harmonics

with it. The result is that a large motion is excited at a frequency
lower than (a submultiple of) the disturbing frequency. This

phenomenon is known as "subharmonic resonance" or "fre-

quency demultiplication."

No practical cases of this sort have thus far occurred in

mechanical engineering, but in electrical engineering they are of

some importance and are beginning to find applications.

Let an electric circuit containing a neon tube, a condenser, a resistance,
and a battery be arranged so as to produce a relaxation oscillation of the

type of Fig. 270, and excite this circuit by a small alternating voltage of

constant frequency w. The natural period Tn of the system (which in this

case is not proportional to \/LC but to RC) is slowly varied by changing the

capacity C. If there were no co-disturbance, the self-excited period would

gradually vary along the dotted line of Fig. 275. With the co-disturbance,

however, this does not happen. The system always vibrates at a multiple
of the exciting period 7*es (i.e., at a submultiple of the exciting frequency u>)

and picks that multiple which is closest to the natural period, as shown in
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Fig. 275. With circuits of this sort, frequency demultiplication up to 200

times has been obtained.

Although the phenomenon was first observed with relaxation

oscillations, the explanation given shows that it is not limited to

that type of vibration but may occur in any pronounced non-

linear system with small "
effective"

damping. By "effective damping'*
is meant the total energy dissipation

per cycle by the positive and negative

damping forces combined. Thus the

argument applies to non-linear self-

excited vibrations and also to non-

linear forced vibrations without any
or with very little damping. In the

latter case the non-linearity is usually

caused by the springs. Two examples will now be considered.

Let a cantilever with an iron bob be placed between two perma-
nent magnets (Fig. 27tki). The "spring" is then made up of two

parts, an elastic one (the beam) which is linear, and a magnetic
one which is negative and distinctly non-linear. The closer the

iron bob approaches to one of the magnets, the greater the

-Hah-

Fio. 275. Subharrnonic res-

onance in self-excited re-

laxation circuit.

FIG. 27 6a. FIG. 2766.

FIG. 276a. Mechanical subharmonic resonant system. The mass can be
made to vibrate at its natural frequency by an exciting force of much higher
frequency.

FIG. 2766. The magnetic and elastic spring forces acting on the mass of Fig.
276o.

attractive (or negative restoring) force, as shown in Fig. 2766.

With a combined spring of this sort, the free vibration contains

many higher harmonics. Imagine the bob of the cantilever to

be subjected to a small alternating force of a frequency which is

approximately a multiple of the natural frequency. This force
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can be realized in many ways, among others by attaching a small

unbalanced motor to the bob. The alternating force can then

do work on the nth harmonic of the motion and thus keep the

system in vibration. In this example no source of energy exists

other than the alternating one, and it is seen that the frequency
of the alternating source of energy must be a multiple of the

natural frequency.

It is not necessary to have an extraneous exciting force acting

on the system: subharmonic resonance can be brought about also

by a variable spring. The cases discussed in Sec. 67 to 69 had

linear springs for which the constant or intensity varied with the

time. It was shown there that resonance could occur at higher

frequencies than that of the spring variation and also at half this

frequency but not at any of the lower subharmonics Q, J, etc.).

However, if we have a non-linear spring varying with the time (i.e.,

a spring for which the stiffness varies with both the displacement and
the time), these lower subharmonics may be excited. An example
of such a system is Fig. 276a, in which the magnets now consist

of soft iron and carry alternating-current windings. The attrac-

tive force of such magnets varies not only with the displacement

according to Fig. 2766 but also

with the time at twice the cur-

rent frequency. That it is

Possible for the magnetic forces

to do work on the vibration if

the phase is proper, is clear

TA IB from Fig. 277. Curve I of

FIQ. 277. operation of tho system that figure represents the mo-
of Fig. 276 with alternating current in

f
- r

f^ 11 curve TT
js f

u p
the magnet windings.

ll n OI ine DOD
>
CUFVe 1X 1S me

spring force of the magnets
if there were direct current in them, and curve III shows

the intensity variation of the magnets with the time in

case the mass were standing still (taken here to be six

times as fast as the motion). The actual force exerted by
the magnets on the bob is the product of the ordinates of II and

III. Just to the left of line AA the magnetic force is against the

direction of motion, and just to the right of it the force helps

the motion. But III has been placed so that to the left of AA the

intensity is small and to the right of AA it is great. The same
relations obtain near BB. Thus energy is put into the system.
The non-linearity of the system is essential because without it
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curve II would be sinusoidal and the argument of Fig. 16, page

18, would show no energy input. Only the fact that at some
distance from either AA or BB the curve II has a negligible ordi-

nate accounts for the energy input.

Under which conditions the "proper phase" between the curves

I and III occurs is a question that can be answered only by
mathematical analysis. Since this implies a non-linear equation
with variable coefficients, it is evident that such an analysis will be

extremely difficult.

Problems

124. In the center of the cylinder AA of cross section A (Fig. 278) a piston
of mass ra can slide without friction. The pistons BB are moving back and
forth in opposite phase and chaiige the pressure of the air in the cylinder A
between 95 and 105 per cent of atmospheric pressure. Assume that this

change in pressure takes place isothermally or that pv = const. The
volume of one half of A together with its pipe and the cylinder B is V. Find

the frequency or frequencies of motion of BB
at which the mass m is in unstable equilibrium.

Give a general discussion with the aid of

Fig. 248.

126. A pendulum consists of a uniform bar of

5 in. length and 3^ lb. weight. The base is given
an alternating harmonic motion in a vertical

direction with an amplitude e 0.5 in. At

what speed of the driving motor will the

pendulum become stable in an upright posi-
j, 2

tion? Assume the curve of Fig. 249 to be a

parabola passing through the origin and through the point y = 0.5 and
x = -0.1.

126. Calculate and plot the natural frequency of the system Fig. 2526

as a function of the amplitude. Do this by the exact method of Kq. (219)

as well as by the approximate method of Fig. 260.

127. Give a discussion and derive a result corresponding to Kq. (226) for

the forced vibrations of a system with a damping proport ional to the square
of the velocity (F = c.r

2
).

128. Find a few of the slopes drawn in Fig. 269, and from that figure

construct one cycle of Fig. 270.

129. Prove that in a velocity-displacement diagram, such as is shown in

Fig. 269 or 271, the energy of the system is represented by the square of the

radius from the origin to any point in the diagram. Verify that for harmonic

motion the diagram has to be a circle and from Fig. 269 deduce in which part
of the cycle the system energy is maximum. Where does the work come

from?

Prove also that in this diagram the acceleration at any point P is repre-

sented by the length of the "subnormal," i.e., the distance along the y-nxia

between the intersection of it with the normal at P and the projection of

P on the y-axis.
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THE GYROSCOPE

Thus far, all phenomena discussed have been explained by
Newton's fundamental law stating that force equals mass times

acceleration. The gyroscope will be no exception to this rule.

As was stated on page 213, another way of writing Newton's

law for a, particle is

F =
jt

(mv) (128)

or, in words, the force F acting on a particle is equal to the rate of

change of the momentum mv. This is a vector equation and can

be resolved into three algebraic equations in the x-, ?/-, and

^-directions. The expression (128) is true not only for a single

particle but holds also for the motion of the center of gravity

of any larger body, provided F means the vector sum of all

external forces acting on that body and tn means the mass of the

body, which is thought of as concentrated at its center of gravity.

If we take the moments of the two forces of Eq. (128) about any
axis we obtain

Moment of F moment of -r.(mv)
=

-^-(moment
of mv)

ui etc

again a vector equation, since a moment can be represented by
a vector, usually taken along the moment axis. The length of

the moment vector is made equal to the numerical value of the

moment and its sense is chosen so that the vector together with

the direction of rotation forms a right-handed screw.

The various particles of a body (Fig. 279) which is rotating

with the angular speed co about an axis through and perpendicu-

lar to the paper have differently directed velocities v. But the

moment vectors of all these velocities have the same direction,

viz., through and perpendicularly into the paper. Thus the

(moment of m?)-vectors for all particles can be added alge-

braically, and, since v = tor, we have for this sum
453
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fdm cor r = cojY
2dw = w/o

where I is the moment of inertia about the moment axis. Thus

Newton's theorem becomes

Moment of forces = (7S) = (E) (129)

or, in words, the vector of the moment of all forces acting on a

body about some axis equals the rate of change of the /co- or

3TC-vector. This (E-vector is known as the
" moment of momen-

tum "
vector and also as the vector of

"angular momentum/'

Equation (129) is sufficient to explain the

main property of the gyroscope. By a

gyroscope we usually mean a body which

rotates very rapidly and for which the direc-

tion of the axis of rotation varies compar-

atively slowly.
FIG. 279. The an- Figure 280 respresents a disk which is

gular momentum of a ., i ,i i

body rotating about an spinning in its own plane with a large
axis o ia w/o. speed 12 and of which the axis of rota-

tion rotates slowly (at the rate co) about the axis BB. The
3TC-vector is pointing upward and its length is 713. On account

of the co-motion this vector tilts slowly toward the right

through an angle wdt. The increment in !3TC is dM = 712 wdt

and consequently

(236)

which is a vector directed to the right, i.e., parallel to AA. By
Eq. (129) the length 7l2co of this vector must be equal to the value

of the force moment applied to the disk. Since this moment
acts about the axis AA, we have to push down on P and pull up
on Q in order to make the disk move so that R goes up and 8
goes down. Hence there are three axes involved:

1. The axis of rotation of the disk (9TC-vector).

2. The axis about which the external moment acts (AA).
3. The axis about which the disk drifts or "precesses" (BB).

These three axes are mutually perpendicular.

The result (236) can be derived from Newton's law in a some-

what different manner as follows.
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-f -n-"

i

Let the disk be exactly horizontal at the instant of time t = 0.

At a later instant dt it is dipped to the right through an angle
o)dt. If the precessing angular

velocity co were zero, all par-

ticles of the disk would move
in circles in horizontal planes

and would have no vertical

velocity component whatever.

On account of co the various

particles do have small ver-

tical velocities. At the in-

stant t = these velocities

are upward for particles to

the left of BB and downward
for particles to the right of

BB, and their magnitude is

expressed by cox. Consider

the particle dm at r, v in Fig.

280 at the instant t = 0.

Its vertical velocity is cox di-

re c t e d downward. Some-

what later, at time dt, this

velocity has changed for two

reasons. First the particle is FIG. 280. Illustrating the fundamental

then farther away from the formula (23r>) of the gyroscope,

axis BB, and second the disk is slightly tilted =10 that the

large circumferential velocity of that point has acquired a small

vertical component.
The increase in vertical velocity due

to the first reason is codx = co rd<p

- =
uyd<(> (Fig. 281). But since dtp

=

Qdt this is equal to Quydt. The inclina-

tion of the disk about the BB-&xis at

the instant dt is corf, and the circum-

ferential velocity of a point is Or. The

component of that velocity perpen-

dicular to the J3-axis is Or - = %.
T

The vertical component of Ity, due to the inclination is % wdt.

(The vertical component of the component which is parallel to

B
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BB is zero.) Thus the change in vertical velocity on account of

the second reason is the same as that owing to the first reason.

Since both changes are downward, the total effect is 2ttuydt,

and the vertical acceleration of the particle is 20wi/. Its inertia

force is 2Qwydm, which is directed downward for positive y (i.e.,

below AA in Fig. 280) and upward for negative y.

The moment of this inertia force about AA is y times the force,

or 2tiuy
2dm. For all particles combined,

T2T

where Id is the moment of inertia about a diameter and I the

moment of inertia about the axis of rotation, being twice as great
as Id . The moment 12w/ by Eq. (129) must be supplied from

outside the disk to make the disk perform the prescribed w-motion.

Since the particles below AA are accelerated downward and those

above AA upward, it is necessary to

push down on P and to pull up on Q
in Fig. 280. Thus the result (236) is

proved.

Of the two viewpoints which we
have set forth on the gyroscopic

theorem, the first one employing the

rate of change of the 971-vector is by
far the more useful. It is this concept
which has been used in the various

applications in the book.

Problems

130. A solid steel disk of 1 in. thickness

FIG. 282. and 6 in. diameter rotates at 1,800 r.p.m.

It is keyed to a shaft 4 in. long which
is supported at the end by a string attached to the outer race of a ball

bearing, as shown in Fig. 282. Under the influence of gravity, the disk

will precess in such a manner that the 4-in. shaft rotates slowly in a hori-

zontal plane.

a. If the disk rotates in a clockwise sense when viewed from the string,

find the sense of the precession.

b. Calculate the angular velocity of precession.

131. A ship carries turbines rotating at 1,800 r.p.m. with a moment of

inertia of 50,000 in. Ib. sec. 2
. The axis of rotation is parallel to the propeller

shaft. The ship is pitching in a rough sea through an angle of 5 deg. with

a period of 10 sec. The distance between the two main bearings of the

turbine is 15 ft. Find the maximum value of the gyroscopic bearing

reaction.
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A COLLECTION OF FORMULAS
I. Linear Spring Constants

(Pounds per inch deflection)

"

II. Rotational Spring Constants

(Inch-pounds torque per radian rotation)

Twist of coil spring; ^ 4

wire dia. d] coil dia. D; k = ^~ (9)

n turns

Bending of coil spring k =
^-^

-

1 + E/2G
Twist of hollow circular

shaft, outer dia. D, fc = g = ^
-

(11)

inner dia. d
; length Z

For steel fc = 1.18 X 10* X
D4

^"

^

457
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III. Natural Frequencies of Simple Systems

m.k^ End mass Jlf; spring mass _ ^
m, spring stiffness A;

' ' / / V A -*>>

id inertia 7; shaft iner-
__

/ .

tia / shaft stiffness fc

" - V/U + I./6) (16\

-

Pi
AT

\\ Tn n, Two disks on a shaft o> = \/
fe(/1

y t /z)
(14)

'Lf==y*^
^ /!/,

Cantilever; end mass Af;

a J^^
1

F|j/ beam mass m, stiffness o>n = \/ - (15)
* ~"~--U

by formula (2)
^ + -23m

Simply supported beam;
central mass M; beam f~ fc /i^\
mass m; stiffness by

Wn ~"

\AT-f- 0.57,

formula (3)

Massless gears, speed of / \ j l _|_ nzf2
li n times as large as Wn ~

/ \ j~"
^

j l
. n~2/~

speed of A \ ^ +
^"2^

(17)

.

~n* anever: = cross Wn = (n + iVx/^ (19)"
V J/ Ml^

- 47J^ (/1 + /2 + /3) (18^

IV. Uniform Beams

(Longitudinal and torsional vibration)

UK i j Longitudinal vibration of

I **-~~Z~ cantilever: A = cross

section, E modulus
of elasticity.

i
= mass per unit length, For steel and / in inches this

n 0,1,2,3
== number becomes

of nodes
/ = ^2 = (1 -u 2n)^522

cycles per second (19a)
For air at atm. pressure, / in

inches :

Organ pipe open at one . _ 6^ _ ,,
, 2

. 3,300

end, closed at the other 2ir I

cycles per second (196)

Longitudinal vibration of

beam clamped at both _^ [AE
ends; n = number of

half waves along length
For steel, I in inches:

n *2
f __ _ 102,000~ ~

i r~
cycles per second (20a)
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Organ pipe closed at both . _ co* _ 6,600

ends (air)
*
~

2^
~

I

cycles per second (206)

Torsional vibration of Same as (19) and (20); replace

beams tensional stiffness AE by
torsional stiffness GIP ',

re-

place jui by the moment of

inertia per unit length ti =

V. Uniform Beams

(Transverse or bending vibrations)

The same general formula holds for all the following cases,

IET
(21)

where El is the bending stiffness of the section, / is the length of the beam,
jui is the mass per unit length = W/gl, and an is a numerical constant, differ-

ent for each case and listed below

Cantilever or "clamped- a\ = 3.52

free" beam a 2
= 22.4

a, = 61.7

a 4
= 121.0

a 5
= 200.0

a Simply supported or ai = 7r
2 = 9.87

"hinged-hinged" beam a 2
= 4?r2 = 39.5

^^ "^o> a 3
= 97T2 = 88.9

. __LJT
a 4

= 167T 2 = 158.^ J
a 5

= 257T2 = 247.

. a "Free-free" beam or ai = 22.4
*

floating ship a 2
= 61.7

:&2 a 3
= 121.0

a4
= 200.0

a 5
= 298.2

"Clamped-clamped" 01 = 22.4
"^ J beam has same fre- a 2

= 61.7

-fya.2 quencies as
"
free-free

"
03 = 121.0

a 4
= 200.0

"Clamped-hinged" beam a\ 15.4

may be considered as a 2
= 50.0

half a "clamped- a 3
= 104.

clamped" beam for a 4
= 178.

even a-numbers 05 = 272.

"Hinged-free" beam or ai =

wing of autogyro may a 2
= 15.4

be considered as half a a 3
= 50.0

"free-free" beam for a 4
= 104.

even a-numbers a fi
- 178.
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VI. Rings, Membranes, and Plates

Bending vibrations of ring, radius r, mass per unit length /M, in its own

plane with n full "sine waves" of disturbance along circumference

n(n2 -
1)

Circular membrane of tension T, mass per unit area MI, radius r

(22)

(23)

The constant ac d, is shown below, the subscript c denotes the number of

nodal circles, and the subscript d the number of nodal diameters:

Membrane of any shape of area A roughly of equal dimensions in all

directions, fundamental mode:

const. (24)

circle const. = 2.407r = 4.26

square const. = 4.44

quarter circle const. = 4.55

2X1 rectangle const. = 4.97

Circular plate of radius r, mass per unit area /n; the "plate constant

defined by Eq. (6a), p. 429

(25)

For free edges, 2 pcrp. nodal diameters a 5.25

For free edges, one nodal circle, no diameters. . . . a 9.07

Clamped edges, fundamental mode a = 10.21

Free edges, clamped at center, umbrella mode. . . . a = 3.75
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ANSWERS TO PROBLEMS
1. (a) -157.0 in.-lb. (6) +0.40 in.-lb.

aX/2
7. When n =

1, 3, 9, , & = H

aA/2
n = 5, 7, 13, , 6n = ~

2a

8. y -
5 +O 7T~ ^ 76~ t

n=l
9. ai = 0.267 61 = 0.134

a 2
= 0.313 6 2 = 0.0109

a 8
<= 0.214 6 8

= -0.037
6 = 0.120

12 . w. _ ^!_ .

*
... .

. _ ri
w

Wr 2

14. (a) co 2 =~ (6) Unstable.
a

16. co
2 = --

1

--- (see theorem on page 307).
/ w/ 2

16. (a) a 2 > -
(b) =---

17. co
2 = "~- 18.

19 . W2 = 2 . 1 20. <** = -

466
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""-liV'D
22. (a) k = ~

(6) /c = 4.45 Ib. per inch.

23. (a) k = #//, where #7 is the bending stiffness and I is the total

length TT Dn of the spring.

(b) k =3.13 in.-lb. per radian.

(6) k = 2.78 in.-lb. per radian.

, x ,,x , x
26. (a)

.

(b)
- -

(c)
-

26. co
2 =

-

27. (a) sin <p
-

(6) Straight line through origin.
h

(c) Ellipse with vertical and horizontal major axes.

28. (a) w = 27.8 radians per second or/ = 4.42 cycles per second

(6) c = 0.0023 Ib. in.- 1 sec. (c) P = 0.064 Ib.

(d) One per cent per cycle at the beginning; slower later on.

(e) 2 in. (/) x = 2 - e"<d/2w>

29. (a) Torque = T r ---~
9

f

o *(/! + /I)
where

co,;
= - --

/1/2

(6) Same as (a), except that 7 2 becomes n2/ 2 and - becomes ---
1

30. (a) /v? + rgrr sin a sin <p
= 0. (6) to

2 =

k ki n2
fc 2

sin a

I

31 ,__??._.
r(97r

-
16)

P
32. z = fcos a>n(^ to) cos wn ]

where t starts upon application of the
k

load.

7i7 2n2
feife 2n2

_ _L2Ii
2

__

. ,
9/c 4c'

/,x 3Poxm 4poT
1

32 c2 1
34. co

2 = ----
(b ) x = \ r

-

(c) z = - 1 = --
7

"
m m 2 4c /c 3 /c L 81 fcmJ

36. (a) o>
2 = -

(6) co
2 =
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__ Work/cycle ^ c <o /?/\
2

, ., 1 . , /

37. = 2w -
(

J
where y is the relative motion (across

the dashpot), described by Eq. (32a) in which the force P Q mco2
ao.

39. (a) COmax/COmin = /rnin/Anax

(b) Torque = wi2(/max /mm) sin 212^, very large, so that (a) is the

practical alternative.

42. (a) -^(unstable), (b) ^=. - h ~"Q
-^ 2

. (c) Same as (6).
l*

/i
. 6v2 ^

43. co?
= 0.76fc/Hi with the node at 2.62/ to right of left mass,

col
= 5.24/c/m with the node at 0.38Z to right of left mass.

44. ?
= -1. 4 = ^-m/ m/

45. co?
= 0.64/c/m with Xi/x 2

= +0.36.

col
= 1.56fc/m with Xi/Xz = -0.56.

46. First mode : 10 per cent per cycle decay in amplitude.

Second mode: 24 per cent per cycle decay in amplitude.

47. (a) 3.1 X 10 9 ft.-lb. sec. 2
(6) 1.38 X 10 8 ft.-lb. sec.

(c) Arithmetic decay; roll angle diminishes by 2.7 deg. each half cycle

of roll.

48. 4.37 in.

49. (a) 45 rn.p.h. (6) 4.75 in.

60. w 2 =
^ + 2(2 A/2).

51. coi
- 0.59\p4- "2 - 3.89V~

^ ml* ' ml 3

52. co = iW^
64. co

4
[l + 3m/^ 2 cos 2

//]
- co

2
[co? + col + 3/c 2^ 2

//] + cofcoi
= 0.

where wf =
fci/7 and o?|

= 3/?/3m.

55. co
4
[l + 3w sin 2

a/A/]
-

a>
2
[co

2 + coi H- 3fc 2/A/] + wfcoi
= 0.

where a>
2 = A?i/A/ and cof.

= 3/?2/3m.

56. co
4
[l 4- 3fc 2tf

2 cos 2
a/fci + 3/c3ft

2 sin 2
/^i]

-
co

2
[co

2
-f i + 3fc 2A;jfl

2
/w*i] 4- wfci =

where co
2 = 3fc-2/3m and co|

= 3fcs/3w.

57. w4
[l + 3/c 2 sin 2

a/k\ 4- 3/c 3 cos 2
a/ki]

l( 2 _L 21 Sfegfcs^ ,

co I cof -p co2 n--r I ~r
n
U.

In all four problems the solutions are simple and physically lucid for

a and a 90 deg. Check up what these frequencies are. Increasing

blade angle a means increased "coupling" between the two modes, and this

always causes the two uncoupled frequencies to spread apart (see Figs. 69

and 74). Therefore the blade frequency is either raised or lowered by an

increase in a depending on whether it is higher or lower than the engine

frequency to start with.
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58. (a) co
2 = 2 - sin 2

in

(6) co
2 = 2 - COS 2

ra

e/\ / N ,
tn^x

,

69. (a) -x + -=--h-=-- 77
A/11 /M2/P

?Hco
2
// r??cu

2x
2/ ~T i r~^ i 7 7~"

2m \ 2

/M2/P/

w (*)
=

-(*)\2//i V///2

(d) f
= 1

a,

60. f
=

62. (a) an = 22

(6) w i. = 1 with
* l = 1.

__
16 _^ 11 I* 9 /'

OO. <*ii /7/jt? i? r

64. (a)

fi T
67. co

2 =
yr

T assuming a shape consisting of three straight stretches of

string.

68. Half the mass of the beam has to be added to tho central mass. Curve

assumed is half a sine wave.

69. Three-eighths of the beam mass is effective. Assumed curve is a full

(360-deg.) sine wave, vertically displaced.

70. co
2 - 2,960 rad. 2

/sec.
2
/ = 8.66 cycles per second.

_. _ . . . , .
i * * xn 2

71. Equivalent of /u is m\n\\ equivalent of AE is
'

o>
2 =

2^ 3 y-2
-

PI
T

72. co
2 = 2.80

ji
for a quarter cosine wave; the coefficient 2.80 becomes

1.35 if the stiff half of the beam does not bend so that the deflection

curve is one-eighth cosine wave and a piece of straight line.

73. 745 cycles per second.
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74. (a) Assuming straight line deformation one-third of spring mass is

to be added to end mass.

(b) Frequency determined by the transcendental equation

co
2

_ co/\//c/ra s

&/M tan co/

For m, <<C m, and retaining the first two terms of the Taylor
series development we find again that one-third of the spring mass
is to be added to the end mass.

me *"
4 E1 *i i

*
i
M

75. co
2 =

-o -\

-ft
assuming curve a sine wave passing through - and

2
~

*

76. 132 r.p.m. and 376 r.p.m.

__ , , p(q + r) , jui^
2

Tlfico
2

/lf->co
2

A:

77. tan pi
=
^--^ where P

* = ^ , = -^ , . -
--^

.

Solve by trial and error assuming values for co
2

. Plot left and right

side of equation against co
2 and got intersection of the two curves.

The first critical speed is at 127.5 r.p.m.

_n , . TrX o X
78. (a) y = sin y

- ~
r

(b) W 2 a _4 .

E
-l

- 15.75 ^/.
V y

1 6/7T
2

M^ M/
4

The exact solution, listed on p. 459 as a 2 of the hinged-free beam,
has a factor 15.4.

TO 2
^ ^ + 4 T r yn T

79- wSsa 4^r^4--^=^^5
The exact answer, involving Bessol's iunctions, has a factor 5.74.

81. (a) J-8 in. vertically.

(6) 267 Ib. vertically.

84. Primary and secondary forces balanced; both moments unbalanced.

85. (a) KJKroc, or half the rec. wt. of a crank, i.e., one piston arid fraction

of one rod.

(6) Zero.

(c)

= 180 + tan-*

86

showing pi > oo for o> = 0.

-f /2

88. wi = 168 radians per second.
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91. Five fundamental diagrams :

(1) For orders J, 3}^, 4*2, 7J$, etc.

(2) For orders I, 3, 5, 7, etc.

(3) For orders 1 H, 2U, 5M, G.
1 ^ etc.

(4) For orders 2. 6, 10, etc.

(5) Majors 4, 8, 12, etc.

92. (a) 0.0047 radian.

(6) 293,000 in.-lb.; 41,300 in.-lb.

(c) 31.6 r.p.m.

93. -0.00359 radian.

+0.00423 radian.

94. (a) |8
= 0; first shaft torque arbitrarily assumed.

(6) End 0=0.
(c)

= TT = 180 deg.

R,R, - a^R\

ft,ft,
- a Aft - a 2 Aft /TV/

97. (b) 4,000 in.-lb.

(c) 122.0 r.p.m.

(d) 107 r.p.m.

(e) Balanced.

98. ai =
^',

all other a's are zero.

2
bn

~
:
L

T for even n] b n for odd n.

Order: 1 23456
Per cent of mean torque: 157 66.7 13.3 5.7

100. 990 r.p.m.

101. 990 r.p.m. horizontally and 1,260 r.p.m. vertically.

102. Counting angles from the -f-1 unbalance toward the +2 unbalance

(at which <p
= 90 dog.), the corrections arc:

In Plane 1: 2.06 in. oz. at 104 deg.

In Plane 11: 4.03 in. oz. at 263 deg.

103. 4.2 oz. at 315 deg.

a? + nl 9 a\
-

a\

Ambiguity between -\-<p and <?.

Me
106. a 2 cos-1

s2mr

106. Primary speed, 1440 r.p.m.; secondary speed, 720 r.p.m. Secondary

force amplitude is 0.044 lb., corresponding to an unbalance of 7.1

X 10~4 in.-lb.

where K and D are the abbreviations used in Eq. (152).
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109. With x of the disk center and <p of the shaft there are two differential

equations, the latter having the gyroscopic term %MR 2
12co<p, where w

is the angular speed of the forward whirl of shaft center line. The

frequency equation falls apart into two quadratics:

so that two roots are co/coa
= 1 independent of 12 (a forward and

backward whirl with the shaft parallel to itself) arid two other roots,

one a forward whirl the frequency of which increases with 12 arid a

backward whirl of a frequency decreasing with 12.

110. z 4 - 2Ax* - 25M* 2 + ZAx + 21) = o"

where x = ojw/\/3/^////t/
3 and A = t^/^/SEf/ml 3

.

- For A =
0, x = 4.95 arid 0.93.

For A =
2, x = +7.17, -3.66 arid +1.20, -0.70.

For A =
5, x = +11.58, -3.47 and +2.13; -0.25.

111. If plotted as: w*/EI/m(l + ^Y =
/(/i//) the curve is nearly straight

at an ordinate falling from 3 to 2.90 between the points /i//
= and 1.

A second critical with a node somewhere in the stiff part has a very

high frequency running from o at l\/l
= to 567 at l\/l = 1 in the

same diagram.

112. (a) u>
2 =

(6) 22A^J D̂2ftn2p~^-+ --^^'
113. /iv^i + k\<pi <p-2)

== 0.

\ n r **
inr,

^ n"

f\) V'iO<>- tan <p2
== vJ-

c c

k - dCa tan = 0.

in which c =
-\/AE/fj., the velocity of sound; see p. 173.

114. (a) Stable. (6) Unstable, (c) Unstable.
m

116. (a) sin a = TT^V

(6) Undamped vibrations of frequency o>
2 = g cos oro/Z.

(c) Damp(^d vibrations; same frequency.

(d) Increasing vibration.

117. (b) x = vQt Voy-,-
- sin ( t + \J (undamped oscillations).

(c) Damped oscillations about x = vot.

(d) Oscillations with increasing amplitude which lead to a motion

with periodic stops of the mass.

" > TDo 4

110 / \ 7 ^ i ,i\U9. (a)fc---l+-, (5)

(c) co
2 = ---- 2

(the second term in the numerator expresses the

influence of the "negative spring" of the centrifugal forces on m).
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120. For complete solution with curves see Trans. A.I.E.E., 1933, p. 340.

121. - **.
mV

122. /!#! -f fcifai
-

<p 2 )
= 0.

/2#z + ki(<p v?i) -f-
-jr(rl<f>

2 r 2
A <p s )

= 0.

/3#* + (ri* a
- rj^) = 0.

s3 + 8

\f,
+

The system is stable.

123. I \tf>\ ~\~ /Ci(<>i (pz)
==

A?/?. A/TI
2

._

1 3&3 ~\~ ^2(^3 V4) ~T"
'

r/T^ A*^ 3
"
riT~^B (f"^

== ^

_Ao "~ ~

The system is stable.

124. Unstable frequencies are w = a
\-j\fV

wnore a = 2
'
1 ^> x

2
^, %, tc.,

and p is atmospheric pressure = 14. G Ib. p(^r scjuare inch. The slope

of the line in the diagram of Fig. 248 is 0.10.

125. 1,085 r.p.m.

126. Exact: co ; approximate; - -f
~

where D = cu 2P Q/k
2 is a climensionless variable involving the damping

constant c, the damping force being ex 2
.

130. (a) Counterclockwise viewed from above.

(6) T = 3.45 sec. per revolution.

131. 2,880 Ib.





INDEX

Absorbers, automobile shock, 134

dynamic vibration, 112

Accelerometer, 77

Airplane vibration, propeller, 327

wing flutter, 392

Analogues, table, 40

Automatic balancing, 301

Automobile vibration, chassis, 110

floating power, 97

shimmy, 399

shock absorber, 145

Autorotation, 376

Axial vibration, clock motor, 413

steam turbine, 387

B

Balancing, diagram, 296

flexible rotors, 305

reciprocating engines, 225

solid rotors, 292

Balancing machines, 294

automatic, 301

Bars (see Natural frequency for-

mulas)
Beams (see Natural frequency for-

mulas)

Bearings, oil whip, 364

thrust, 360

Beats, 7, 402

Blades, turbine, 341

Bullroarer, 376

Centrifugal pendulum, 119, 272, 284

Chattering slip, 355

Clearances, 424

('lock motor, electric, 414

Complex numbers, 11

Compounding of springs, 49

Connecting rod, 220

Conversion table, 40

Coriolis force, 259, 270, 288

Coulomb damping, 438

Coupled pendulums, 109

Couplings, slipping, 363

Crank mechanism, 217

Critical damping, 52

Critical speeds, Diesel engines, 255

major, minor, 259

rotating machines, 286

secondary, 309

Cubic equation, stability criterion,

353

D

Dampers, general properties, 128

Lanchester, 129, 267

Damping, air (Prob. 127), 451

dry, 355, 438

hysteresis, 265, 362

negative, 347

non-linear, 440

propeller, 262

viscous, 51

Decay, rate of, 53, 169, 348

Decrement, logarithmic, 54

Degree of freedom, definition, 34

Demultiplication, 448

Diesel engines, firing order, 279

fuel valves, 383

torque analysis, 249

torsional vibration, 236

Differential equation (see Natural

frequency formulas)

Disks, steam turbine, 336

475



476 INDEX

Dynamic absorber, damped, 119,

133

undamped, 112, 160

Dynamic balancing, 293

E

Electric circuits, 38, 120, 414, 448

Electric clock motor, 414

Electric conversion table, 40

Electric locomotive, 413

Electric machines, frames, 324

single phase, 93

Electric transmission line, 367

Energy method, 46, 172, 178

Equivalents, table, 40

Gyroscope, automobile shimmy, 400

effect on frequency, 320

ship stabilization, 139

theory, 453

H

Hair clipper, 118

Harmonic analyzer, 23

Head, balancing, 300

Helicopter, 312

Herringbone skewing, 327

Holzcr's method, 239, 290

Hunting governors, 378

Hydraulic turbines, 8

Hysteresis, 264, 362

Firing order, 279

Fixed points, 123

Flat shafts, 310

Floating power, 97

Fluid flywheel, 270

Flutter, airplane wing, 392

Forced vibration, definition, 58

Fourier series, 20, 175

Frahm, ship tanks, 136

tachometer, 75

Frame vibration, 207, 303, 324

Free vibration, definition, 45

Freedom, degree of, 34

Frequency (see Natural frequency

formulas)

Frequency demultiplication, 448

Frequency equation, real-root the-

orem, 159

Frequency meters, 73

Friction, instability caused by, 354

(See also Damping)
Fuel-injection valves, 383

G

Galloping transmission line, 367

Gear noise, 133

Geared systems, 41

Governor vibration, 378

Gravity effects, 37, 311, 409

Imaginary numbers, 11

Inertia balance, 226

radial aircraft engine, 230

Influence number, 155, 199

Injection valve, Diesel, 383

Instability criteria, 350

Internal friction, 265, 340, 362

Inverted pendulum, 422

Isolation, 89

Iteration method, 202

K

Karman vortices, 373

L

Labyrinth, steam turbine, 387

Lanchester, damper, 129

tourbillion, 372

Lissajous figures, 101

Locomotives, chattering slip, 355

nosing, 402

side-rod vibration, 413

Logarithmic decrement, 54

Lubrication, 364

M

Major critical speeds, 259

Mathieu's equation, 415
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Membranes, 209

Metacenter, 133

Minor critical speeds, 259

Mohr's circle, 106

Motor supports, 96

N

Natural frequency formulas, cen-

trifugal effect, 320

damped single degree, 53, 54

full rings, 205

gyroscopic effect, 323

lateral bending beams, 189-194

longitudinal beams, 172, 176

membranes, 209

organ pipes, 172, 176

part rings, 207

strings, 175

torsional beams, 173

undamped single degree, 45, 47

Neon lamps, 84, 87, 448

Newton's laws, 37, 214

Non-linear damping, 440

Non-linear mass, 426

Non-linear springs, 425

Normal functions, 198

Nosing locomotives, 402

O

Oil whip, 364

Organ pipe, 173, 176

Pendulum, coupled, 109

damper, 274

inverted, 422

variable length, 412

Penstocks, 8

Period, definition, 1

Phase-angle diagram, Coulomb

damping, 438

viscous damping, 66

Phase-shift torsiograph, 88

Pilot, 143

Plates, 209

Primary unbalance, 226

Propeller, airplane, 327

ship, 262

Q

Quartic, stability criterion, 354

R

Raylcigh, method, 178

proof of theorem, 194

Relative motion, 61, 277

Relaxation oscillations, 444

Relaxation time, 56

Resonance diagrams, Coulomb

damping, 438

single degree, 59, 61, 66, 77, 92

three degrees, 162

two degrees, 117

Hiding quality, 147

Rings, full, 205

part, 207

Ritz method, 183

S

Saturation, magnetic, 399

Schlick, engine balancing, 227

ship gyroscope, 139

Secondary, critical speeds, 309

unbalance, 226

Seismic instruments, 75

Self-excited vibration, 346

Semicircular cylinder, 370

Series generator, 446

Ship propeller, 262

Ship stabilization, 133

Shock absorber, 145

Side-rod locomotive, 385

Singing propeller, 374

Single-phase machine, 93

Sleet, 368

Sound analyzer, 79

Southwell's theorem, 328

Sperry, 143

Spiral vibration, 308

Springs, series and parallel, 49

suspension, 90
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Stability, criteria, 350

of speeds above critical, 288

Starting squeal, 355

Static balancing, 102, 293

Steam turbine (see Turbines)

Stodola's method, 194, 195

String, continuous, 170

with three masses, 157

with variable tension, 412

Stroboscope, 87

Subharmonic resonance, 448

Submarine motors, 325

T

Tachometer, Frahm, 75

Tanks, antirolling, 137

Teeth of electric machines, 324

Thearlc balancing machine, 298

Torque, Diesel engine, 249

Torsiograph, 79, 86, 88

Torsioiial vibration, continuous

shaft, 173, 177, 183

Diesel engine, 232-280

single degree of freedom, 38

Transients, 71

Transmission line, 367

Turbines, axial oscillation, 387

balancing, 293, 299, 309

disks and blades, 335

governors, 378

hydraulic, 8

Turbines, steam, 335, 387

Turbulence, 377

V

Vacuum tube, 350

Valve, Diesel fuel, 383

Valve springs (Prob. 71), 210

Variable cross section, 194

Variable elasticity, 408

Variable gravity, 423

Vector representation, 3

Vibrograph, 77, 81

Viscous damping, definition, 51

W
Wilberforce spring, 105

Wind, 370, 377, 395

Wing flutter, 392

Work performed, 19
















