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PREFACE

THFbook grew from a course of lectures given to students in
the Design School of the Westinghouse (‘ompany in Pittshurgh,
Pa., in the period from 1926 to 1932, when the subject had not
yet been introduced into the curriculum of our technical schools.
From 1932 until the beginning of the war, it became a regular
course at the Harvard Engincering School, and the book was
written for the purpose of facilitating that course, being first
published in 1934. In its first edition, it was influenced entirely
by the author’s industrial experience at Westinghouse; the later
editions have brought modifications and additions suggested by
actual problems published in the literature, by private consulting
practice, and by service during the war in the Burcau of Ships of
the U.S. Navy.

The book aims to be as simple as is compatible with a reason-
ably complete treatment of the subject. Mathematies has not
been avoided, but in all cases the mathematical approach used is
the simplest one available.

In the third edition the number of problems has again heen
increased, while the principal changes in the text concern subjeets
in which recent advances have been made, such as airplane wing
flutter, helicopter ground vibration, torsional pendulum dampers.
singing ships’ propellers, and electronic instruments.

The author expresses his gratitude to the many readers who
have written him calling attention to errors and making sugges-
tions for improvements and hopes that readers of this third
edition will also offer suggestions.

J. P. Den Harrog.
CAMBRIDGE, Mass.,
January, 1947.
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LIST OF SYMBOLS

cross-sectional area.

amplitude of support.

Fourier coefficient of sin nwt.

Fourier cocflicient of cos nwt.

damping constant, either linear (Ib. in.-! scc.) or torsional (lb.
in. rad.-1).

condenser capacity.

criticial damping constant, Eq. (22), page 52.

constants.

diameters.

acrodynamic drag.

eccentricity.

amplitude of pendulum support (Sec. 69 only).

modulus of elasticity.

maximum voltage, E, sin wl.

frequency = w/2m.

natural frequency.

numnerical factors used in the same sense in one scction only as
follows: Sce. 24 as defined by Iiq. (56), page 122. Sce. 30 as
defined by Eq. (92), page 168.  Sce. 45 as defined on page 266.
force in general or dry friction foree in particular.

frequency function [Eq. (80), page 158]

acceleration of gravity.

See f.

modulus of shear.

height in gencral; metacentric height in particular (page 134).
electric current.

moment of inertia.

v/ =1 = imaginary unit.

spring constants.

kinetic energy.

variation in spring constant (page 408).

length in general; length of connecting rod in Chap. V.
distance from nth crank to first crank (Sec. 39).

inductance.

acrodynamic lift.

mass.

moment or torque.

angular momentum vector.

magnitude of angular momentum.

a number in gencral; a gear ratio in particular (page 41).

real part of complex frequency s (page 166).

pressure.

(in Sec. 68 only) defined by Eqgs. (212) and (213), page 417.
maximum force, P, sin wt.

potential energy.

natural frequency of damped vibration (pages 53 and 168).

X
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LIST OF SYMBOLS xb

load per unit length on beam (page 185).
condenser charge.

radius of circle.

electrical resistance.

complex frequency = +p + jg (page 188).
(in Scc. 68 only) multiplication factor.
time.

period of vibration = 1/f.

maximumn torque T sin wt.

tension in string.

velocity.

volume.

work or work per cycle.

weight.

displacement.

maximum amplitude.

static deflection, usually = Po/k.

Yo sin wt = amplitude of relative motion.
lateral deflection of string or bar.

angle in general; angle of attack of airfoil.

n* erank angle in reciprocating engine.

influence number, deflection at m caused by unit foree at n.
angular amplitude of vibration of nth crank (Chap. V).

vector representing B,

small length or small quantity in general.

statie deflection.

parameter defined in Eq. (230), page 441.

a length.

mass ratio m/M (Secs. 23 and 24).

mass per unit length of strings, bars, cte.

longitudinal displacement of particle along beam (page 172).
radius of gyration.

phase angle or some other angle.

phase angle between vibration of nth crank and first crank
(Chap. V).

an angle.

circular frequency = 2axf.

angular velocity.

large angular velocity.

= natural circular frequencies.

Vector quantities are letters with superposed bar, a, V, M, ete.

Scalar quantitics are letters without bar, a, T, T, M, ctc. Note especially
that boldface type does not denote a vector, but is used merely for
avoiding confusion. Ior example, V denotes volume and V velocity.

Subscripts used are the following: a = absorber; ¢ = critical, ¢ = engine,
f = friction, g = governor or gyroscope, k = variation in spring con-
stant k, p = propeller, s = ship, st = statical, w = water.






MECHANICAL VIBRATIONS

CHAPTER I
KINEMATICS OF VIBRATION

1. Definitions.—A vibration in its gencral sense is a periodic
motion, 7.c., a motion which repeats itself in all its particulars
after a certain interval of time, called the period of the vibration
and usually designated by the symbol 7. A plot of the dis-
placement » against the time ¢ may be a curve of considerable

Displacement X

Time t

¥1a. 1.-—A periodic and a harmonic function, showing the period 7' and the
amplitude zo.

complication. As an example, Fig. la shows the motion curve
observed on the bearing pedestal of a steam turbine.

The simplest kind of periodic motion is a harmonic motion;
in it the relation between z and ¢ may be expressed by

T = Zo 8in wi (1)
1
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as shown in Fig. 1b, representing the small oscillations of a
simple pendulum. The maximum value of the displacement is
2o, called the amplitude of the vibration.

The period 7' usually is measured in seconds; its reciprocal
f = 1/T is the frequency of the vibration, measured in cycles per
second. In some publications this is abbreviated as cyps and
pronounced as it is written. In the German literature cycles per
second are generally called Hertz in honor of the first experimenter
with radio waves (which are electric vibrations).

In Eq. (1) there appears the symbol w, which is known as the
cireular frequency and is measured in radians per sccond.  This
rather unfortunate name has become familiar on account of the
properties of the vector representation, which will be discussed
in the next section, The relations between w, f, and 7T are as
follows. From Eq. (1) and Fig. 1b it is clear that a full cycle of
the vibration takes place when wt has passed through 360 deg.
or 2r radians. Then the sine function resumes its previous
values. Thus., when wt = 2, the time interval ¢ is equal to the
period T or

2m
T = ~ sec. (2)
Since f is the reciprocal of T,
w
f= o cycles per second 3)

For rotating machinery the frequency is often expressed in vibra-
tions per minute, denoted as v.p.m. = 30w/r.

In a harmonic motion for which the displacement is given by
z = zo sin wt, the velocity is found by differentiating the dis-
placement with respect to time,

dx

%=a’:=xow'cos wl (4)
so that the velocity is also harmonic and has a maximum value
wxo.

The acceleration is
2
Z—t; =f = —zw?sin wf (5)

also harmonic and with the maximum value w?z,.
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Consider two vibrations given by the expressions z; = a sin wt
and r; = b sin (wt + ¢) which are shown in TFig. 2, plotted
against wt as abscissa. Owing to the presence of the quantity
¢, the two vibrations do not attain their maximum displacements
at the same time, but the one is ¢/w sec. behind the other. The
quantity ¢ is known as the phase angle or phase difference between
the two vibrations. It is seen that the two motions have the

!

b

(o]

Y Y z %3 3
" wt == \
My -

F1a. 2.—Two harmonic motions including the phase angle ¢.

same w and consequently the same frequency f. A phase angle
has meaning only for two motions of the same frequency; if
the frequencies are different, phase angle is meaningless.

AE:vample: A body, suspended from a spring, vibrates vertically up and
down between two positions 1 and 117 in. above the ground.  During each
second it rcaches the top position (114 in. above ground) twenty times.
What are T, f, w, and z,?

Solution: zy = }4 in, T' = 14,
sec., f = 20 cycles per second, and
w = 2xf = 126 radians per second.

2. The Vector Method of
Representing Vibrations.—The
motion of a vibrating particle
can be conveniently represented
by means of a rotating vector.
Let the vector @ (Fig. 3) rotate
with uniform angular velocity
w in a counterclockwise direc- Fra. 3.—A harmonic vibration rep-
tion. When time is reckoned resented by the horizontal projection

. oy of a rotating vector.
from the horizontal position of
the vector as a starting point, the horizontal projection of the
vector can be written as

a cos wt
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and the vertical projection as

a sin wt

Fither projection can be taken to represent a reciprocating
motion; in the following discussion, however, we shall consider
only the horizontal projection.

This representation has given rise to the name circular frequency
for w. The quantity w, being the angular speed of the vector,
is measured in radians per second; the frequency f in this case
is measured in revolutions per second. 'Thus it can be seen
immediately that w = 2xf.

/*“\\ The velocity of the motion z =
/ N\ @ cos wt is
// ¢ \ \ & = —aw sin wt
! w

| \l+ and can be represented by (the
\ ™~ horizontal projection of) a vector
\ ¢ / of length aw, rotating with the
/ same angular velocity « as the
AN S displacement vector but situated
S~ e always 90 deg. ahead of that

vector. The acceleration is —aw?
cos ot and is represented by (the

Fia. 4.—Displacement, velocity, horizontal pI‘()jCCtiOIl Of) a vector
and acceleration are perpendicular of length aw? romt,ing with the
vectors.

same angular speed w and 180 deg.
ahead of the position or displacement vector or 90 deg. ahead of
the velocity vector (Fig. 4). The truth of these statements can
be easily verified by following the various vectors through one
complete revolution.

This vector method of visualizing reciprocating motions is
very convenient. For example, if a point is simultaneously
subjected to two motions of the same frequency which differ by
the phase angle ¢, namely, a cos ot and b cos (wt — ¢), the
addition of these two expressions by the methods of trigonometry
is wearisome. However, the two vectors are easily drawn up,
and the total motion is represented by the geometric sum of the
two vectors as shown in the upper part of Fig. 5. Again the
entire parallelogram @, b is considered to rotate in a counter-
clockwise direction with the uniform angular velocity w, and the
horizontal projections of the various vectors represent the
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displacements as a function of time. This is shown in the lower
part of Fig. 5. The line a-a represents the particular instant
of time for which the vector dingram is drawn. It is readily
seen that the displacement of the sum (dotted line) is actually
the sum of the two ordinates for @ and b.

That this vector addition gives correet results is evident,
because a cos wi is the horizontal projection of the @-vector and

wW

— L I N
F1a. 5.—Two vibrations are added by adding their veetors geometrically.
b cos (wt — ¢) is the horizonial projection of the b-vector. The
horizontal projection of the geometric sum of these two vectors
is evidently equal to the sum of the horizontal projections of the
two component vectors, which is exactly what is wanted.
Addition of two vectors is permissible only if the vibrations
are of the same frequency. The motions « sin wt and a sin 2wt
can be represented by two vectors, the first of which rotates with
an angular speed » and the second with twice this speed, <.c.,
with 2w. The relative position of these two vectors in the
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diagram is changing continuously, and consequently a geometric

addition of them has no meaning.
A special case of the vector addition of Fig. 5, which occurs
rather often in the subsequent chapters, is the addition of a sine
and a cosine wave of different

//F\ — amplitudes: a sin wt and b cos wt.
// | \\ . Tor this case the two vectors are
/ I \%;\\ perpendicular, so that from the
| SN diagram of Fig. 6 it is seen at
N
I J \\ N once that
! N
i b \ a sin wt + b cos wt =
L | —T3% .
l : \y A Va? + btsin (wt + ¢) (6)
i | 1y : where tan ¢ = b/a.
[ 1 . .
¥, 6.—Addition of a sine and cosine Exfzmple: What is the maximum
wave of different amplitudes. amplitude of the sum of the two
motions

Iy = b sin 25 in, and z; = 10 sin (25¢ + 1) in.?

Solution: The first motion is represented by a vector 5 in. long which may
be drawn vertically and pointing downward. Since in this position the
vector has no horizontal projection, it rep-
resents the first motion at the instant ¢ = 0.

At that instant the sccond motion is 2; = 10 /
sin 1, which isrepresented by a veetor of 10 in.
length turned 1 radian (57 deg.) in a counter-
clockwise dircction with respect to the first
vector. The graphical vector addition shows
the sum vector to be 13.4 in. long. alllb

I

3. Beats.—If the displacement of a 's [
point moving back and forth along a e
straight line can be expressed as the l /
sum of two terms, a sin wit 4+ b sin wst, aly
where w; # wz, the motion is said to H
be the ‘‘superposition” of two vibra- VI
tions of different frequencies. It is . . o dingrams
clear that such a motion is not itself illustrating the mechanism of
sinuscidal. An interesting special case beats.
occurs when the two frequencies w; and w. are nearly equal
to each other. The first vibration can be represented by
a vector @ rotating at a speed w;, while the b-vector rotates
with w,. If w; is nearly equal to w., the two vectors will
retain sensibly the same relative position during one revolution,

(o]

(b)

ot
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t.e., the angle included between them will change only slightly.
Thus the vectors can be added geometrically, and during one
revolution of the two vectors the motion will be practically a
sine wave of frequency w; = w, and amplitude & (Iig. 7). During
a large number of cycles, however, the relative position of @ and
b varies, because w; is not exactly equal to ws, so that the magni-
tude of the sum vector ¢ changes. Therefore the resulting
motion can be described approximately as a sine wave with a
frequency w; and an amplitude varying slowly between (b + a)
and (b — a), or, if b = a, between 2a and 0 (Figs. 7 and 8).
This phenomenon is known as beats. The beat frequency is
the number of times per second the amplitude passes from a

Fra. 8.—Beats,

minimum through a maximum to the next minimum (4 to B in
Fig. 8). The period of one beat evidently corresponds to the
time required for a full revolution of the b-vector with respeet to
the d-vector. Thus the beat frequency is scen to be w; — w,.

Ezample: A body describes simultancously two vibrations, z; = 3 sin 40¢
and z, = 4 sin 41¢, the units being inches and seconds. What is the maxi-
mum and minimum amplitude of the combined motion and what is the
beat frequency?

Solution: The maximum amplitude is 3 + 4 = 7 in.; the minimum is
4 — 3 =1 in. The circular frequency of the beats wy, = 41 — 40 =1
radian per second. Thus fs = w/27 = 1/2r cycles per second. The
period T or duration of one full beat is Ty = 1/f = 6.28 sce.

The phenomenon can be observed in a great many cases (pages
109, 402). For audio or sound vibrations it is especially not-
able. Two tones of slightly different pitch and of approxi-
mately the same intensity cause fluctuations in the total intensity
with a frequency equal to the difference of the frequencies of the
two tones. For example, beats can be heard in electric power
houses when a generator is started. An electric machine has a
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“magnetic hum,” of which the main pitch is equal to twice the
frequency of the current or voltage, usually 120 cycles per second.
Just before a gencrator is connected to the line the electric
frequency of the generator is slightly different from the line
frequency. Thus the hum of the generator and the hum of the
line (other generators or transformers) are of different pitch, and
beats can be heard.

The existenee of heats ean be shown also by trigonometry. let the two
vibrations be « sin it and b sin wst, where w; and w, are nearly equal and
wy — w; = Aw.

Then

a sin wit 4 b sin wst
= a sin wil 4 b (sin wil cos Awt + cos wit sin Awt)
(a 4 b cos Awt) sin wit + b sin Awt cos wt

i

Applying formula (6) the resultant vibration is
\/4(1-17%— b cos Awt)? + b% sin? Awt - Sin (wit + @)

where the phase angle ¢ can be calculated but is of no jnterest in this case.
The amplitude, given by the radical, can be written

Var F b"(c;osz”A'o}t + sin? Awt) + 2ab cos Awt
= Va? + 0% + 2ab cos Awt
which expression is seen to vary between (a 4+ b) and (¢ — b) with a fre-
queney Aw.

4, A Case of Hydraulic-turbine Penstock Vibration.—A
direct application of the vector concept of vibration to the
solution of an actual problem is the following.

In a water-power gencrating station the penstocks, i.e., the
pipe lines conducting the water to the hydraulic turbines, were
found to be vibrating so violently that the safety of the brick
building structure was questioned. The frequency of the
vibration was found to be 11314 cycles per second, coinciding
with the product of the speed (400 r.p.m.) and the number of
buckets (17) in the rotating part of the (Francis) turbine. The
penstocks emitted a loud hum which could be heard several miles
away. Incidentally, when standing close to the electric trans-
formers of the station, the 624 cyps. beat between the penstock
and transformer hums could be plainly heard. The essential
parts of the turbine are shown schematically in Fig. 9, which
is drawn in a horizontal plane, the turbine shaft being vertical.
The water enters from the penstock I into the ‘‘spiral case”
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II; there the main stream splits into 18 partial streams on
account of the 18 stationary, non-rotating guide vanes. The
water then enters the 17 buckets of the runner and finally turns
through an angle of 90 deg. to disappear into the vertical draft
tube III.

Two of the 18 partial strecams into which the main stream
divides are shown in the figure. Fixing our attention on one
of these, we sec that for cach revolution of the runner, 17 buckets
pass by the stream, which thus is subjected to 17 impulses. In

Fia. 9.—Explains the vibration in the penstock of a Irancis hydraulic turbine.

total, 113!§ buckets are passing per second, giving as many
impulses per second, which are transmitted back through the
water into the penstock. This happens not only in stream a but
in each of the other partial streams as well, so that there arrive
into the penstock 18 impulses of different origins, all having
the same frequency of 113!4 cycles per second. If all these
impulses had the same phase, they would all add up arithmetically
and give a very strong disturbance in the penstock.

Assume that stream a experiences the maximum value of its
impulse when the two vanes 1 and 1line up. Then the maximum
value of the impulse in stream b takes place somewhat carlier
(to be exact, 1/(17 X 18)th revolution earlier, at the instant
that the two vanes 2 and 2 are lined up).
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The impulse of stream a travels back into the penstock with
the velocity of sound in water (about 4,000 ft./sec.)* and the
same is true for the impulse of stream b. However, the path
traveled by the impulse of b is somewhat longer than the path

for a, the difference being approximately
one-eighteenth part of the circumference
of the spiral case. Because of this fact,
the impulse b will arrive in the penstock
later than the impulse a.
In the machine in question it happened
that these two effects just canceled each
other so that the two impulses a and b
arrived at the cross section AA of the
penstock simultaneously, 7.e., in the same
phase. This of course is true not only for
a and b but for all the 18 partial streams.
In the vector representation the impulses
! behave as shown in Fig. 10a, the total
@) ® )% impulse at AA being very large.
In order to eliminate the trouble, the
o existing 17-bucket runner was removed
from the turbine and replaced by a 16-
bucket runner. This does not affect the
paft?:ii iml((y)l'l—l;‘—(:gh?tt ao time difference caused by the different
section AA of Iig. 9 lengths of the paths a, b, etec., but it does
f(‘rg 8 (Thucket Xunhet change the interval of time between the
runner (b). impulses of two adjacent guide vanes. In
particular, the circumferential distance between the bucket
2 and guide vane 2 becomes twice as large after the change.
In fact, at the instant that rotating bucket 1 gives its impulse,
bucket 9 also gives its impulse, whereas in the old construction
bucket 9 was midway between two stationary vanes (Fig. 9).

It was a fortunate coincidence that half the circumference of
the spiral case was traversed by a sound wave in about 14 X 1{;3
sec., so that the two impulses due to buckets 1 and 9 arrived in
the cross section AA in phase opposition (Fig. 10b). The phase
angle between the impulses at section AA of two adjacent partial
streams is thus one-ninth of 180 degrees, and the 18 partial

* The general streaming velocity of the water is small in comparison to the
velocity of sound, so that its effect can be neglected.
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impulses arrange themselves in a circular diagram with a zero
resultant.

The analysis as given would indicate that after the change in
the runner had been made the vibration would be totally absent.
However, this is not to be expected, since the reasoning given is
only approximate, and many effects have not been considered (the
spiral case has been replaced by a narrow channel, thus neglecting
curvature of the wave front, reflection of the waves against the
various obstacles, and effeet of damping). In the actual case
the amplitude of the vibration on the penstock was reduced
to one-third of its previous value, which constituted a satis-
factory solution of the problem.

b. Representation by Complex Numbers.—It was shown
in the previous sections that rotating vectors can represent
harmonic motions, that the geometric addition of two vectors
corresponds to the addition of two harmonic motions of the same
frequency, and that a differentiation of such a motion with
respect to time can be understood as a multiplieation by w and a
forward turning through 90 deg. of the representative vector.
These vectors, after a little practice, afford a method of visualiz-
ing harmonic motions which is much simpler than the consider-
ation of the sine waves themselves.

For numerical ealeulations, however, the vector method is not
well adapted, since it becomes necessary to resolve the vectors
into their horizontal and vertical components.  Tfor instance, if
two motions have to be added as in Fig. 5, we write

E=a+b

meaning geometric addition. To caleulate the length of ¢, i.e.,
the amplitude of the sum motion, we write

a=a;+ ay

which means that @ is the gcometric sum of a, in the z-direction
and a, in the y-direction. Then

c=a,+a, +b:.+0b = (a'z+bz)+(0«u+bu)
and the length of € is consequently
¢ = \/((l, + b.)? + (ay + by)?

This method is rather lengthy and loses most of the advantage
. due to the introduction of vectors.
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There exists, however, a simpler method of handling the
vectors numerically, employing imaginary numbers. A complex
number can be represented graphically by a point in a plane
where the real numbers 1, 2, 3, ete., are plotted horizontally
and the imaginary numbers are plotted vertically, With the

notation
4] -
j= v/
these imaginary numbers are
Jy 2j, 3j, ete. In TFig. 11, for
example, the point 3 + 2j is
shown. In joining that point
with the origin, the complex
number can be made to rep-
- resent a vector. If the angle
Fig. 71 - A veetor represented by a f the veetor with the horizontal

point in the complex plane, .

axis is @ and the length of the

vector is «, it can be written as

1 —
-1

a(cos a + J sin @)
Harmonic motions are represented by rotating vectors. A sub-
stitution of the variable angle ot for the fixed angle « in the last
equation leads to

a(cos wt + j sin wl) )

representing a rotating vector, the horizontal projection of which
is a harmonic motion. But this horizontal projection is also
the real part of (7). Thus if we say that a “vector represents a
harmonic motion,” we mean that the horizontal projection of the
rotating veclor represents that motion. Similarly if we state
that a ‘““complex number represents a harmonic motion,” we
imply that the real part of such a number, written in the form (7)
represents that motion.

Ezxample: Solve the example of page 6 by means of the complex method.
Solution: The first vector is represented by —55 and the second one by

—10j cos 57° + 10 sin 57° = —5.4j + 8.4, The sum of the two is
8.4 — 10.47, which represents a vector of the length 1/ (8.4)2 + (10.4)?
= 13.4 in.

Differentiate (7) which gives the result

a(—w sin o + jw cos wt) = jw - a(cos wt + J sin wi)
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since by definition of j we have j2 = —1. It is thus seen
that differentiation of the complex number (7) is equivalent to
multeplication by jw.

In vector representation, differentiation multiplies the length
of the vector by « and turns it ahead by 90 deg. Thus we are
led to the conclusion that multiplying a complex number by j
is equivalent to moving it a
quarter turn ahead without Joaxis
changing its absolute value.
That this is so can be casily
verified:

ja+3b) = =b + ja
which Fig. 12 actually shows
in the required position. ¥ra.  12.---Multiplying a  complex

In making extended calcula- number by j amounts to turning its

vecetor ahead through 90 deg.

tions with these complex num-

bers the ordinary rules of algebra are followed.  With every step
we may remember that the motion is represented by only the
real part of what we are writing down. Usually, however, this
is not done: the algebraic manipulations are performed without
much recourse to their physical meaning and only the final
answer is interpreted by considering its real part.

For simple problems it is hardly worth while to study the
complex method, since the solution can be obtained just as
casily without it. However, for more complicated problems,
such as are treated in Sece. 24, for example, the labor-saving
brought about by the use of the complex notation is substantial.

oL T TT T

N 1-axis
a

The expression (7) is sometimes written in a different form:
a(cos wt + j sin wt) = aclw? 8)
or, if for simplicity @ = 1 and wt = «,
¢ia = cos o + jsin a (8a)

The right-hand side of this equation is an ordinary complex number, but
the left-hand side needs to be interpreted, as follows.  The Maclaurin series
development of ¢* is

2 3
e =14zttt

Substituting £ = ja this becomes

ad ot g

. . a?
el =1+ja—5 —Jgit g tig—
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a? | at
"t
The right-hand side is a complex number, which by definition is the meaning
of efa, But we recognize the brackets to be the Maclaurin developments of
cos a and sin « , so that formula (8a) follows.

A simple graphical representation of the result can be made in the complex
plane of Fig. 11 or 12. Consider the circle with unit radius in this plane.
Each point on the circle has a horizontal projection cos « and a vertical
projection sin o« and thus represents the number, cos a +j sin a = era.
Consequently the number ¢/e is represented by a point on the unit circle,
a radians away from the point +1. If « is now made cqual to wt, it is
seen that e’«! represents the rotating unit vector of which the horizontal
projection is a harmonie vibration of unit amplitude and frequency w.

On page 52 we shall have occasion to make use of Eq. (8a).

3 5
=a - ) tia=F 5 )

6. Work Done on Harmonic Motions.—A concept of impor-
tance for many applications is that of the work done by a har-
monically varying force upon a harmonic motion of the same
frequency.

Let the force P = P, sin (wt + ¢) be acting upon a body for
which the motion is given by z = xy sin wf. The work done by
the force during a small displacement dz is Pdx, which can be

. dx
written as Pgi dt.

During one cycle of the vibration, wt varies from 0 to 2= and
consequently ¢ varies from 0 to 2r/w. The work done during
one cycle is:

2w
© dr 1 (% dz S
J; Pa?dt = ;J; Pd_td<wt) = Poxgj; sin (wf + ¢) cos wt d(wt)

2r
= Poxuf cos wifsin wt cos ¢ + cos wt sin ¢]d(wt)
i

27

2r
= Pory cos «:J; sin wt cos wtd(wt) + Pyzy sin ‘pf cos? wt d(wt)
0

A table of integrals will show that the first integral is zero and
that the second one is 7, so that the work per cycle is

W = nwPyx, sin ¢ 9

This result can also be obtained by a graphical method, which
interprets the above calculations step by step, as follows.

The force and motion can be represented by the vectors Po
and %, (Fig. 13). Now resolve the force into its components
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Py cos ¢ in phase with the motion, and P, sin ¢, 90 deg. ahead
of the motion F,. This is permissible for the same reason that
geometric addition of vectors is allowed, as explained in Sec. 2.
Thus the work done splits up into two parts, one part due to
a force in phase with the motion and another
part due to a force 90 deg. ahead of the motion. %
Consider the first part as shown in Iig. 14a,
in which the ordinates are the displacement x ¢
and the ““in phase” component of the force. /
Between A and B the force is positive, say
upward, and the body is moving in an upward
direction also; positive work is done. Between
B and C, on the other hand, the body moves
downward toward the equilibrium point while
the force is still positive (upward, though of Fio. 13 .-A
gradually diminishing intensity), so that negative foreo and a motion
work is done. The work between A and B of the same fre-
cancels that between B and C, and over a aueney:
whole cycle the work done is zero. If a harmonic force acts on
a body subjected to a harmonic motion of the same frequency, the
component of the force in phase with the displacement does no work.

Displacement x

Fra. 14.—A force in phase with a displacement does no work over a full
cycle; a force 90 deg. out of phase with a displacement does a maximum amount
of work.

It was shown in Sec. 2 that the velocity is represented by a
vector 90 deg. ahead of the displacement, so that the statement
can also be worded as follows:

A force does work only with that component which is in phase
with the velocity.

Next we consider the other component of the forece, which is
shown in Fig. 14b. During the interval AB the displacement
increases so that the motion is directed upward, the force is
positive, and consequently upward also, so that positive work is
done. In the interval BC the motion is directed downward, but
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the force points downward also, so that the work done is again
positive. Since the whole diagram is symmetrical about a
vertical line through B, it is clear that the work done during
AB equals that done during BC. The work done during the
whole cycle AD is four times that done during AB.

To calculate that amount it is necessary to turn to the defini-
tion of work:

W = fpdx=fpfé§dt=fpv-dt

This shows that the work done during a cycle is the time integral
of the product of force and wvelocity. The force is (Fig. 14b)

2T
F1c. 15.-—Showing thntj; cos? ada = .

P = (Pysin ¢) : cos wl and the velocily is v = 0 cos wt, so that
the work per eycle is

T . . 2w N
j; Py sin ¢ cos wt ryw cos wt dt = Py sin <pj; cos® wt d(wt)

The value of the definite integral on the right-hand side can be
deduced from Fig. 15, in which curve I represents cos wt and
curve 1I represents cos® wt. The curve cos? wt is sinusoidal
about the dotted line AA as center line and has twice the fre-
quency of cos wt, which can be casily verified by trigonometry:

cos’ a = 15(1 + cos 2a)
Consider the quadrangle 1-2-3-4 as cut in two pieces by the curve
IT and note that these two pieces have the same shape and the
same area. The distance 1-4 is unity, while the distance 3-4 is

w/2 radians or 90 deg. Thus the area of the entire quadrangle
is /2 and the area of the part under curve II is half of that.
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Consequently the value of our definite integral taken between
the limits 0 and 7'/4 is /4, and taken between the limits 0 and
T it is 7. Thus the work during a cycle is

W = 7wPyxy sin ¢ 9)

It will be seen in the next scetion that a periodic foree as well
as a periodic motion may be ‘“‘impure,” 7.c., it may contain
“higher harmonics” in addition to the “fundamental harmonie.”
In this connection it is of importance to determine the work
done by a harmonic force on a harmonic motion of o frequency
different from that of the force. Let the force vary with a
frequency which is an integer multiple of w, say nw, and let the
frequency of the motion be another integer multiple of w, say
mw. It will now be proved that the work done by such a force
on such a motion during a full cycle of w is zero.

Let the force be P = Py sin nwt and let the corresponding motion
be z = zp sin (mwt + ¢). Then the work per eycle is

T
de:z: = f Pi{dt J Py sin nwt - xomew - cos (met + @)dt
Jo

Since

cos (mwt 4 @) = cos mwl cos ¢ — sin Ml sin
and since ¢ is independent of the time and can he brought in
front of the integral sign, the integral splits up into two parts of
the form

T . . T .
_’; sin nwt sin Mt dt and j‘; sin nwt cos mot dt

Both these integrals are zero if n is different from m, which can be
easily verified by transforming the integrands as fullows:

sin nwt sin Mol = ‘z cos (n — m)wt — 13 cos (n 4+ m)wt
sin net cos mwt = 14 sin (n 4+ m)wt + 1§ sin (n — m)wt

Since the interval of integration is T = 27 /w, the sine and cosine
functions arc integrated over multiples of 2r, giving a zero result.
In order to gain a physical understanding of this fact let us con-
sider the first of the above two integrals with n = 4 and m = 5.
This case is represented in Fig. 16, where the amplitudes of the
two waves are drawn to diffcrent vertical scales in order to
distinguish them more easily. The time interval over which the
integration extends is the interval AB. The ordinates of the two
curves have to be multiplied together and then integrated.
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Consider two points, one somewhat to the right of A and another
at the same distance to the left of C. Near A both waves are
positive; near C one is positive and the other is negative, but the
absolute values of the ordinates are the same as near A.  There-
fore the contribution to the integral of an clement near A cancels
the contribution of the corresponding clement near €. This
canceling holds true not only for clements very near to A and ¢
but generally for two elements at equal distances to the left from
C and to the right from 4. Thus the integral over the region
AD cancels that over CD. In the same way it can be shown
that the integral over CB is zcro.

2
Fra. 16.—Showing thatﬁ sin na sin ma da = 0.

It should be understood that the work is zero only over a
whole cycle. Starting at A, both waves (the forcc and the
velocity) are positive, so that positive work is done. This work,
however, is returned later on (so that in the meantime it must
have been stored in the form of potential or kinetic energy).

This graphical process can be repeated for any combination
of integral values of m and n and also for integrals containing a
cosine in the integrand. When m becomes equal to n, we have
the case of equal frequencies as already considered. Even
then there is no work done when the force and displacement
are in phase. In case m = n and the force and displacement are
90 deg. out of phase, the work per cycle of the nth harmonic is
mPoz as before, and since there are n of these cycles in one eycle
of the fundamental frequency w, the work per fundamental
cycle is nwPyz,.

The results thus obtained can be briefly summarized as
follows:

1. The work done by a harmonic force acting upon a harmonic
displacement or velocity of a different frequency from that of the force
18 zero during a time interval comprising both an integer number of
Jorce cycles and a (different) integer number of velocity cycles.
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2. The work done by a harmonic force 90 deg. out of phase with
a harmonic velocity of the same frequency is zero during a whole
cycle.

3. The work done by a harmonic force of amplitude P, and
frequency w, in phase with a harmonic velocity vy = x.w of the same
frequency, ts mPow,/w = wPoxo over a whole cycle.

Ezxample: A force 10 sin 2760t (units are pounds and seconds) is acting
on a displacement of L{g sin [2x60¢t — 45°] (units are inches and seconds).
What is the work done during the first second, and also during the first one-
thousandth of a sccond?

Solution: The force is 45 deg. out of phase with the displacement and can
be resolved into two components, each of amplitude 10/4/21h., being in phase
and 90 deg. out of phase with the displacement.  The component in phase
with the displacement does no work.,  That 90 deg. out of phase with the dis-

placement does per cycle 7Py = 7+ ,ﬂ), - 2.22in. 1b. of work. Dur-

.\/2 10
ing the first sccond there are 60 cycles so that the work performed is 60 X
222 = 133 in. 1b.

During the first one-thousandth of a second thece are 60/1,000 = 0.06
cycle, so that the vectors in the diagram turn through only 0.06 X 360 deg.
= 21.6 deg. Formula (9) holdsonly for a full cycle.  For part of a cycle the
integration has to be performed in full:

W= fl’:l.l: = fl’n sin wt - Tow cos (wb — @)dt

21 6°
~ Puzo j; sin (wt) o8 (ot — ¢)d(al)
21.6° .
=10- “,j; sin (wt)[cos (wt) cos ¢ + sin (wt) sin @]d(wt)

21 6° 21.6° |
= (08 ¢ ﬁ " sin (wt) cos (wt)d(wt) + sin ¢ f «in? (wt)d(ot)

)1 [\
= 14 cos ¢ sin? (wt) + sin ¢[gwt — 14 sin 2«;!]1
= % cos 45° sin? 21.6° + : 5; g sin 45° — 1 sm 45° sin 43.2°

121.6
2 2 - :
2><0707><03()8 —{-257 X 0.707 4X07()1><0(;8‘i

= 0.048 + 0.133 — 0.121 = 4-0.060 in. lb.
This is considerably less than one-thousandth part of the work performed

in a whole second, because during this particular 1/1,000 sec. the force is
very small, varying between 0 and 0.368P,.

7. Non-harmonic, Periodic Motions.—A *periodic”’ motion
has the property of repeating itself in all details after a certain
time interval, the ‘‘period” of the motion. All harmonic
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motions are periodic, but not every periodic motion is harmonie.
For example, Fig. 17 represents the motion

r = @ sin wf + g sin 2wt

the superposition of two sine waves of different frequency.
It is periodie but not harmonic. The mathematical theory shows

Fra. 17.--The sum of two harmonic motions of different frequencies is not a
harmonie motion.

that any periodic curve f(t) of frequency w can be split up into a
series of sine curves of frequencies w, 2w, 3w, 4w, ete.  Or

f(O) = Ag + Arsin (wt + ¢1) + Az sin (2wt 4 ¢2)
+ A; sin (.‘;wt -+ ‘p:‘) + - (10)

provided that f({) repeats itself after each interval 7 = 2r/w.
The amplitudes of the various waves A, A., . . ., and their
phase angles ¢y, @3, . . . , can be determined analytically when
f(t) is given.  The series (10) is known as a Fourier series.

The second term is called the fundamental or first harmonie
of f(t) and in general the (n 4 1)st term of frequency nw is known
as the nth harmonic of f(¢). Since

sin (nwt + ¢») = sin nwt cos ¢, + cos nwt sin ¢,
the series can also be written as

f@) = arsinwt +azsin 2wt + ¢ - - +a,sinnot + - -+ bo
+ by cos wt + by cos 2wt + ¢ - - + b, cos nwt + - (10a)
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‘

The constant term by represents the “average’ height of the
curve f(¢) during a eyele. For a curve which is as much above
the zero line during a eycle as it is below, the term by is zero.
The amplitudes ay . . . an . . ., b ... by . .. can be deter-
mincd by applying the three energy theorems of pages 18 and 19,

Consider for that purpose f(t) to be a force, and let this non-
harmonic force act on a point having the harmonic veloeity
sin nwt.  Now consider the force f(f) as the sum of all the terms
of its Fourier series and determine the work done by each har-
monic term separately.  All terms of the foree except a, sin nwt
and b, cos nwt are of a frequency different from that of the veloe-
ity sin not, so that no work per cycle is done by them. More-
over, b, cos nwt is 90 deg. out of phase with the velocity so that
this term does not do any work either.  Thus the total work done
is that of the force a, sin nwt on the velocity sin nwt, and is

Ta, 1

per cycle of the nw-frequency. Per cycle of the funda-

mental frequeney (which is n times as long), the work is 7a,/w.

Thus the amplitude a, is found to be w/7 times as large as the
work done by the complete non-harmonic foree f(¢) on a velocity
sin nwt during one cycle of the force. Or, mathematically

2r
Uy = S"-vaf(l) sin nwt dt (11a)
m Jo

By assuming a velocity cos nwt instead of sin not and repeating
the argument, the meaning of b, is disclosed as

2w
w w
b, = ;ﬁ J(t) cos nwt dt (11b)

The relations between a,, b, and the quantities A ., ¢. of 15q. (10)
are as shown in liq. (6), page 6, so that,
A2 = a2 + D2 and tan ¢, = -(-I—"'

Thus the work done by a non-harmonic foree of frequency w
upon a harmonic velocity of frequency nw is merely the work of
the component of the nth harmonic of that force in phase with
the velocity; the work of all other harmonics of the force is zero
when integrated over a complete force cycle.

With the aid of the formulas (11) it is possible to find the ¢,
and b, for any periodic curve which may be given. The branch
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of mathematics which is concerned with this problem is known as
harmonic analysis.

Example: The curve ¢ of Fig. 254 (page 426) shows approximately the
damping foree caused by turbulent air on a body in harmonic motion. If
the origin of coordinates of Fig. 254 is displaced one-quarter cycle to the left,
the mathematical expression for the curve is

flwt) = sin? wt for0 <ot <m
flwt) = — sin? wt forr < wf < 2

IFind the amplitudes of the various harmonies of this curve.

Solution: The curve to be analyzed is an “antisymmetric” one, i.e., the
values of f(wt) arc equal and opposite at two points : ot at equal distances
on both sides of the origin. Sine waves are antisymmetric and cosine
waves are symmetric.  An antisymmetric curve cannot have cosine com-
ponents.  IHence, all b, are zero.  This can be further verified by sketching
the integrand of Eq. (11b) in the manner of Fig. 16 and showing that the
various contributions to the integral cancel cach other. The constant
term by = 0, because the curve has no average height. For the sine com-
ponents we find

2x
a, = ;‘: wa(wt) sin not dt

1 T . . 2% . .
= ~[f sin? wt sin nwt d(wt) — f sin? wt sin nwt dwt:l
™ 0 L3

The integrands ean be transformed by means of the last formula on page
17,

8in? wf sin nwt = (14 — 14 cos 2wt) sin nwt
= 14 sin not — 14 sin (n 4+ 2)wt — 11 sin (n — 2)wt

The indefinite integral of this is

— l 1
F(wt) = «— cos nwt + — it +~—2~) cos (n + ol + ——r i = cos (n — 2)wt

The harmonic a, is 1 /7 times the dchmtc integrals.
Since ¥(2r) = F(0), we have

- }r[h'(w) — F(0) — F(2r) + F(w)] - %[ﬁ'(w) - F(O)]
2 1 1 1 _4cosnr — 1
= Jlcosnr — 1) [ "o tim ) Tim = 2)] = hm —4)
For even values for n the a, thus is zero, while only for odd values of n the
harmonic exists. In particular for n = 1, we have for the fundamental
harmonic

ay ='3—§: = 0.85

Thus the amplitude of the fundamental harmonic is 85 per cent of the
maximum amplitude of the curve itself.
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The evaluation of the integrals (11) by calculation can be done
only for a few simple shapes of f(t). 1 f(¢) is a curve taken from
an actual vibration record or from an indicator diagram, we do
not even possess a mathematical expression for it.  However,
with the aid of the curve so obtained the integrals can be deter-
mined cither graphically or numerically or by means of a machine,
known as a harmonic analyzer.

Such a harmonie analyzer operates on the same principle as
Watt’s steam-engine indicator. The indicator traces a closed
curve of which the ordinate is the steam pressure (or piston
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F1a. 18,—The harmonic analyzer, an instrument operating on the same principle
as Watt's steam-engine indicator.

force) and the abscissa is the piston displacement.  The area of
this closed curve is the work done by the piston foree per eyele.
The formulas (11) state that the coefficients a, or b, arc w/m times
the work done per eycle by the force f() on a certain displacement
of which the velocity is expressed by sin nwt. To obtain complete
correspondence between the two cases, we note that sin nwt is the

velocity of ;—1 cos nwt, so that (11a) can be written in the modi-
W

_ ! f F(O)d(cos nut) = f Pds

The symbol f indicates that the integration extends over the

fied form

closed curve described during one cycle of the force f(¢).

The machine is shown schematically in Fig. 18. A4 is a card-
board template representing one cycle of the curve f(¢) which
is to be analyzed. The template A is fastened to a rack and a
pinion B, which is rotated by an electric motor, The arm C
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is guided so that it can move in its longitudinal direction only
and is pressed lightly against the template by a spring. Thus
the vertical motion of the pen D on the arm C is expressed by
f(©). The table, or “platen,” E moves horizontally and is
driven by a scotch crank and gear which is connected by suitable
intermediate gears to B so that E oscillates n times, while
A moves through the length of the diagram. The machine
has with it a box of spare gears so that any gear ratio n from 1 to
30 can be obtained by replacing one gear in the train by another.

The horizontal motion of the platen E is expressed by sin nwt
or by cos nwt, depending on the manner in which the gears are
interlocked. The point D will thus trace a closed curve on the
platen, for which the area equals a, or b, (multiplied by a constant
1/nw). Instead of actually tracing this curve, the instrument
usually carries a planimeter of which one point is attached to £
and the other end to D, so that the area is given dircetly by the
planimeter reading.

Harmonic analyzers have been built on other principles as well.
An interesting optical method using the sound tracks of motion
picture films was invented by Wente and constructed by Mont-
gomery, both of the Bell Telephone Laboratories.  The reference
to this paper is given in the Bibliography.

Electrical harmonic analyzers giving an extremely rapid analy-
sis of the total harmonics A, = v/a2 + b2 [Eqgs. (10) and (10a)],
without giving information on the phase angles ¢, [or the ratios
an/bs, Lq. (10)], are available on the market. They have been
developed by the Western Electric Company (model RA-277 to
be used in conjunction with model RA-246) for sound or noise
analysis and require the original curve to be available in the form
of an clectric voltage, varying with the time, such as results
from an electric vibration pickup (page 81) or a microphone.
This voltage, after proper amplification, is fed into an electric
network known as a “band-pass filter,”” which suppresses all
frequencies except those in a narrow band of a width equal to
5 cycles per second. This passing band of frequencies can be
laid anywhere in the range from 10 to 10,000 cycles per second.



HARMONIC ANALYZER 25

When a periodic (steady-state) vibration or noise is to be Fourier-
analyzed, a small motor automatically moves the pass band
across the entire spectrum and the resulting analysis is drawn
graphically by a stylus on a strip of waxed paper, giving the
harmonic amplitudes vs. the frequency from 10 to 10,000 cycles
per second, all in a few minutes. The record is immediately
readable.

Another electrical analyzer, operating on about the same prin-
ciple but without graphic recording, is marketed by the General
Radio Company, Cambridge, Mass,

There are several methods for ealeulating the Fourier coeflicients numer-
ically, 7.e., methods to evaluate the integrals (11) in eases where the funetion
Sf(¢) is given only in the form of a curve. For convenience we rewrite Eq.
(11), by taking as the abscissa not the time ¢, but rather the combination
¢ = ot, which is an angle. With the latter, Iigs. (11¢ and b) become

27 2r
a =2 s sinnode b =27 (o) cos no o
TJO TJO

In order to caleulate these integrals numerieally, we divide the base length
27 of the curve in a number N of equal parts; cach of which is 27/N =
(In the particular example that follows, N =48 and A = 7.5 deg.) The
ordinates of the curve f(¢) at these N points are designated as yo, yy, y2
. , ete,, so that y, = f(kA). With this notation we ean replace the
.\lmvc continuous mtegials by finite sums, which are approximately cqual
to these integrals:
k=N~1

n = ! 2 yr(sin nkA) - A
m

k=0 (11c)

In case the subdivision of the base of the curve becomes finer and finer,
i.e., N becomes greater and A smaller, these sums gradually approach the
integrals in value. 1In order to find, say, the fifth sine harmonic of a curve,
the expressions (11¢) instruct us to subdivide the base in a number, say,
48 equal picces of 7.5 deg.; to measure the ordinates yo, y1, Y2, « . ., Yaz; to
calculate the products y; sin (5 X 714), y2 sin (10 X 713), ete.; to add these
48 products, and to multiply the sum by A/x which is }44. The sines
appearing in thesc 48 products show certain regularities. For instance,
taking the following four terms out of the 48,

yisin (5 X 714)°, yersin (47 X 5 X 714)°, y2a 8in (23 X 5 X 71%)°,
Y26 8in (26 X & X 7%4)°
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we can write

y18in 3715°, yarsin (5 X 360 — 3714)°, yas sin (5 X 180 — 37%4)¢,
yes sin (5 X 180 + 371%)°

and the sum of these four terms is
(y1 + Y23 — Y25 — Y1) 8in 3714°

In order to take full advantage of the simplifications arising from these
regularities, Runge devised the scheme of pages 28 and 29.  In this schedule
the full-size numbers are always the same, while the small-type num-
bers refer to a specific example. The example taken in this case is the
squared sine function of page 22. The 48 ordinates of this function are
first. entered in the top two rows. For example, yo = sin? (9 X 714)° =
sin? (8213) = 0.9242 = 0.854 is shown in the space provided for it, while
immedintely below appears y; = —0.854. Since we picked an antisym-
metric curve, the values ys445 are equal and opposite to yz240. The third
and fourth line of small numbers are the sum ¢ and difference d, respec-
tively, of the two numbers above them. The third line is entirely made up
of zeros, because our curve is antisymmetric. ‘The c-values of the third
line are entered into the second square to the left, while the d-values are
copied at the right., In copying the numbers they are ‘“‘folded about the
center” in order to take advantage of the regularities in the sine and cosine
functions. The same operation of addition and subtraction is performed
on the ¢’s and d’s, and continuing in this manner the entire sheet is filled in.
The A-values appearing in the bottom center are the sines of 713, 15, 2213
deg., ete.

Now any harmonic can be calculated by referring to pages 30 and 31.
The formulas shown there are the same as Eqs. (1l¢), taking advantage
of the various symmetries. Consider for example the third sine harmonie.
By Eqs. (11¢) we have

%a. = 2lay = yosin 0 + y, sin 34 + y, sin 64 + - -+ -

+ Yo sin 1388 + yarsin 141A = (y1 — yar) Sin 3A + (y2 — Yus) sin 6A
+ (1/23 - ]/25) sin 69A + (}/24) sin 72A.

Now sin 72A = sin 540° = 0, and using the notation of pages 28 and 29
this can be written as

24ay = d, sin 3A + d; 8in 6A + - -+ 4 dyg sin 69A
= (d\ + da3) sin 3A + (d2 + d32) sin 6A + - - -
L) + (du + dla) sin 33A + dlz sin 36A
=¢18in3A 4+ ¢g28n6A 4 - - - 4 g, 80334 —dyp =
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= (g1 8in 34) + grsin 214 + gy sin 274) 4 (g:sin 6A + ge sin 18A
4+ g0 sin 304) 4 (g3 sin 9A) + ¢s sin 154 + ¢y, sin 334)
+ (gasin 12A + gy sin 244) — d»

= j15in 3A + ju sin 6A + j3sm 9A + g — dis

=gs —dis + Asjr + Aejz + Ayjs

In a similar manner the other entries on pages 30 and 31 can be verified.

The numerical caleulation of the various harmenies of our sine squared
curve by substituting the figures of pages 28 and 29 in the formulas of
pages 30 and 31 leads to the results below.  The exact answers from page
22 are listed for comparison.

; By Runge’s scheme Iixact
a, 0.846 0.848
a; —0.170 -0.170
as —0.0246 —0.0243
ar —0.0073 —0.0081
ay —0.0033 —0.0037

The higher odd sine harmonics up to as: become too small to be of any
importance; i.e., ax = —0.0005 by Runge’s method and ay = —0.0003
by the exact formula.

In this exposition of the method the formulas (11¢) have been considered
merely as approximations of the integrals (11a) and (11b). However, they
have an additional signilicance. Suppose we write not an infinite Fourier
series, but a finite one containing 23 a- or sine terms and 25 b- or cosine
terms, 48 in all.  Let the coeflicients a and b of this finite series be indeter-
minate to start with. Consider next the 48 points yo, 41, y2 . . . yar of
our curve. Now by algebra it will be possible to solve for the 48 a’s and
b’s, so that the curve determined by the finite Fourier series passes czactly
through the 48 points of the given curve.  To find the a- and b-values that
do just this requires writing the 48 conditions that the series curve passes
through the designated points and then solving the 48 unknown «’s and b's
from the 48 algebraic equations.  This has been done, and the result, sur-
prisingly, is just Iiqs. (11¢). For a proof of this interesting property, the
reader is referred to the books of Runge or Scarborough, quoted in the
Bibliography.

Problems

1. A force Py sin wt acts on a displacement z = z, sin (0t + 30°), where
Py =51b, 2o = 2in., and v = 62.8 rad. /sec.
a. What is the work done during the first second?
b. What is the work done during the first 14, scc.?
(Continued on page 32)
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0 1 2 3 4 5 6 7 8 9 | 10
(24) | (47) | (46) | (45) | (44) | (43) | (42) | (41) | (40) | (39) | (38)
y
0000 | 0.017| 0.068) 0 146/ 0.250| 0.370 0.500( 0.630| 0.750| 0.854| 0.932
0 000 |—0.017|—0.068|—0. 14| —0.250| —0.370{—0.500|—0.630| —0.750| —0. 854| —0.932
Sum:¢c o0 | 0 0 0 0 0 0 0 0 0 0
Diff.:d | 0 000 | 0.034] 0.136| 0.292| 0.500] 0.740| 1.000{ 1.260| 1.500{ 1.708| 1.864
0 1 2 | 3| 4 6 (718191011
(12) | (23) | (22) | (21)] (20)] (19)| (18)] (17)| (16)| (15)| (14)] (13)
c
0 0 0 0| o 0o fofo]o}]o
0 0 0 0] o0 ol o]ofofo}o
Sum:e | o 0 0o oo o0 o jo oo
Diff.: f | o 0 0 0|0 0 jo o]0 o0 o0
0 1 2 3 4 5 fi—fi —f, =i, =0
(6) | (1) | (10)| (9) | ®) | (O
fz—fu—fm =i2 =0
e
o | o o | o | o] o fo —fi —fu =i, =0
0 0 0 0 0 0
Sum:k | o 0 0 0 0 0
Diff.:1 | o 0 0 0 0 0
0 1 2 0 1 2 A, =0.131
@G| MW @) | ®6)| 4| Ar=0.259
k — 1 S ﬁ‘ = 0.500
s = 0.609
S I 12 %] Ac=0.707
0 0 0 0 0 0
Sum:p| o 0 0 Sum:r 0 0 0
Diff.:q| o 0 0 Diff.:s | o (] 0
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11 [ 12113 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
(37) | (36) | (35) | (34)| (33) | (32) | (B1)| (30) | (29) | (28) | (27) | (26) | (25)

0.983) 1.000; 0.983] 0932 0.854] 0.750/ 0 630| 0.500 0.37()[ 0 250, 0.146] 0 no8 0 017

—0.983|~—1.000 —0.983{—0 932 —0.854‘-—0 750—0.630:—0 500;—0 37()’~0 250/—0.146/—0 068~ 0 017,

0 0 0 0 0 0 0 0 0 0 0 (Y 0

1966 2000 1966 1.864 1.708[ 1500, 1260 1000 0 740, 0 500{ 0 202] 0 136] 0 034

I
0 [ 9

1 341506789/ 10]1
12) | @3)] @2)! @ 20 19 a8)| aD)! a6)| (15)| (14)] (13)
d e L N (USUSISINE (U JU—" SN (NS S—
0 000] 0 034} 0 136] 0 292} 0.500; 0 740; 1 000 1.260] 1.500{ 1 708] 1 S04| 1 966
o T T T, e s B M B
2 000{ 0 034] 0 136| 0 292] 0 500; 0 7-&(); 1 (X)()i 1260/ 1 500] 1 708{ 1 564 1 966
Sum: g 2 000| 0.065{ 0 27‘.’5 0 584 1 U(K)‘ 1 480 2 ()00. 2 5200 3 000{ 3 416{ 3 728| 3 932

|
T i
Diff.: h  |—2 000| 0 0 0 [ 0 0 0 0 0 0 0 0

g+ g —8 =ji= —08% 0 1 2 3 4 5
' . ® |anao| © | ®) | @
g2 + s — B0 = J2 = -1 450 - .
h —
g + 8 — g1t = js = —1868 —~20000 0 0 0 0 0
o Lol oo 0| o
Sum:m|-2 00| o0 T ~o 7 Mo‘m“om
Diff.:n |-2.000[ 0 0 0 —o“ ~o B
0 1 2 0 1 2
A; = 0.793 @G| @ @16 MW
Ay = 0.866 R
Ay = 0.924 m n
Ay = 0.966 —-20] 0 0 —-2.0| 0 0
Au = 0.991 R
0 0 0 0 0 0
Sum:t | -20| 0 0 | Sum:v | -2.0] o 0
Diff.:u|-20] o0 0 Diff.:w | -2.0| o 0
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2. If a body is vibrating harmonically back and forth on a table with
dry friction between the two so that the friction force is independent of
the velocity, that force can be expressed as

f@ey =F for 0 <owt <= and fit) = —F for # < wt < 2r
Calculate the harmonic coeflicients of this force by means of (11) and show
that
f@) = éIf'('-xin t +lqin3 t +»1~sin5 t+ -
= p= S Wi 3 » Wi 5 (6]
3. Let a periodic curve f(t) be as shown in Fig. 19.
Prove that
_ 8f.. 1. 1. .
Jj@) = LI sin wt — 33 8in 3wl +§sm Swt — - - -

4. Referring to Fig. 18, let the curve to be analyzed consist of a pure
gine wave, so that a; = 1 and all other a’s and b’s are zero. Sketch the

)
| 1‘

w S/

4
\/"“
4

Fia. 19.—Curve represented by the series of Problem 3.

shape of the curve traced on the platen K of Fig. 18, if the gear B and the
scotch erank rotate at equal speeds. The closed curve on E depends on how
the two gears are coupled. Show that by displacing them 90 deg. with
respect to each other, the platen curve varies from a circle to a straightline
at 45 deg. Find the arca of the circular E-curve and show that a; =1
and b; = 0.

6. Sketch the E-curves of Problem 4 for the case where the scotch crank
turns 2, 3, . . . times as fast as B, and show that the area registered by
the planimeter is zero in all these cases.

6. Deduce Eq. (6) on page 6 by trigonometry.

7. A rectangular curve has the value +a during three-cighths of the
time and the value —a during five-eighths of the time, as shown in Fig. 20.
Find the Fourier coefficients.

] [v) I ‘? 2\r lu/..

Fia. 20.

8. A curve is made up of parabolic arcs as follows. Between z = —1/2
and z = +1/2 the equation is y = a(2z/l)2. Farther the curve repeats
itself by mirroring about the vertical linesz = —I/2and z = +1/2. Calcu-
late the Fourier coefficients. m
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9. The torque-angle relation of a two-cycle Diesel engine, of the type
discussed on page 248, has the following ordinates:

Yo = 0, Y = 0500, Y2
y: = 0.940, vy =0.810, 1y
Yo = 0375, Yn = 0310, Y12
yis = 0.115, 316 = 0.080, y.r
Y20 to y3¢ = 0, Yas
Yss = _0075, Y39 = —0]15, Yo
Yas = —0.350, yyy = —0 430, y,,

Find the various harmonics by

=0.980, s
= 0.675, Ys
= 0260, Y13
= 0.045, s
= '—‘0()05, VE
= —0.155, ya
= —0 175, y

1.120, yq
0.575, Yo
0.210, ¥y
0.020, yio
—0.020, y37
—0. ]90Y Yz
=0 495, Y47

means of Runge’s method.

I

]

1.060
0.450
0 160
0 005
—0.010
-0.270
—-0.315



CHAPTER II

THE SINGLE-DEGREE-OF-FREEDOM SYSTEM

8. Degrees of Freedom.—A mechanical system is said to
have one degree of freedom if its geometrical position can be
expressed at any instant by one number only. Take, for
example, a piston moving in a cylinder; its position can be speci-
fied at any time by giving the distance from the cylinder end,
and thus we have a system of one degree of freedom. A crank
shaft in rigid bearings is another example. Here the position of
the system is completely specified by the angle between any one
crank and the vertical plane. A weight suspended from a
spring in such a manner that it is constrained in guides to move
in the up-and-down direction only is the classical single-degree-
of-freedom vibrational system (Fig. 23).

Generally if it takes n numbers to specify the position of a
mechanical system, that system is said to have n degrees of
freedom. A disk moving in its plane without restraint has three
degrees of freedom: the z- and y-displacements of the center of
gravity and the angle of rotation about the center of gravity.
A cylinder rolling down an inclined plane has one degree of
freedom; if, on the other hand, it descends partly rolling and
partly sliding, it has two degrees of frcedom, the translation and
the rotation.

A rigid body moving freely through space has six degrees of
freedom, three translations and three rotations. Consequently
it takes six numbers or ‘‘coordinates” to express its position.
These coordinates are usually denoted as z, ¥y, 2, o, ¥, x. A
system of two rigid bodies connected by springs or other ties in
such a manner that each body can move only along a straight
line and cannot rotate has two degrees of freedom (Fig. 21).
The two quantities determining the position of such a system can
be chosen rather arbitrarily. For instance, we may call the
distance from a fixed point O to the first body z;, and the distance
from O to the second body z.. Then z, and z, are the coordi-

nates. However, we might also choose the distance from O to
34
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the center of gravity of the two bodies for one of the coordinates
and call that y,.  For the other coordinate we might choose the
distance between the two bodies, y; = ry — r;. The pair of
numbers x1, z2 describes the position completely, but the pair
y1, Y= does it equally well.
The latter choice has a certain
practical advantage in this
case, since usually we are not

interested so much in the loca-
tion of the system as a whole B 7anat SRS

ARSI

as in the stressesinsideit.,  The
stress in the spring of Fig. 21 is
completely determined by ¥, - i
so that for its calceulation a I |
knowledge of y; is not required. | i

!

53

PSR S S

i

A suitable choice of the coordi- i
nates of a system of several _J,_‘likf —
degrees of freedom may simplify

the ealculations considerably.
It should not be supposed that a system of a single degree of
freedom is always very simple. Tor example, a 12-cylinder gas
engine, with o rigid erank shaft and a rigidly mounted eylinder
block, has only one degree of freedom with all its moving pistons,
rods, valves, cam shaft, ete. This is so because a single number
(for instance, the angle through which the erank shaft has turned)
determines completely the location of every moving part of the
engine. llowever, if the cylinder block is mounted on flexible
springs so that it can freely

Fra. 21, - Two degrees of freedom.

0 kX move in every direetion (as is
| the case in many modern
y automobiles), the system has

Fra. 22.—A beam has an infinite nuinber

of degrees of freedom. seven degrees of freedom,

namely the six pertaining to
the block as a rigid body in free space and the crank angle as the
seventh coordinate.

A completely flexible system has an infinite numnber of degrees
of freedom. Consider, for example, a flexible beam on two sup-
ports. By a suitable loading it is possible to bend this beam into
a curve of any shape (Fig. 22). The description of this curve
requires a function y = f(z), which is equivalent to an infinite
number of numbers. To each location z along the beam, any
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deflection y can be given independent of the position of the other
particles of the beam (within the limits of strength of the beam)
and thus complete determination of the position requires as
many values of y as there are points along the beam. As was
the case in Fig. 21, the y = f(x) is not the only set of numbers
that can be taken to definc the position. Another possible way
of determining the deflection curve is by specifying the values
of all its Fourier coefficients a, and b, [Eq. (11), page 21}, which
again are infinite in number.

9. Derivation of the Differential Equation.—Consider a
mass m suspended from a rigid ceiling by means of a spring,
as shown in Ifig. 23. The “stiffness” of the spring is denoted by
its ‘“‘spring constant’ k, which by defini-
tion is the number of pounds tension neces-
sary to cxtend the spring 1 in. Between
the mass and the rigid wall there is also
an oil or air dashpot mechanism. This is
c Ipo sinwt Dot supposed to transmit any force to the

A

mass as long as it is at rest, but as soon as
the mass moves, the “damping force” of
Y m  ——4—r— the dashpot is ¢t or cdr/dt, i.c., propor-
Ix tional to the velocity and directed opposite

to it. The quantity ¢ is known as the

Fra. 23.—The ;umh_ damping constant or more at length as the
mental  single-degree-of- cocfficient of viscous damping.
frecdom system.

The damping occurring in actual me-
chanical systems does not always follow a law so simple as this
ci-relation; more complicated cases often arise. Then, however,
the mathematical theory becomes very involved (see Chap. VIII,
pages 130 and 435), whereas with ““viscous’”’ damping the analysis
is comparatively simple.

Let an external alternating force P, sin wt be acting on the mass,
produced by some mechanism which we need not specify in detail.
For a mental picture assume that this force is brought about by
somebody pushing and pulling on the mass by hand.

The problem consists in calculating the motions of the mass m,
due to this external force. Or, in other words, if x be the distance
between any instantaneous position of the mass during its motion
and the equilibrium position, we have to find z as a function of
time. The ‘“equation of motion,” which we are about to derive,
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is nothing but a mathematical expression of Newton’s second law,
Force = mass X acceleration

All forces acting on the mass will be considered positive when
acting downward and negative when acting upward.

The spring force has the magnitude kr, since it is zero when
there is no extension . When & = 1 in., the spring foree is
k 1b. by definition, and consequently the spring force for any
other value of x (in inches) is kr (in pounds), beeause the spring
follows Hooke’s law of proportionality between foree and
extension.

The sign of the spring force is negative, because the spring
pulls upward on the Mass \\11@11 the dis dlsplacomcni is :lownu‘md or
{he spring foree is negative “when « is positive. Thus The spring
foree is expressed by —kur.

The damping foree acting on the mass is also negative, being
—c&, because, since it is directed against the veloeity & it aets
upward (negative) while & is directed downirard (positive).  The
three downward forees acting on the mass are

—kx — c& + Py sin wt
Newton’s law gives
2
m((;tf = mi¢ = —kx — ¢t + Py sin wl,
or
mi + ci + kxr = Py sin wl (12)

This very important equation* is known as the differential
equation of motion of a single-degrec-of-freedom system. The four
terms in Iq. (12) are the inertia force, the damping force, the
spring foree, and the external force.

Before proceeding to a calculation of z from Iq. (12), 7.e., to
a solution of the differential equation, it is well to consider some
other problems that will lead to the same equation.

* In the derivation, the effeet of gravity has been omitted.  The ampli-
tude z was measured from the “equilibrium position,” 7.e., from the position
where the downward force mg is held in equilibrium by an upward spring
force k(8 being the deflection of the spring due to gravity). Tt would have
been possible to measure z; from the position of the unstressed spring, so
that 2, = z + 5. In Eq. (12), then, £ must be replaced by z;, and on the
right-hand side a force mg must be added. This leads to the same result
12).
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10. Other Cases.—Figure 24 represents a disk of moment of
inertia I attached to a shaft of torsional stiffness k, defined as
the torque in inch-pounds nccessary to produce 1 radian twist at
the disk. Consider the twisting motion of the disk under the
influence of an externally applied torque 7 sin wf. This again
is a one-degree-of-freedom problem since the torsional displace-
ment of the disk from its equilibrium position can be expressed
by a single quantity, the angle ¢. Newton’s law for a rotating

body states that

Torque = moment of inertia X angular
acceleration
d?p

k = [—0
r de?

=Ip
As in the previous problem there are three
L] torques acting on the disk: the spring torque,
adl damping torque, and external torque. The
f;;/ o oot spring torque is —ky, where ¢ is measured in
i, 24— The tor. Tadians. The negative sign is evident for the
sional one-degree-of- same reason that the spring force in the pre-
freedom system. vious case was —kr. The damping torque
is —c¢, caused by a dashpot mechanism not shown in the figure.
The “damping constant’’ ¢ in this problem is the torque on the disk
caused by an angular speed of rotation of 1 radian per second.
The external torque is T’ sin wt, so that Newton’s law leads to
the differential equation
I+ cp + ko = Tosinwt (12a) g0 ——AA—;
which has the same form as |,
Eq. (12). 1
As a third example, consider ot
an electric circuit with an
alternating-current generator,
a condenser C, resistance R, and
inductance I all in series. Instead of Newton’s law, use the rela-
tion that the instantancous voltage of the generator ¢ = E,sin «t is
equal to the sum of the three voltages across C, R, and L. Let
i be the instantaneous value of the current in the circuit in the
direction indicated in Fig. 25. According to Ohm’s law, the
voltage across the resistance is V3 — V, = Ri. The voltage

across the inductanceis V; — V3 = L‘—;—;- For the condenser, the

F1a. 25.—The electrical single-degree-of-
freedom cireuit.
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relation @ = CV holds, where @ is the charge, C the capacitance,
and V the voltage. The charge Q can be expressed in terms of 2,
as follows. If the current ¢ flows during a time element dt, the
quantity of clectricity transported through the circuit is 7dt.
This does not flow through the condenser but merely increases its
charge so that
dQ = vdt.*
Hence
P = ’f/(f =Q or Q= fit

To show that this electrie cireuit behaves in the same manner
as the vibrating mass of Fig. 23 it is better to work with the
charge @ rather than with the more familiar current ¢. The
various voltage drops can be written

. (
1’71 - 1 9 = (),
, .o de (l"() Y
‘2 - ‘ 3 L(”' = !/ ({fﬁ - I/(é
Vi = Ve = Ri = B~ 1@
dt

As the sum of these three voltage drops must equal the generator
voltage, the differential equation is

LQ + ]{Q + fle = [4, sin wt (12b)

which is of exactly the same form as Iiq. (12).

Therefore, the linear, torsional, and electrieal cases thus far
discussed all lead to the same differential equation.  The trans-
lation from one case to another follows directly from the table
shown on page 40.

All the mechaunical statements made have their electrical ana-
logues and wvice versa.  For example, it was stated that “the
voltage across the inductance L is LZ;-” In mechanical language

. dy
this would be expressed as ‘“the force of the mass m is mJt—o”

A mechanical statement would be “The energy stored in the
* The letter ¢ unfortunately is dotted. To avoid confusion it is agreed

that i shall mean the current itself and that for its differential coefficient
the Leibnitz notation di/dt will be used.
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mass is 1gmp2.”
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The electrical analogue is ““The energy stored
in the inductance is }4L72.”

Linear Torsional Electrical

Mass m Moment  of I Inductance L
inertia

Stifiness k Torsional k 1/capacitance 1/C
stiffness

Damping c Torsional c Resistance R
damping

Impressed Py sin wt | Impressed Ty sin wt | Impressed E,sin ot

force torque voltage

Displacement z Angular  dis- ¢ Condenser Q
placement charge

Velocity = v | Angular - Current Q=1
veloeity

Nor are these three cases the only ones that are determined
by Kq. (12). Any system with inertia, elasticity, and damping
— proportional to the velocity, for
which the displacements can be
described by a single quantity,
A belongs to this class. Tor ex-
ample, consider two disks of
moment of inertia I, and I,
1, joined by a shaft of torsional
stiffness k in.-1b./radian (Fig. 26).
L] On the first disk the torque T,
Fia. 26.—Torsional vibrations of two sin wf is made to act, while there

disks on an elastic shaft. . . .

is a damping with constant ¢,
proportional to the twist in the shaft. What will be the motion?
There are two disks, each of which can assume an angular
position independent of the other by twisting the shaft.
Apparently, therefore, this is a ‘‘two-degree-of-freedom”’
system. However, the quantity in which the engineer is
most interested is the angle of twist of the shaft, and it
is possible to express the motion in terms of this quantity only.
Let ¢1 and ¢; be the angular displacements of the two disks, then
¢1 — @3 is the shaft twist, k(¢; — @) is the shaft torque, and
c(¢1 — ¢2) is the damping torque. Apply Newton’s law to the
first disk,

Tsinart

7,
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Tosin wt = Ligi+ k(o1 — ¢2) + c(é1 — ¢2)
and to the second disk,
0 = Iops + k(o — 1) + c(é2 — ¢1)

Divide the first equation by I, the second by I., and subtract
the results from cach other:

T, . N . k k
TTO sin wt = (¢1 —~ ¢2) + (’[l' + 12)(901 - @) +

c c\,. .
(i‘l + ]‘2)(‘/’1 — ¢2)
Call the twist angle ¢; — ¢2 = ¢, and multiply the whole equa-
tion by 1)12/’(11 + 12),

LI, . I.T,
R . By o= . tEN0
11+12\I/+c¢+ ¥ i
giving again an equation of the form (12). Of course, this equa-
tion, when solved, tells us only about the twist in the shaft or
about the relative motion of the two disks with respeet to each
other. Noinformation canbe

- sin wt (12¢)

Tsinat
gained from it as to the mo-
tions of the disks individually. 6
A variant of Fig. 26 isshown a
in Iig. 27, in the shaft of — k =

which is inserted a gear-and- =
pinion system. Let the disks :
again have the moments of i E
inertia I; and I, and assume __‘
the gears (¢ and P to be with-
out any inertia whatsoever. 4
Also assume the gear teeth to Fia. 27.—Geared system which can ho
be Stiff, so that the torsional reduced to the system of Fig. 26.
flexibility is limited to the shafts k; and ka.  The gear ratio is n.
The differential equation for Fig. 27 could be derived from
Newton’s law directly, but suppose we reduce Fig. 27 to Fig. 26
by omitting the gears and replacing k., Is, and ¢ by other
“equivalent quantities” so that the differential equation (12¢)
can be applied.
In Fig. 26 the elasticity k£ can be determined experimentally
by clamping I. and applying a constant torque T to I,. This
causes I, to deflect through an angle ¢o, so that k = T4/ ..

/ P
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Repeat this experiment with Fig. 27, i.e., clamp I, and apply
Ty to I;. On account of the gears the torque in the shaft k, is
To/n, and the angle of twist of ks is therefore T'y/nk.. Since I
is clamped, this is the angle of rotation of the pinion . The
angle of the gear @ is n times smaller or To/n%,. Add to this the
angle T/k; for the shaft k£, and we have the angular displace-
ment of I;. Thus the equivalent k is

1 o 1 1
(Pl

Now consider the inertia. The inertia I» in Fig. 26 could be
determined by the following hypothetical experiment. Give
I, (or the whole shaft k) a constant angular acceleration «. Then
the shaft at the seetion A would experience a torque Ty = al,
coming from the right. Thus, I = Ty/a. Repeat this experi-
ment in Fig. 27. The acceleration « in ki and ¢ becomes na
in k;. Hence, the torque in k, is nal,. This is also the torque
at the pinion P. The gear (¢ makes it n times larger, so that the
torque at A is n’al, and the equivalent of I, in the gearless
system is n®[,. In general, therefore, a geared system (such as
shown in Iig. 27) can be reduced to an equivalent non-geared
system (Fig. 26) by the following rule:

Divide the system into separate parts each of which has the
same speed within itself. (In Tig. 27 there are two such parts
but in general there may be several.) Choose one of these
parts as the base and assign numbers n to each of the other
parts so that n is the speed ratio with respect to the base. (n > 1
for speeds higher than the base speed; the n of the base is unity.)
Then, remove all gears and multiply all spring constants k and all
inertias I by the factors n® The differential equation of the
reduced gearless system is then the same as that of the original
geared construction.

The last example to be considered resembles the first one in
many respects and yet is different. Instead of having the force
P, sin wt acting on the mass of Fig. 23, the upper end or ceiling
A of the spring is made to move up and down with an ampli-
tude ao, the motion of A being determined by ao sin wt. It will
be shown that this motion of the top of the spring is completely
equivalent to a force on the suspended mass.

Again let the downward displacement of the mass be x; then,
since the top of the spring moves as a, sin wt, the spring extension
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at any time will be # — ao sin wf. The spring force is thus
—k(z — ao sin wt) and the damping force is —c(f — agw €os wt).
Newton’s law gives
mi + k(x — ap sin wt) + ¢(& — aw cos wt) = 0

or

mi + ¢t + kxr = kao sin wt + caw cos wt
By IEq. (6), page 6, the sum of a sine and a cosine wave of the
same frequency is again a harmonie function, so that

mi 4 ci + ke = vV (kao)* + (caw)? sin (ot + ¢)  (12d)
Therefore, a motion of the top of the spring with ampli-
tude ay is equivalent to a forece on the mass with amplitude
vV (kao)* + (caow)®.  The expressions kay and cway in the radical
are the maxima of the spring force and damping force, while the
entire radical is the maximum value of the total force for the casc
where the mass is clamped, t.e., where the x-motion is prevented.
Ezample: I'ind the differential equation of the relative motion y between
the mass and the ceiling of Fig. 23, in which 2y = 0 and in which the ceiling
is moved harmonically up and down.
Y =& — dysin wl
Solution: We have by differentiation:

L=y + asin wt
&= A agw cos wl

&= — Quw? Sin wl

Substitute these into I, (12d):
my — maww? sin wt 4 ¢y 4+ cayw cos wt + Ly + kag sin wf
= kao sin wt + caww cos wt
or
my + ¢y + ky = maw? sin wt (12¢)

Thus the relative motion between the mass and the moving ceiling acts
in the same manner as the absolute motion of the mass with a ceiling at rest
and with a force of amplitude maow? acting on the mass. The right-hand
side of (12¢) is the inertia force of the mass if it were moving at amplitude
ay; henee, it can be considered as the force that has to be exerted at the top
of the spring if the spring is made stiff, i.e., if the y-motion is prevented.

11, Free Vibrations without Damping.—Before developing
a solution of the general equation (12), it is useful to consider
first some important simplified cases. If there is no external or
impressed foree P sin wt and no damping (¢ = 0), the expression
(12) reduces to
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mi + kzx =0 (13)
or
k

i= —=z
m

or, in words: The deflection x ts such a function of the time that when
1t 18 differentiated twice, the same function 1is again obtained, multi-
plied by a negative constant. lven without a knowledge of
differential equations, we may remember that such functions
exist, viz., sines and cosines, and a trial reveals that sin tv/k/m

and cos tv/k/m are actually solutions of (13). The most general
form in which the solution of (13) can be written is

. k &
x = (C; sin t\/7—; + C, cos t\/?% (14)

where C; and C; are arbitrary constants. That (14) is a solution
of (13) can be verified easily by differentiating (14) twice and then
substituting in (13); that there are no solutions of (13) other than
(14) need not be proved here: it is true and may be taken for
granted.

Let us now interpret (14) physically. First, it is seen that the
result as it stands is very indefinite; the constants C; and C, may
have any value we care to assign to them. But the problem
itself was never fully stated. The result (14) deseribes all the
motions the system of mass and spring is capable of executing.
One among others is the case for which C, = Cy = 0, giving
2 = 0, which means that the mass remains permanently at rest.

We now specify more definitely that the mass is pulled out of
its equilibrium position to x = x, and then released without
initial velocity. Measuring the time from the instant of release,
the two conditions are

Att =0, T = 2o and =0
The first condition substituted into (14) gives
l‘o=Cl‘0+Cz'1 or 02=I0

For the second condition, Eq. (14) must be differentiated first
and then we get

0=C1\[EI—C2,\/—TEO or C1=0
m m
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Substitution of these results in (14) leads to the specific solution
T = x4 COS !¢ /E 14

! \Nm (14a)

This represents an undamped vibration, one cycle of which

(Fig. 28). Denoting the time of a cycle or the period by T, we

thus have
r .
\g~ T=2% o T-= 27r\/’£ (15)

It is customary to denotc Vk/m by w,, called the “natural
circular frequency.” This value \v/k/m = w, is the angular

VNN
VAN VAN

)
il

)
[R— Y

F1s. 28.—Undamped free vibration starting from an initial displacement.

velocity of the rotating vector which represents the vibrating
motion (see page 4).
The reciprocal of T or the natural frequency f, is

1 1 Jk  wa
f""T*ﬂﬁ*ﬂ (16)

measured in cycles per second. Hence it follows that if m is
replaced by a mass twice as heavy, the vibration will be V2
times as slow as before. Also, if the spring is made twice as
weak, other things being equal, the vibration will be V2 times
as slow. On account of the absence of the impressed force
P, sin wt, this vibration is called a free vibration.

If we start with the assumption that the motion is harmonic,
the frequency can be calculated in a very simple manner from an
energy consideration. In the middle of a swing the mass has
considerable kinetic energy, whereas in either extreme position
it stands still for a moment and has no kinetic energy left. But
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then the spring is in a state of tension (or compression) and thus
has elastic energy stored in it. At any position between the
middle and the extreme, there is both elastic and kinetic energy,
the sum of which is constant since external foreces do no work on
the system. Consequently, the kinetic energy in the middle of a
stroke must be equal to the elastic energy in an extreme position.

We now proceed to calculate these energies. The spring force
is kz, and the work done on increasing the displacement by dr is
kx - dr. 'The potential or elastic energy in the spring when

stretched over a distance z is j(; “kr - de = 15kx%  The kinetic

energy at any instant is l4mw% Assume the motion to be

T = T sin i, then v = zyw cos wi. The potential energy in the

extreme position is Y4kx? and the kinetic energy in the ncutral

position, where the velocity is maximum, is gmvi,, = 1¢mwi.
Therefore,

from which w? = k/m, independent of the amplitude z,. This
“energy method” of calculating the frequency is of importance.
In Chaps. IV and VI, dealing with systems of greater complexity,
it will be seen that a frequency determination from the differential
equation often becomes so complicated as to be practically impos-
sible. In such cases a generalized energy method, known as the
method of Rayleigh, will lead to a result (sce pages 178-194).

The formula w, = Vk/m may be written in a somewhat
different form. The weight of the mass m is mg, and the deflec-
tion of the spring caused by this weight is mg/k. It is called the
static deflection &, or static sag of the spring under the weight.

8ot = "mk_g
Hence,
kg
m b
or
g
Wy = S; (17)

If &, is expressed in inches, g = 386 in./sec.?, and the
frequency is
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fa= V386 1 _ 3. 141 I 1 cycles per second
2r 6“

fn = 188, I—— cycles per minute (17a)

This relationship, which is very useful for quickly estimating
natural frequencies or critical speeds, is shown graphically in

Fig. 29.
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FiG. 29.—Curve representing Kq. (17a) for the natural frequency of an un-
damped, single-degree system.

12. Examples.--Consider some numerical examples of the
application of the fundamental formula (16).

1. A steel bar of 1 by !4 in. cross section is clamped solidly
in a vise at one end and carries a weight of 20 Ib. at the other end
(Fig. 30). (a) What is the fre-
quency of the vibration if the dis-
tance between the weight and the 7 — _“?‘:l
vise is 30 in.? (b) What percent-
age change is made in the frequency
by shortening the rod !4 in.?

a. The weight of the bar itself is 14 by 1 by 30 cu. in. X 0.28 Ib.
per cubic inch or roughly 4 1b. The particles of the bar near the
20-1b. weight at its end vibrate with practically the same ampli-
tude as that weight, whereas the particles near the clamped end
vibrate hardly at all. This is taken account of by adding a

Fiag. 30.
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fraction of the weight of the bar to the weight at its end. On
page 194 it is shown that approximately one-quarter of the weight
of the bar has to be thus added. Therefore the mass m in Eq.
(16) is 21/g = 21444 lb. in."! sec.2,

A force P at the end of a cantilever gives a deflection
6 = PP/3EI. The spring constant by definition is

k=P/s = 3EI/.

The moment of inertia of the section is I = 1{,bh® = 15,
(or 146, depending upon whether the vibrations take place in the
stiff or in the limber plane). The circular frequency is
N . 6«
W = \/'kn = 2i0 310(3 ;';18 0 _ 50.4 radians per second
The frequency f, = w,./27 = 8.0 eycles per second.

In case the bar vibrates in the direction of the weak side of the
section, I = 144, and f. becomes one-half its former value,
4.0 cycles per second.

b. The question regarding the change in
frequency due to a change in length can be
answered as follows. The spring constant &
is proportional to 1/I°, and the frequency
consequently is proportional to V1B = 1=
Shortening the bar by 1 per cent will raise the
frequency by 1!y per cent.  Thus the shorten-
ing of 14 in. will increase f, by 114 per cent.

2. As a sccond example consider a U-tube
filled with water (Fig. 31). Let the total length
of the water column be [, the tube cross section
be A, and the mass of water per cubic inch be

. _my. If the water oscillates back and forth,
tio‘,};“';’f"j"fiﬁﬂ?g the mass in motion is m; - A -1l In this
column in a U- problem there is no specific ‘‘spring,” but still
tube. the force of gravity tends to restore the water
level to an equilibrium position. Thus we have a “gravity
spring,” of which the spring constant by definition is the force
per unit deflection. Raise the level in one arm of the tube by
1 in., then it will fall in the other arm 1 in. This gives an
unbalanced weight of 2 in. water column, causing a force of
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(2m,A) - g, which is the spring constant. Therefore the fre-

quency is
o = \/Z _ [
m l

3. Consider the systems shown in Fig. 32, where a mass m
is suspended from two springs ki and k, in three apparently
different ways. However, the cases 32a and 320 are dynamieally
identical, because a downward

. . (a)
deflection of 1 in. creates an ...,

upward force of (k; + ko) Ib. %

in both cases. Thus the nat-
ural frequency of such systems

NNNNNNANY

is 2
\/kl + k, ’
W = o[

k?

For Fig. 32¢ the situation is
different. Let us pull down-

ward on the mass with a force  Yie. 32.—Three systems with com-

g . i pound springs, which are equivalent to

of 1 Ib. This force will be the system of Fig. 28. (@) and ()

transmitted througll both have “parallel” springs; (¢) has its

. . sy . Bbrings ‘‘in scries.”

springs in full strength. Their

respective elongations are 1/k; and 1/k., the total elongation

per pound being L1~ + IElM But, by definition, this is 1/k, the
1 2

/e

reciprocal of the combined spring constant. Hence,

Rule: The combined spring constant of scveral *“ parallel” springs
18 k = Zk,; for n springs ‘“in serics” the spring constant vs found
Jrom 1/k = 21/k,.

For example, if a given coil spring of stiffness k is cut in two
equal parts, each piece will have the stiffness 2k. (It takes
twice as much load to give to half the spring the same deflection
as to the whole spring.) Putting the two half springs in series,

1

. 1 1
we find, indeed, i = ok + %
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It is of interest to note that this rule for compounding spring
constants is exactly the same as that for finding the total conduect-
ance of series and parallel eircuits in eleetrical engineering.

4. The last example to be discussed in this section is illustrated
in Fig. 33. A massless, inflexible beam is hinged at one end and

7/ carries 4 mass m at the other
ugw end. At a distance a from
e the hinge there is a spring

+ Q of stiffness k. What is the

A natural frequency of vibration
Fra. 33.—The spring £ as ﬂho“n is of this Sy:"t(lnl?

cquivalent to a fictitious spring of We shall consider the vibra-
stiffness k(a/0)? placed at the mass m. tions to be so small that the
mass moves sensibly up and downonly. In deriving the equation
of motion on page 35, the spring force on the mass was cquated to
m#. In this case also we have {o ask: What force has to be
exerted on the mass in order to defleet it 1 in? Let that force
be F. Then from static equilibrium the force in the spring is

1

0 F. Since the deflection at the mass is 1 in., it is ¢/ in. at

. . . a
the spring. This leads to a spring force T k. Hence

_l_F={Lk or It':(fl)zk
a l

Therefore, the effective spring constant at the massis k - (a/l)2
The effect of the stiffness of the spring is thus seen to diminish
very fast when it is shifted to the left.

The frequency is
1
a [k
o 1\/%

With the energy method of page 46 the calculation is as fol-
lows: Let the motion of the mass be £ = z4 sin w,t, where w, is as
yet unknown. The amplitude of motion at the spring then is
xoa/l and the potential energy in the spring is ' ,h8% = !4k (xea/l)2
The kinetic energy of the mass is ! §my? = } smwird. Equating
these two, the amplitude z, drops out and

_k oa®
m [?
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Some of the problems at the end of this chapter can be solved
more easily with the energy method than by a direct application
of the formula involving \/k/m.

13. Free Vibrations with Viscous Damping.—It was seen
that an undamped free vibration persists forever [liq. (14) or
(14a)]. Kvidently this never occurs in nature; all free vibrations
die down after a time. Therefore consider Eq. (12) with the
damping term ci included, viz.:

mié + ¢t + kx =0 (18)

The term “viscous damping” is usually associated with the
expression ci since it represents fairly well the conditions of
damping due to the viscosity of the oil in a dashpot. Other
types of damping exist and will be discussed later (page 436).
The solution of (18) cannot be found as simply as that of (13).
However, if we consider the function x = ¢*t, where ¢ is the time
and s an unknown constant, it is seen that upon differentia-
tion the same function results, but multiplied by a constant.
This function, substituted in (18) permits us to divide by ¢** and
leads to an algebraic equation instead of a differential equation,
which is a great simplification. Thus we assume that the
solution is ¢**.  With this assumption, Iq. (18) becomes

(ms* + ¢s + k)et =0 (19)

If (19) can be satisfied, our assumption x = ¢ for the solution
is correct. Since 13q. (19) is a quadratic in s, there are two
values s; and s, that will make the left side of (19) equal to zero

¢ c\* k
f12= gy \/(Zﬁ) Tm (20)

so that e! and ent are both solutions of Iiq. (18). The most
general solution is

r = Clc’*‘ + CzC”t (21)

where C, and C; are arbitrary constants.

In discussing the physical significance of this equation two
cases have to be distinguished, depending upon whether the
expressions for s in Eq. (20) are real or complex. Clearly for
(c/2m)? > k/m, the expression under the radical is positive so
that both values for s are real. Moreover, they are both negative
because the square root is smaller than the first term c/2m.
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Thus (21) describes a solution consisting of the sum of two
decreasing exponential curves, as shown in Fig. 34. As a
representative example, the case C; =1, C; = —2 is drawn
as a dashed line.

Without analyzing any special cases by determining their
values for 'y and C,, the figure shows that the motion is no
“vibration’” but rather a creeping back to the equilibrium
position. This is due to the fact that for (¢/2m)? > k/m the
damping c is extremely large. For smaller values of ¢, which
pertain to more practical cases, (20) gives complex values for s,

-1
Fia. 34.—Motions of a single-degree system with damping greater than the
critical damping c,.
and the solution (21), as written, becomes meaningless. The
damping ¢ at which this transition occurs is called the critical
damping c.:

o = 2m \/fn — o/ = 2ma, 22)

In case the damping is less than this, (20) can better be

written as
c VAP
= —— — == 2
812 2m +J \/m <2m) (20a)

where j = v/ —=1. Though the radical is now a real number
both values of s contain j and consequently the solution (21)
contains terms of the form ¢!, which have to be interpreted by
means of Eq. (8a), page 13.
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With (20a) and (8a), the solution (21) becomes

z = e"z%‘[Cl(cos gt + j sin gt) + C2(cos gt — j sin qt)]
= ¢~ 2 (C1 + Ca) cos gt + (jC. — jCa) sin qt] (23)

Since C, and C, were arbitrary constants, (C; + C2) and
(jC1 — jC») are also arbitrary, so that for simplicity we may write
them C{ and Cj. Thus

r=ce "2%;‘((7{ cos qt + Cj sin qt)

o (24a, b)
where = .l-= .
q m 4m?
114
S~
S~
\\ 8
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F16. 35.—Free vibration of a system with damping less than the critical damping
of Kq. (22).

This is the solution for a damping smaller than ¢.. It consists
of two factors, the first a decreasing exponential (Fig. 34) and
the second a sine wave. 'The combined result is a “damped
sine wave,” lying in the space between the exponential curve
and its mirrored image (Fig. 35). The smaller the damping
constant ¢, the flatter will be the exponential curve and the more
cycles it will take for the vibrations to die down.

The rate of this dying down is of interest and can be calcu-
lated in a simple manner by considering any two consceutive
maxima of the curve: A-B, B-C, ete. During the time interval
between two such maxima, 7.c., during 2x/q sec., the amplitude
of the vibration (which at these maxima practically coincides

. I .y ~°. (,+2_') .
with ¢™2n") diminishes from e72m" to e72m\""7 /. The latter of
these two expressions is seen to be equal to the first one multiplied

nc
by the constant factor e~ m¢, which factor naturally is smaller
than unity. It is seen that this factor is the same for any two
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consecutive maxima, independent of the amplitude of vibration
or of the time. The ratio between two consecutive maxima is
constant; the amplitudes decrease in a geometric series.

If z, is the nth maximum amplitude during a vibration and z,, is the
next maximum, then we have seen that x,,, = r.e "/m or also ‘log
(rn/Euy1) = wc/mq = 8. This quantity & is known as the logarithmic

deerement,  For small damping we have
. /e \?
5 =" = 2;{;/\/1 - (‘_) - 2mC (25)

mq o

and also . .1/2. = 678 = 1 — 3, so that

=5 =2 (25a)

The frequency of the vibration is seen to diminish with increas-
ing damping according to (24b), which if written in a dimension-
less form with the aid of (22) becomes

- )

This relation is plotted in Fig. 36 where the ordinate ¢/w, is the
ratio of the damped to the undamped natural frequency, while
the abscissa is the ratio of the

= actual to the critical damping
} constant. The figure is a circle;

3 naturally for critical damping
v (¢ = c.) the natural frequency ¢

o s 1 is zero. "1‘he diagram is drawn

c/c" — for negative values of ¢ as well,

Fia. 36.—The natural frequency the [‘neilmng of '\\'hlch will be
of a damped single-degree-of-freedom OX[)]:IIIICd later in Chap. VII
system as a function of the damp- ;
ing: K. (245). (pa;.;c 347).  On account of‘the

horizontal tangent of the ecircle
at ¢ = 0, the natural frequency is practically constant and equal

to v/k/m for all technical values of the damping (¢/c. < 0.2).
The undamped free vibration, being a harmonic motion, can
be represented by a rotating vector, the end point of which
describes a circle. With the present case of damped motion this
graphical picture still holds, with the exception that the ampli-
tude decreases with time. Thus, while revolving, the vector
shrinks at a rate proportional to its length, giving a geometric
series diminution. The end point of this vector describes a
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“logarithmic spiral” (Fig. 37). The amplitudes of a diagram
like Fig. 35 can be derived from Fig. 37 by taking the horizontal
projection of the vector, of which the end point lies on the spiral
and which rotates with the uniform angular velocity ¢ [I5q. (24)].

A special case of the foregoing oceurs when the mass or inertia
of the system is negligibly small, so that there remain only
a spring and a dashpot. We want to know the motion of the

|

Fi6. 37.—Vector diagram of a damped free vibration.

(massless) dashpot piston when it is released from an initial deflec-
tion xro. The differential equation is

dx
C(‘I;i + kl“ =0

which can be solved directly by writing

cdr

k z

—dt

c (dx c
t = —Ef-x— = ——E(logx + const.)
At t = 0 the deflection z = z, so that the constant is —log z.
Hence ‘

k

. log x:f and z = roe—ét, (26)
0

t = %
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a relation represented by one of the solid curves of Fig. 34.
Evidently the exponent of the e-function is a dimensionless quan-
tity, so that ¢/k must have the dimension of a time. It is known
as the relaxation time, which, by definition, is the time in which
the deflection z, of the system ‘‘relaxes” to 1/eth part of its
original value. On page 444 we shall have occasion to use this
concept.

Ezample: In the system shown in Fig. 33, page 50, the mass weighs 1 oz.;
the spring has a stiffness of 10 Ib. per inch; l= 4in.;a=b = 2in. More-
over, a dashpot mechanism is attached to the mid-point of the beam, 7.e.,
to the same point where the spring is fastened to it. The dashpot produces
a force of 0.01 1b. for a velocity of 1 in. per second.

a. What is the rate of decay of the free vibrations?

b. What would be the critical damping in the dashpot?

c. Find the relaxation time in the case of critical damping.

Solution: Let us first answer question (b) by means of Eq. (22). The
undamped natural frequency is w, = v/k/m. On page 50 we found that
the cquivalent spring constant of Fig. 33 is ka?/l? or k/4 = 2.5 1b. per inch.
Thus

ws = V2.5 X 16 X 386 = 124 radians per second

The critical damping constant of the system (i.e., the eritical damping of an
imaginary dashpot at the mass) is, by Eq. (22),

1 on .
2 X 16 % 386 X 124 = 0.041 1b. /in. /sec.
Since the dashpot is actually located at the mid-point of the beam, the dash-
pot must have a constant which is four times as great, for the same reason
that the spring there must be taken four times as stiff as the “equivalent”’

spring (see page 50). Thus we find for the answer to question (b)
c. = 0.164 1b./in. /sec.

a. The rate of decay is to be foutd from Eq. (24). First it is noted that
the actual damping is one-sixteenth of critical, so that by Fig. 36 the differ-

[
ence hetween ¢ and w, is negligible. The vibrations decrease as e 2m' and
for a full eycle (two consecutive deviations to the same side)
1 2 2# 2r 1
l—-T—-]—;»v‘:’—”—m—%Sec.

The damping constant ¢ is that at the mass, which is four times smaller
than that at the dashpot: ¢ = 0.01/4. Thus the ratio between consecutive
amplitudes is

z -c _0.01X16 X 386
_;L‘ =¢ 2m = ¢ 4X2X20 = ¢-0386 = (.68
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Question (c) requires the calculation of the “relaxation time,” which was
defined only for a system without mass. Assuming the mass absent, the
interaction of the spring and the dashpot alone gives a relaxation time

¢ _0.164
trelnx = ’L: = "‘16“ = 0.0164 sec.

The mass in the system will cause the motion to slow down somewhat. For
this case it is noted that the two roots, Iiq. (20a), are equal, which makes
the solution of the differential equation too difficult to be treated here.
Readers familiar with this theory may calculate the relaxation time with the
mass present and find the answer 0.017 sce., slightly larger than without the
mass.

14. Forced Vibrations without Damping.—Another impor-
tant particular case of Kq. (12) is the one where the damping
term cz is made zero, while everything else is retained:

mi + kxr = P, sin wt (27)

It is reasonable to suspect that a function r = ry sin wf may
satisfy this equation. Indeed, on substitution of this function
Eq. (27) becomes

—Mmw?ro sin wt + kxo sin wf = Py sin wt
which can be divided throughout by sin wf, so that

2ok — mw?) = P,

or
_ . Po Pk Pk
T e et T 1L — metk 1 — (w/wn)?
and
Po/k .
= 1—:‘(2‘;/*/:);)2 - sin wi (28)

is a solution of (27). The expression Po/k in the numerator has
a simple physical significance: it is the static deflection of the
spring under the (constant) load P,. We therefore write

f=xu

and with this the solution becomes

z_ v
T 1 — (w/wn)?
Although it is true that this is “a’ solution of (27), it cannot be

the most general solution, which must contain two integration
constants. It can be easily verified, by substitution, that

- gin wt (28a)
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ey

= i Jt“_,_,, .
z = C}sin wat + C3 o3 wpt + T~ (w/a)? sin wt  (29)

satisfics (27). The first two terms are the undamped free vibra-
tion; the third term is the undamped forced vibration. This
is a manifestation of a general mathematical property of differ-
ential equations of this type, as stated in the following theorem:

Theorem: ““ The general solution (29) of the complete differential
equation (27) is the sum of the general solution (14) of the
equation with zero right-hand member (13), and a particular
solution (28) of the complete equation (27).”

It is seen that the first two terms of (29) (the free vibration)
form a sine wave having the free or natural frequency w,, whereas
the forced vibration (the third term) is a wave having the forced
frequency w. Since we are at liberty to make « what we please,
it is clear that » and w, are entirely independent of each other.
The solution (29), being the sum of two sine waves of different
frequencies, is itself not a harmonic motion (see Fig. 44¢, page 71).

It is of interest now to examine more closely the implications
of the result (28a). Kvidently x/x,, is a sine wave with an ampli-
tude 1/[1 — (w/w.)?*, depending on the frequency ratio w/wy,.
Tigure 38 represents this relation.

From formula (28a) it follows immediately that for w/w, <1
the amplitudes or ordinates are positive, while for w/w, > 1 they
are negative. In order to understand the meaning of these nega-
tive amplitudes we return to Iiq. (27) and the assumption
xro sin wt for the solution made immediately thereafter. It
appears that in the region w/w, > 1 the results for x, are negative.
But we can write

—xp sin wt = 4+, sin (wf + 180 deg.)

which shows that a ‘‘negative amplitude” is equivalent to a
positive amplitude of a wave which is merely 180 deg. out of
phase with (in opposition to) the original wave. Physically
this means that, while for w/w, < 1 force and motion are in
phase, they are in opposition for w/w, > 1. Whereas for
w/w, < 1 the mass is below the equilibrium position when the
force pushes downward, we find that for w/w., > 1 the mass
is above the equilibrium position while the force is pushing
downward.
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Usually this phase relation is considered as of slight interest,
while the amplitude is vitally important; therefore, the negative
sign may be disregarded and the dashed line in Fig. 38 appears.
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F1a. 38.—Resonance diagram for the absolute motion of a system of which
the mass is subjected to a force of constant amplitude and variable frequency;
Eq. (28). This diagram is different from Fig. 40.

There are three important points, A, B, and C in Fig. 38, at
which it is possible to deduce the value of the ordinate from
purely physical reasoning. First consider the point A4, very
close to w = 0; the forced frequency is extremely slow, and the
mass will be deflected by the force to the amount of its static
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deflection only. This is physically clear, and thus the ampli-
tudes of the curve near the point A must be nearly equal to
mity.  On the other hand, for very high frequencies w/w, > 1,
the force moves up and down so fast that the mass simply has no
time to follow, and the amplitude is very small (point B).

But the most interesting thing happens at point C, where the
amplitude becomes infinitely large. This can also be understood
physically. At w/w, = 1, the forced frequency coincides exactly
with the natural frequency. The force then can push the mass
always at the right time in the right direction, and the ampli-
tude can increase indefinitely. It is the case of a pendulum
which is pushed slightly in the direction of its motion every time
it swings: a comparatively small force can make the amplitude
very large. 'This important phenomenon is known as ‘‘reso-
nance,” and the natural frequency is sometimes called also the

| m—

“‘resonant frequency.”
il
L
= ; ray

Fra. 39.—Unbalanced motor giving a forece mw?ao leading to the resonance
diagram of Fig. 40.

Thus far the theory has dealt with an impressed force of which
the amplitude P, is independent of the frequency w. Another
technically important case is where Py is proportional to w*.  Tor
example, Fig. 39 represents a beam on two supports and earrying
an unbalanced motor in the middle. While running, the motor
axle experiences a rotating centrifugal force mw?r, where m; is
the mass of the unbalance and r its distance from the center of
the shaft. This rotating foree can be resolved into a vertical
component mw?r sin wf and a horizontal component mw?r cos wt.
Assume that the beam is very stiff against horizontal displace-
ments but not so stiff against vertical ones. Then we have a
single-degree-of-freedom system with a mass m (the motor),
and a spring k = 48EI/I® (the beam), acted upon by a vertical
disturbing force of amplitude m,w?r, which is dependent on the
frequency.

Another example of this type was discussed on page 43.
There it was seen that the “relative motion” y between the mass
and the support of Fig. 23 (where the support moves as a, sin wf
and the force P, is absent) acts as if a force maow? were acting
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on the mass. Incidentally, this case is of great importance
since most vibration-recording instruments (vibrographs) are
built on this principle (sce page 75).

The resonance curve for the two cases just mentioned can be
found directly from Iq. (28) by substituting mw*a, for I’y.  Then

_meta/k (/e
Yo = I w/wn ~ T = (0/wn)?
or
Yo _ _(@/wn)?
ay ~ 1 = (fwn)? (30)
7 i B
) NN U N {1 O S §
l
5 } _ —]
4 f— — |-— -
. l
S I
X3 f— | — )
| \
. N ]
| ™ 2
, _____7__’_____r LI
A |
o0 1 2 3

w/w,

F1a. 40.—Resonance diagram of Eq. (30) showing (a) the relative motion of a
system in which the end of the spring is subjected to an alternating motion
of constant amplitude ao, and (») the absolute motion of a system in which the
mass experiences a force of variable amplitude mw?ao.

It is to be remembered that a, is the amplitude of motion at
the top of the spring, while y, is the relative motion between the
mass and the top of the spring, or the extension of the spring,
which is the same thing. The ordinates of the three points 4,
B, and C of Tig. 40, representing (30), can again be understood
physically. At A the frequency w is nearly zero; the top of the
spring is moved up and down at a very slow rate; the mass follows
this motion and the spring does not extend: yo = 0. At B the
motion of the top of the spring is very rapid, so that the mass
cannot follow and stands still in space. Then the relative motion
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is equal to the motion of the top and yo/a; = 1. At the point C
there is resonance, as before, so that the extensions of the spring
become theoretically infinitely large.

This last result is obviously not in agreement with actual
observations, and it is necessary therefore to consider damping,
which is done in Sec. 15.

Ezxample: A motor generator set consists of a 25-cycle induction motor
coupled to a direct-current generator. The set is rated at 200 hp. and 725
r.p.m. The connecting shaft has a diameter of 33{¢ in. and a length of 14 in.
The moment of inertia of the motor rotor is 150 lb. in. see.? and that of the
generator is 600 1b. in. sec.2.  The driving torque of the induction motor is
not constant (see page 90) but varics between zcro and twice the full-load
torque T’y at twice the frequency of the current, i.e., 50 cycles per second,

thus:
To + Ty sin (2w - 50t)

while the counter torque of the direct-current generator is constant in time.
FFind the maximum stress in the shaft at full load.
Solution: First find the torsional spring constant of the shaft.

o gt
t()rque (II” = -732 .= - e = 10.20 X 10%1n. ”)./I':l(l.
angle l l ]4

The system is idealized in Fig. 26 (page 40) and its differential equation is
(12¢).  'The natural circular frequency is

10.2 X 10% X 750 _ .
Wy = \/ 1, I» \/ 150 X 600 290 radians per second

I +1,

The foreed frequency is 50 eyeles per second, or

w = 2rf = 314 radians per sceond

Apparently the system is excited at 3145499 = 1.08 times resonance, so that
by Fig. 38 or Eq. (28) the effect of the torque is magnified by a factor

1

—nge; = 0.0

1 — (1.08)® 6

From Eq. (12¢) we see that the torque in question is 6994547, or four-

fifths of the amplitude of the alternating component of the torque. As

stated, the torque consists of a steady part 7 and an alternating part of the
same amplitude 7.  The maximum torque in the shaft thus is

Ty 4+ 6.0 X 25T, = 5.80T,

The steady torque T’ can be found from the speed and horse power thus:

_ hp. _ 200 X 33,000 - .
Ta = —‘:,— = "ﬁg—x 2'—"“ 1,450 ft. 1b. 17,400 n. lb.



DAMPED FORCED VIBRATIONS 63

The shear stress in the shaft due to this steady torque is

_ Ty TwWd/2 _ . To _5X17,400 -
S, = T, T adyas T 5? = @R 2,500 1b. /in.

On account of the proximity to resonance, this stress is multiplied by
5.80, so that the total maximum shear stress is 14,500 1b./in.2. The “fatigue
strength’”’ of a steel, as listed, is derived from a tensile test, where the tensile
stress is twice the shear stress.  The fatigue limit of usual shaft steels is
lower than 29,000 1b./in.2, so that the shaft is expected to fail.  The design
can be improved by reducing the shaft diameter to 215 in. Then the
natural frequency becomes 171 radians per second and the magnification
factor 0.42. The new maximum tensile stress becomes 6,200 1h./in.2,
which is safe.

15. Forced Vibrations with Viscous Damping.—I'inally, the
complete Eq. (12),

mi + ¢t + kx = P, sin wt (12)

will be considered. It can be verified that the theorem of page
58 holds here also. According to that theorem, the complete
solution of (12) consists of the sum of the complete solution of
the Iiq. (18), which is (12) with the right-hand side zero, and a
particular solution of the whole I£q. (12). But the solution of
the equation with the zero right-hand side has already been
obtained (Eq. 24), so that

z = e_m‘(Cl sin g¢ + C» cos ¢t) + particular solution (31)

It is therefore necessary merely to find the particular solution.
Analogous to the case of Sec. 14, we might assume z = x, sin wt,
but then the term ci would give cos wf, so that this assumption
is evidently incorrect. It is possible to assume

z = A sin wt + B cos wt

and to substitute this in (12). In this case, only terms with
sin wf and cos wt occur, but there are fwo constants A and B at
our disposal. By solving for A and B algebraically, a particular
solution can be obtained. Here we shall derive the result in a
somewhat different manner, in order to give a clearer physical
understanding of the phenomenon.

Let it be assumed that the solution is a sine wave with the
forced frequency w. Then all the four forces of Eq. (12) are sine
waves of this frequency and can be represented by vectors.



64

ONE DEGREE OF FREEDOM

A differentiation is equivalent to a multiplication of the length
of the vector with w and a forward rotation through 90 deg.,
as explained on page 4.

Let the displacement be represented by z = x4 sin (et — @),
where ) and ¢ are as yet unknown, and draw this displacement

*XO

2

<

(752

kX,

Fra. 41.

gram from which Fig.
42 can be deduced.

as a vertical upward vector (dotted) in the
diagram of Fig. 41. The spring force —kz
has an amplitude kx, and is dirceted down-
ward in the diagram. The damping force
—ci& has an amplitude cwry and is 90 deg.
ahead of the spring force. The inertia force
—mdi is 90 deg. ahead of the damping force
and has an amplitude mw?r,. The external
force P, sin wt is ¢ deg. ahead of the dis-
placement ry sin (wt — ¢). Thus the com-
plete diagram in Fig. 41 is obtained (xy and
¢ being unknown).

Newton’s law [or Eq. (12), which is the
same thing] requires that the sum of the
four forces be zero at all times. This means
that the geometric sum of the four vectors
in Fig. 41 must be zero, which again implies

Veetor dia- that the horizontal as well as the vertical

component of this resultant must be zero.
Iixpressed mathematically:

Vertical component: kry — mw?ry — Pocos ¢ = 0
Horizontal component: coxr, — Py sin ¢ = 0

From these two equations the unknowns zo and ¢ are solved,

with the result that

0=

Py

V(ew)? + (k — mw?)? \/( = ) N ‘(2 c£ (%)2

_ ko (320

Cw Cc Wy

tan ¢ = ;— = (32b)

k — ma?  1— (0¥/w?)
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With the aid of the mechanical-electrical glossary of page 40, this can
be translated into

Q= B0
Voo + (<1 - "”’)2
or

Quo = —- (33

B }
L —

R? + (Lw - J)
Since ¢ = dQ/dt, and @ = o sin of, the current is ¢ = Quw cos wl. The
left-hand side of Eq. (33) is the maximum value of the current.  The square

root in the denominator to the right is known as the “impedance,” afamiliar
element in electrical engincering.

The expressions (32a, b) for the amplitude x and for the phase
angle ¢ are in terms of ‘‘dimensionless quantities” or ratios only.
There appear the frequency ratio w/w, and the damping ratio
¢/c., where ¢, is the “eritical damping” of formula (22). P,/k
can be interpreted as the deflection of the spring under a load /?y;
it is sometimes called the “static deflection” z,.

These relations are plotted in Figs. 42a and b. The ampli-
tude diagram contains a family of curves, one for each value of
the damping ¢.  All curves lie below the one for zero damping,
which is of course the same curve as that of Fig. 38. Thus we
see that the amplitude of forced vibration is diminished by
damping. Another interesting property of the figure is that the
maxima of the various curves do not oceur any longer at w/w, = 1
but at a somewhat smaller frequency. In fact, in the case of
damped vibrations three different frequencies have to be dis-
tinguished, all of which coincide for ¢ = 0, viz.,

1) w, = \/LZ = the ‘‘undamped natural frequency ”
(2) ¢= \/—]8_—————(— " = the “damped natural frequency”’
m 2m

(3) The “frequency of maximum forced amplitude,” sometimes
referred to as the ‘“‘resonant frequency.”
For small values of the damping these three frequencies are
very close together.
The phasc-angle diagram 42b also is of considerable interest.
For no damping, it was seen that below resonance the force and
the displacement are in phase (¢ = 0), while above resonance
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F1a. 42a.—Amplitudes of forced vibration of any of Figs. 23 to 27 for various
degrees of damping.
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F1a. 42b.—The phase angle between force and displacement as a function of the
frequency for various values of the damping.
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they are 180 deg. out of phase. The phase-angle curve therefore
shows a discontinuous jump at the resonance point. This can
also be seen from Iq. (32b) by imagining the damping ¢ very
small. Below resonance, the denominator is positive so that
tan ¢ is a very small positive number. Above resonance, tan ¢
is a very small negative number. Thus the angle ¢ itself is cither
close to 0 deg. or slightly smaller than 180 deg. Make the damp-
ing equal to zero, and ¢ becomes exactly 0 deg. or exactly 180 deg.

For dampings different from zero the other curves of Fig. 42b
represent the phase angle. It is seen that in general the damping
tends to smooth out the sharpness of the undamped diagrams
for the amplitude as well as for the phase.

It is instructive to go back to the vector diagram of Fig. 41
and visualize how the amplitude and phase angle vary with the
frequency. For very slow vibrations (v = 0) the damping and
inertia forces are negligible and Py = kxy, with ¢ = 0. With
increasing frequency the damping vector grows, but the inertia
force grows still faster. The phase angle cannot be zcro any
longer since Py must have a horizontal component to the left to
balance cwro. The inertia-foree vector will grow till it becomes as
large as the spring force. Then ¢ must be 90 deg. and Py = cwzy.
This happens at resonance, because mw?ry = kv or w* = k/m.
Thus at resonance the phase angle is 90 deg., independent of
damping. Above this frequency mw?ry will grow larger than kz,,
so that Py dips downward and ¢ is larger than 90 deg.  Tor very
high frequencies kry is insignificant with respeet to me®ry, so that
Py is used up to balance the inertia force and ¢ = 180 deg.

At slow speeds the external force overcomes the spring force;
at high speeds the external force overcomes inertia, while at
resonance it balances the damping force.

The energy relations involved in this process also serve to give
a better physical understanding. For very slow motions ¢ = 0,
and it was shown on page 15 that no work is done over a whole
cycle. In other words, no mechanical energy is transformed
into heat during a cycle. Starting from the equilibrium position,
the external force moves through a certain distance before reach-
ing the extreme position. It certainly does work then. But
that work is merely converted into potential or clastic energy
stored in the spring. During the next quarter cycle the motion
goes against the external force and the spring gives up its stored
energy. At slow speeds, therefore, the work of the external
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force is thrown into elastic energy and nothing is converted into
heat. At the resonant frequency, ¢ = 90 deg. and the work
dissipated per cycle is wPyxo (page 17). The external force is
equal and opposite to the damping force in this case, so that the
work is dissipated in damping. The spring force and the inertia
force are equal and opposite, and also in phase with the dis-
placement. Each of these forces does perform work during a
quarter cycle, but stores the energy, which is returned during
the next quarter cycle. The work of the spring force is stored
periodically as elastic energy in
L, the spring and the work of the
inertia force as kinetic energy
of motion of the mass.

Incidentally these energy
Input relations can be used for cal-
culating the ‘‘resonant ampli-
tude.” The damping force has
~Damping the amplitude c(%)max = coo
and is 90 deg. out of phase

0 ’}\mpmud“oa C with the displacement .

Frc. 43.—Work per cycle performed Consequen“y the work dis-
by a harmonic force and by a viscous sipated in damping per cycle
damping force for various amplitudes. is mewal. The work done per
cycle by the external force is wP.zro which must equal the
dissipation of damping:

Energy Per Cycle

mPoxy = weowx? (34)
This relation is illustrated by Fig. 43 in which the work per cycle
done by the force P, at resonance and also that by the damping
force are plotted against the amplitude of motion. Where the
two curves inte‘rsect, we have energy equilibrium and this ampli-
tude a, is the one that will establish itself. If at some instant
the amplitude were greater, the energy dissipation would be
greater than the input, which would gradually diminish the
kinetic energy of the system until the equilibrium amplitude is
reached.

Solving (34) for z,, we obtain
(0) resonance = Py (34a)

Ccw

Strictly speaking, this is the amplitude at the frequency where
the phase angle is 90 deg., which is not exactly the frequency of
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maximum amplitude. However, these two frequencies are so
close together that a very good approximation of the maximum
amplitude can be obtained by equating the work done by the
external force to the work dissipated by damping. For the
single-degree-of-freedom system this method of calculating the
resonant amplitude is of no great interest, but later we shall
consider more complicated cases where an exact calculation is too
laborious and where the approximate method of ¥q. (34) and
Fig. 43 gives acceptable results (page 256).

Equations (32a) and (32b) are the most important ones of this
book. They have been derived from the differential equation (12)
in two ways: first by algebra and second by the vector diagram of
Fig. 41. We shall now deduce them in a third manner, by means
of the complex-number method (page 11).

This is done with two purposes in mind: not only will it serve to make the
results better understood, but it will also be an introduction to more com-
plicated cases (page 120), where the complex method affords a great saving
in effort.

Each of the four vectors of Fig. 41 can be replaced by a complex number.
If the displacement be denoted by the complex number z, the first derivative
£ can be written jwz and the second derivative & = —w2r as was shown
carlier (page 13). Let the extcrnal-force veector, written as a complex
number, be denoted by P’.  Then (12) becomes

—mw + jocx + kz = P’
or
(—mw? + jwc + k)x = P’
Solving for z by the rules of ordinary algebra,
Pl
—mw? + joc + k
In this expression P’ is still a complex quantity. It can be made real by
turning the complete diagram Fig. 41 clockwise through about 135 deg.

(Fig. 41a).  After this has been done, P’ = P;is real and the expression for
z can be brought to the form a 4 jb as follows:

T =

z = P, - P 1 (—mw? + k) — juwc
(=me? + k) +juc —* (=ma? + &) +juec ™ (—ma? + k) — joc
= p(=me? +k) —juc__ P,
(—mo? + k)T = (jue)?  [(—me? + )7 + vl

{(—mw? + k) — jwc}
This is a complex number, the real part of which represents the length OA in
Fig. 41a and the (negative) imaginary part represents OB. It follows that
imaginary part _ wC

tan ¢ = — cal part = k — ma?

(32b)
and
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Zo = length of vector = 1/ (real)? + (imag.)?

P,
= (St 3 07§ wray Y (T E R o
P,

(32a)

C V(=mat + b+ wic?

the same results as obtained before (page 62).

Finally we return to the expression (31) on page 63 and
remember that everything stated in the 7 previous pages pertains
to the ‘“particular solution” or ‘“‘forced vibration” only. The
general solution consists of the damped free vibration superposed
on the forced vibration. After a short time the damped free
vibration disappears and the forced vibration alone persists.
Therefore, the forced vibration is also called the ‘‘sustained

+/

F1a. 41a.—The diagram of Fig. 41 turned around so as to make the disturbing
force Py a real quantity.
vibration,” while the free vibration is known as the ‘‘transient.”
The values of the constants C, and C; depend on the conditions
at the start and can be calculated from these conditions by an
analytical process similar to that performed on page 44. How-
ever,it is possible to construct the whole motion by physical reason-
ing only. As an example, consider the following problem:

A spring-suspended mass is acted on by an external harmonic
force having a frequency eight times as slow as the natural
frequency of the system. The mass is held tight with a clamp,
while the external force is acting. Suddenly the clamp is
removed. What is the ensuing motion if the damping in the
system is such that the free vibration decreases by 10 per cent
for each cycle?
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In solving this problem, it is first to be noted that its state-
ment is ambiguous, since it was not mentioned at what instant
during the force cycle the mass was released. To make the

\n\

ﬂ \/ \./
s A \
\
c \ n
/U .
\ Total motion

F1u. 44.—Starting transient.

—

problem definite, assume the release to occur at the moment
that the forced vibration would just have its maximum ampli-
tude. Irom the initial conditions of the problem it follows
that at the instant of release the mass has no deflection and no
velocity. We have prescribed the forced vibration to start with
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x = xo and & = 0. These two conditions can be satisfied only
by starting a free vibration with z = —z,and £ = 0. Then the
combined or total motion will start at zero with zero velocity.
Figure 44a shows the free vibration, 44b the forced vibration,
and 44¢ the combined motion.

It is seen that the transient disappears quickly and that the
maximum amplitude at the start is nearly twice as great as the
sustained final amplitude. If the difference between the free and
forced frequencies is small and if the damping is also small, the
diagram shows ‘““beats” between the two frequencies (see page 7).
Because of damping such beats will disappear after some time. In
order to have sustained beats it is necessary to have two sustained
or forced vibrations.

Ezample: An automobile has a body weighing 3,000 1Ib. mounted on four
equal springs which sag 9 in. under the weight of the body. Each one of
the four shock absorbers has a damping coefficient of 7 1b. for a velocity of
1 in. per second.  The car is placed with all four wheels on a test platform
which is moved up and down at resonant speed with an amplitude of 1 in.
Find the amplitude of the car body on its springs, assuming the center of
gravity to be in the center of the wheel base.

Solution: From Eq. (17a) the natural frequency is

wn = 2nfa = V/386/8,, = v/386/9 = 6.6 radians per second
The damping of the system (four shock absorbers) is
¢ =4 X7 =281h./in./scc.
The differential equation governing the motion is (12d) of page 43. At

resonance the disturbing force is

Ve T (ean?
Here k = ‘L%Og)ﬂl = 333 lb./in.; @ = 1 in.; ¢ = 28 1b./in./sec., and w =
wn = 6.6 radians per second.

vV (kao)? + (camw)? = V/(333)7 + (185)2 = 380 Ib.
From Eq. (34a) the amplitude of the car body is found:

16. Frequency-measuring Instruments.—Figure 40 is the key
to the understanding of most vibration-measuring instruments.
A vibration is sometimes a wave of rather complicated shape.
When this wave has been traced on paper, everything regarding
the vibration is known, but in many cases such complete knowl-
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edge is not necessary. We may want to know only the frequency
or the amplitude of the motion or its acceleration. For such
partial requirements, instruments can be made very much
simpler and cheaper than if a record of the complete wave shape
were demanded.

First, consider the methods of measuring frequency only.
In many cases the vibration is fairly pure, 7.e., the fundamental
harmonic has a much greater amplitude than any of the higher
harmonies. In such cases a measurement of the frequency is
usually easily made, and the result may give a hint of the cause of
the vibration. Frequency meters are based nearly always on
the resonance principle. For frequencies below about 100 cycles
per second, reed tachometers are useful. There are two types of
these: with a single reed and with a great many reeds.

The single-reed frequency meter consists of a cantilever strip
of spring steel held in a clamp at one end, the other end being
free. The length of the free portion of the strip can be adjusted
by turning a knob, operating a screw mechanism in the clamp.
Thus the natural frequency of the strip can be adjusted at will,
and for cach length the natural frequency in cycles per second
is marked on the reed (see Fig. 120a on page 192). In use,
the clamped end is pressed firmly against the vibrating object,
so that the base of the reed partakes of the vibration to be
measured. The screw is then turned slowly, varying the free
length of the reed, until at one particular length it is in resonance
with the impressed vibration and shows a large amplitude at
the free end. The frequency is then read. Such an instrument
is made and marketed by the Westinghouse Corporation.  (Type
JC-1 Vibrometer.)

Ezxample: A variable-length, single-reed frequency meter consists of a
strip of spring steel of cross section 0.200 by 0.020 in. and carries & weight of
1{ oz. at itsend. What should be the maximum free length of the cantilever
if the instrument is to be designed for measuring frequencies from 6 cycles
per second to 60 cycles per second?

Solution: The spring constant of a cantilever beam is 3EI/I3. The
moment, of inertia of the cross section is I = 1{4bh3 = {5 X 0.2 X (0.02)3
= 44-10"7in.%. The bending stiffness EI thusis 30 - 106 X 45 -10-7 = 41b.
in.2, and the spring constant k = 12/I3. The mass at the end is m =
1/(4 X 16 X 386) = 4.05-107% lh. in.7! sec.? The mass per inch of strip is
p = 0.004 X 0.28/386 = 0.29 - 10~%1h. in."Zsec.? Since about one-quarter of
the strip length is effcctive as mass (sce page 188), we have in total

m+ %l = (4.05 + 0.070)10-
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The frequency of maximum length is 6 cycles per second, or w? = (2r - 6)*
= 1,420 rad.?/sec.?
Applying Eq. (16),
12 .10%
1,420 = 13(4.05+ 0.070)

or
1B3(1 4 0.0171) = 206

This equation can be solved by trial and error. Since the sccond term
in the parentheses (due to the mass of the strip) is small with respect to
the first term (due to the }4-0z. mass), we neglect the second term as a

first guess.
13 =206 or |l =259

With this, the parentheses becomes 1 + 5.9 X 0.017 = 1.10, so that

206

=20 o in.3
110 187 in.

l:&

and
| = 5.72in.,

which is sufficiently accurate.

The other type of frequency meter employs a great number
of reeds and is known as Frahm's tachometer. It consists of a

°

|-

<P

0

[] . b R

F1u. 45.—Frahm’s tachometer.

light box b containing many small cantilever spring-steel strips a
placed in one or more rows. Each reed has a slightly higher
natural frequency than its left-hand neighbor, so that a whole
range of natural frequencies is covered. In use, the box is placed
on the vibrating machine with the result that most of the reeds
hardly move at all. However, one or two of them for which the
natural frequency is very close to that of the impressed vibration
will swing with considerable amplitude. This is made clearly
visible by painting the inside of the box dull black and giving
white tips ¢ to the free ends of the reeds (Fig. 45). Tachometers
of this type are widely used.

The same instrument is also used for indicating the frequency of an alter-

nating electric current. The mechanical excitation of an impressed force is
replaced by an electric excitation. To this end one or more coils are placed



SEISMIC INSTRUMENTS 75

in the box under the reeds. The current flowing through these coils produces
an alternating magnetic force on the reeds.

17. Seismic Instruments.—For measurcment of the amplitude
of the vibration a ‘‘seismic” instrument is ordinarily used, con-
sisting of a mass mountcd on springs inside a box. The box
is then placed on the vibrating machine, and the amplitude of
the relative motion between the box and the mass follows the
diagram of Fig. 40 for the various frequencies of the motion to
be recorded. It is seen that, when the disturbing frequency is
large with respect to the natural frequeney of the instrument,
the recorded amplitude y, is practically the same as that of
the motion a,. Thus (o get a displacement-measuring device or
“vibrometer” it is necessary to give the instrument a natural fre-
quency al least twice as slow as the slowest vibration to be recorded.
In case the motion is impure, e.g., contains higher harmonics,
this does not present any difficulty, since any higher harmonic
has a higher frequency than the fundamental and will be recorded
still more precisely.

A scismic mass on springs is capable of recording accelerations
also. If the motion be a, sin wt, the corresponding aceeleration
is —aw? sin w, with the amplitude aw?.  Now, the left-hand
branch of Fig. 40 (from w/w, = 0 to w/w, = !4) has practically
this aew? characteristic. The cquation of Fig. 40 is (page 61)

v _ A_<,§;) . (30)
1

For small values of w/wn, the denominator differs only slightly
from unity, so that the equation becomes approximately

2
Yo w 1 .
y_ =\ or y() = 3" auw‘
Ay Wy Wy

Here 1/w? is a constant of the instrument, independent of the
frequency of the external vibration. Hence the extreme left-
hand part of Fig. 40 actually reprcsent% the accelerations at vari-
ous frequencies.

An acceleromeler is a seismic instrument with a natural Sfrequency
at least twice as high as the highest frequency of the accelerations to be
recorded. This statement carries the possibility of a real diffi-
culty, because an impure motion contains harmonics of frequen-
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cies higher than the fundamental and it may well be that one of
these frequencies is very close to the natural frequency of the
instrument. This trouble is peculiar to the accelerometer. A
vibrometer is free from it since the harmonies in a wave are always
higher in frequency than the main or fundamental wave, so that
there is danger of resonance only when the recorded main fre-
quency is lower than the natural frequency of the instrument.
In order to avoid this particular difficulty, it is necessary to intro-
duce damping in the accelerometer.  Besides the original curve
of Fig. 40 (for ¢/c. = 0) and the desired parabola of acceleration,

2.0 7
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Fra. 46.—Resonance curves with various amounts of damping compared with
the parabolic curve of an 1deal accelerometer.

Fig. 46 shows two other curves, namely those for 0.5 and for 0.7
critical damping. Both these lie even closer to the desired parab-
ola than docs the undamped characteristic.  Morcover, no reso-
nance is to be feared.  An accelerometer, therefore, with damping
between half and 0.7 critical value will record accelerations up
to three-quarters of the instrument frequency without appreciable
error, while higher harmonics in the acccleration are diminiched
or, if their frequency is sufficiently high, they are practically
suppressed.

The calculation of the curves of Fig. 46 is as follows: The differential

equation (12¢), page 41, applies. Its solution [Eq. (32a), page 62] can b
used immediately, after rcplacing Py by mw?a,. Thus

2/w

Ry Ry )

is the equation of Fig. 46. The reader would do well to check the formula
with the figure for a few points.




SEISMIC INSTRUMENTS 77

The phase-angle formula (32b) and the corresponding figure 42b can be
applied to this case without any change at all. It is interesting to note
that for a damping between 0.5 and 0.7 critical the phase characteristic
Fig. 42b differs but slightly from a straight diagonal line in the region
below resonance. This has the advantage of avoiding an error known as
‘‘phase distortion.” For each harmonic of an impure wave the damped
instrument shows a different phase angle between the actual wave and its
record. If this angle is proportional to the frequency, all the recorded
waves form the same combined pattern as the actual waves.

Historically, the oldest seismic instruments are the seismo-
graphs for the recording of carthquake vibrations. The elasti-
cally suspended mass in these
devices is sometimes very large,
weighing a ton or more. The
natural frequency is very low, of
the order of a single vibration

per 10 sec.
For technical applications a
great variety of portable instru- [ ]

ments are on the market, weigh-  Tie. 47.—Vibrometer for horizontal
. and vertical motions.

ing from about 20 1b. for general

use to a few ounces for airplanec work. The main difference
among the various instruments lies in the manner of recording.
In the most simple ones a dial gage is attached to the frame of the
instrument and rests with its foot on the scismic mass. Figure 47
shows such an arrangement with one gage for horizontal and
one for vertical vibrations. The vibratory motion is usually so
rapid that the pointer of the gage is scen as two pointers with a
blurred region between them; twice the amplitude of the vibration
is then the distance between the two positions of the pointer. A
very simple and light instrument of this type is made by the Amer-
ican Instrument Company, Silver Spring, Md., under the name of
“Cordero Vibrometer.”

In a variation of this scheme the dial gage is replaced by a tiny
mirror which is given a rocking motion by the vibration. The
light of a small automobile headlight passes through a slit and is
then reflected from the rocking mirror on a strip of ground glass.
With the mirror standing still the image is a line, which broadens
into a band due to the vibration. All instruments of these types,
where no permanent record is made, are called vibrometers. The
more elaborate vibrographs contain a recording mechanism, which
usually is larger than the seismic part of the instrument. Some
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have a pen recording on a band of paper, which is moved by
clockwork; some scratch the record on celluloid or glass, which
is examined subsequently under the microscope, and some throw
a light beam on a moving photographic film. Vibrographs some-
times are built without special damping devices. These devices
do appear in accelerometers, sometimes as dashpots with either air
or oil, but usually in the form of magnetic damping, where the
seismic mass carries a tongue or thin copper plate moving parallel
to its own plane in the narrow slit between the two poles of a
powerful electromagnet. The motion of the tongue induces
eddy currents in itself, and these currents develop a damping
force proportional to the velocity.

Ezample: The vibrograph is sometimes used without the seismic part at all,
i.e., as a mere recording device. In that case the instrument is mounted in a
place free from vibration, for example it is placed on a mass which is sus-
pended from a crane in the factory. The only connection with the vibrating
object is a needle which is pressed against the object with a spring; the other
end of the needle operates the recording mechanism. Find the spring pres-
sure on the needle which is necessary to hold it down on an object vibrating
as aosin wt. The mass of the needle and the connected moving parts of the
recording device is m.

Solution: If there were no spring at all, the vibrating object would lose
contact with the needle point as soon as the object would have a receding
acceleration. If there is no contact, the acceleration of the needle toward
the object is P/m, where P is the spring pressure. This acceleration must,
be at least equal to the maximum rcceding acceleration of the vibrating
object, so that

or

For recording torstonal vibrations, a seismic instrument is
used which is a modification of a vibrograph. Instead of a mass
on linear springs the torsiograph contains a flywheel on torsional
springs. A very light aluminum pulley a (Fig. 48) is keyed to
the shaft b. The heavy flywheel ¢ can turn frecly on the shaft
but is coupled to it by a soft torsional spring d. When the pulley
is held, the flywheel can perform free torsional vibrations about
the shaft with a low natural frequency. When an alternating
angular motion is given to the pulley, the relative motion between
flywheel and pulley is again governed by the diagram of Fig. 40
(on account of the equivalence of the Figs. 23 and 24). Torsio-
graphs of this type are widely used for measuring the torsional
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vibrations of crank shafts of slow- and medium-speed internal-
combustion engines. Besides the vibration to be measured, such
a shaft has also a uniform rotation. In use, the pulley a is
driven from the crank shaft by means of a small canvas belt.
When the crank shaft rotates uniformly, the flywheel follows
and no relative motion between a and ¢ occurs. When the
shaft rotates non-uniformly (:.e., has a torsional vibration super-
imposed on its rotation), the light pulley a will follow the shaft
motion faithfully. The flywheel ¢, however, has so much
inertia that it can rotate only at uniform speed. Thus the
vibration appears as a relative motion between a and ¢, which is
transmitted through a system of small bell cranks and a thin
rod located along the center line of the hollow shaft b. The rod

F1a. 48.—Seismic part of a torsiograph.

in turn operates a pen which scribes the record on a strip of
paper, moved under the pen by clockwork. This instrument,
known as the Geiger vibro- and torsiograph dating back to
1916, is marketed by the Commercial Engineering Laboratories,
Detroit, Mich. It is still suitable for slow-speed machines, such
as ship drives. However, for modern high-speed Diesel engines
the recording-pen system comes to local resonance and, more-
over, the magnification of the record obtainable (up to 24) is not
sufficient. Then the Summers mechanical torsiograph, made by
the General Motors Research Laboratories, Detroit, Mich., can
be used to advantage. It is good up to 10,000 cycles per minute
and gives a record in the form of a polar diagram.

Example: Let the flywheel ¢ of the torsiograph of Fig. 48 be represented
approximately by a solid steel disk of 414 in. diameter and 2 in. thickness.
The outside diameter of the pulley is 5 in. If the flywheel ¢ is held clamped,
a string is wrapped round the pulley, and a 34-lb. weight is suspended from
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one end of the string, the pulley circumference turns 14 in. (i.e., the weight
descends 14 in.).

If, with this instrument, a record is taken of a torsional vibration of 3
cycles per second, what is the error in the reading? What is the error in the
recorded amplitude of the third harmonic of this curve?

Solution: First we have to find the natural frequency of the instrument.
The torsional stiffness k in inch pounds per radian follows from the fact that

a torque of 34 Ib. X 214 in. causes an angular deflection of 2//]1 X 1radian.
p)
Thus
34 14 .
k =- »/‘vlfzzi = 9.37 in.-Ib. /rad.

The welght; of the flywheel 18
PR (P 2 0.28 I . =89 Ib.
1 2 X X ) D

1ts moment of inertia is

| 1
= . = = C
1 2mr 5 38( (24) 0.059 1b. in sece.2

The natural frequency thus is

037 S
wn = \/? = \/733)?9 = /159 = 12.6 radians per second

wn 12.6
fn = 9. = oo = 2.0 cycles per second

The frequency to be recorded is 50 per cent higher.  Thus by Eq. (30)
the ratio of the recorded to the actual amplitudes is

5 225
1—(152 1.25 1.80

The third harmonic is 44 times as fast as the natural vibration of the
instrument, so that its magnification factor is

414)2 20.25
T g = 102 = 105

18. Electrical Measuring Instruments.—The rapid develop-
ment in radio technique during the last decade has made pos-
sible a number of instruments that are generally much smaller
and more sensitive than the older mechanical types discussed in
the previous section. Most of these electrical ¢ pickups’ are still
setsmic instruments, for either linear or torsional vibrations,
which opcrate on the same principle as the devices described in
the previous section but have electrical windings in them that
convert the mechanical vibration into an electrical voltage which
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can then be amplified and recorded by means of an oscillograph.
Figure 49a shows schematically a pickup for lincar vibrations,
developed by Draper and Bentley, made and marketed under the
name ‘‘Sperry-M.I.T.” by the Sperry Gyroscope Company,
Brooklyn, N.Y. and by the Consolidated Engineering Corpora-
tion, Pasadena, Calif. The clectrical apparatus inside this unit,
which has over-all dimensions of about 1 in. and a weight not
exceeding 2 0z., is practically the same as that found in a dynamic
type of radio loud-speaker. The instrument is a body of revolu-
tion which can be conceived of as generated by a rotation about
its vertical center line. The part a is a piece of steel which is
seismically supported on springs ¢. An important item, not

F16. 49a.- —Seismo-electric I'ta. 49b.- Torsiograph-
pickup, being essentially a loud- seismo-electric pickup.
speaker element.

shown in the figure, is the guiding of the mass a, the motion of
which is restricted to the vertical direction entirely. No lateral
motion of @ can be allowed. In the hollow interior of a, a coil b is
mounted around the central cylindrical core. This coil is ener-
gized by direct current so as to make a magnet out of a. Some-
times, for simplicity, the coil b is omitted and the part a is
fashioned as a permanent magnet of some special alloy steel.
The magnet a, being a body of revolution, has a ring-shaped air
gap with a radial magnetic ficld, into which is inserted a thin
paper cylinder e carrying a coil around it of extremely thin wire.
The paper cylinder ¢ is attached to the cover of the housing d and
the entire apparatus is supposed to be attached to the machine of
which the vibration is to be measured. Any motion of the
magnet a in a vertical direction will cause a relative motion
between the magnet and the ‘““voice coil” e and will set up
an electrical alternating voltage in e. This voltage, which is
proportional to the velocity of relative motion, is now fed into
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an amplifier and after sufficient magnification is recorded on an
oscillograph film. Oscillographs suitable for this work have been
developed in the last decade primarily in connection with appli-
cations of oil prospecting and are now readily available on the
market. -

A torsiograph pickup of a similar type is illustrated in Fig. 495
where a is the torsionally seismic element comparable to the part
¢ in Fig. 48. This seismic element is made to be a permanent
magnet with a north and a south pole as indicated. It can
revolve freely on a soft torsional spring around the core d which
is rigidly attached to the shaft of which the torsional vibration
is to be measured. The core d carries a voice coil e. The mag-
netic field travels from the north pole to the south pole across

I'1G. 49c.—Integrating circuit to transform a velocity tecord into an amplitude
record.

the core d and any relative torsional motion between a and d
will cause voltage variations in the voice coil ¢, the intensity of
which is proportional to the angular velocity of the rclative motion.

The records obtained on the oscillograph from either of these
two instruments therefore indicate velocity rather than ampli-
tude. This in itself is no particular disadvantage, but for certain
applications it is more convenient to have a direct record of the
amplitude instead of performing the nccessary integration
numerically or graphically on the record. This can be done
electrically by means of the so-called “integrating circuit” illus-
trated in Fig. 49¢. In this figure, e is again the ‘“voice coil,”
carrying a voltage proportional to the velocity. This voltage is
fed into a C-R-series circuit so proportioned that the voltage
across the resistance is many times, say ten times, greater than
the voltage across the condenser. The voltage across the resist-

ance is tR and the voltage across the condenser is Cl-fz dt, and

if the first voltage is very much greater than the second, it is
permissible to say that the voltage R is practically equal to the
total voltage V of the voice coil. Since, therefore, V is directly
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proportional to ¢ (or to the velocity), the voltage across the
condenser is directly proportional to [idt (or to the integral
of the velocity) which is exactly the quantity we are looking for.
These relations are illustrated for harmonic variations in the
vector diagram of Fig. 49¢c. The integrated voltage is then put
on the grid of the first tube of the amplifier. Since the voltage
across the condenser is about one-tenth part of the total voltage,
the sensitivity of the scheme is cut down by a factor 10, which
means that an additional stage of amplification is necessary.
Amplifiers of a sensitivity independent of the frequency can be
easily built for frequencies higher than 10 cycles per second and

[o][%] Le]
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IF1a. 49d.—Instrument operat- F1G. 49¢.— Wheatstone-
ing on the principle of variation bridge circuit for the
of reluctance, employing a carrier instrument of Iig. 49d.

current of a frequency sub-

stantially higher than that of the

vibration to be measured.
recently have been made even down to 34 cycle per second, and
up to 8,000 cycles per second, thus covering the entire practical
frequency range for mechanical work.

For vibrations of very slow frequency another electrical prin-
ciple known as the ‘““variation of reluctance’’ has been employed,
which is illustrated in Figs. 494, ¢, and f. In Fig. 49d, the two
pieces a are rigidly attached to each other and they carry coils ¢
which are energized by a constant voltage of a frequency that
is high with respect to the frequencies that are to be measured.
Usually, ordinary 60-cycle current will suffice for vibrations
slower than 15 cycles per second ; however, if vibrations consider-
ably faster than this are to be recorded, a special alternator of
say 500 cycles per second is used to energize the coils ¢. The
voltage of the alternator is fed through the two coils ¢ in series.
A core b, made of laminated steel sheets like the U-pieces a, is
mounted between these U-pieces so that the air gaps between
them are as narrow as practicable. The central piece b vibrates
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back and forth between the two pieces a, thus varying the air
gaps with the frequency of the vibration. If the two air gaps
on the two sides of b are exactly alike, the voltage of the alter-
nator is equally divided between the coils ¢; but if the air gaps
of one of the pieces a are wider than those of the other piece aq,
then the voltages of the two coils ¢ differ. The instrument is
connected in a Wheatstone-bridge circuit as shown in Fig. 49e
in which the coils are balanced by two equal impedances d.
For equal air gaps and consequently equal voltages across ¢, the
instrument in the Wheatstone bridge will show a zero reading,
and the reading of that instrument will be proportional to the
difference between the two air gaps. Naturally, the meter is

F16. 49f.—Record obtained from the Wheatstone bridge.

affected by a current of a frequency equal to that of the exciting
source; and if the instrument is replaced by an oscillograph, a
record such as the upper one in Fig. 49f results. The fast varia-
tions in this record are those of the exciting alternator and the
slow variation of the envelope is the effect we are looking for.
For greater ease of reading, sometimes an electrical rectifier is
inserted in the instrument branch of a Wheatstone bridge which
transforms the upper record of Fig. 49f into the lower one. The
apparatus of Iig. 49d can be used as a seismic instrument where
the two pieces a are mounted scismically, whereas b is directly
attached to the object to be measured. It has also been used
as a strain meter where the two pieces a are attached to one part
of the structure to be measured, while the central piece b is
attached to some other part of that structure.

The device under the name ‘“Siemens-Mc¢Nab Electric Torsion
Meter’’ has been used for measuring the horse power of ships’
shafts while under way. The part a of Fig. 49d is attached to a
sleeve clamped on one section of the propeller shaft. The part
b is attached to another sleeve, clamped to a section of the shaft
some 3 ft. away from the first. If this length of 3 ft. of shafting
twists with the strain, the parts b and a change position relative
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to each other, while rotating with the shaft. Turning to Fig. 49e,
the parts ¢, ¢ rotate with the shaft, and the current is supplied
the shaft through three slip rings. But the non-rotating instru-
ment contains not just dead resistances d, but again a complete
set-up like Fig. 49d. The relative position of the (non-rotating)
pieces b and a is varied with an accurate micrometer screw until
the ammeter reads zero. Then the rotating and non-rotating
air gaps must be alike; their position, and hence the shaft torque,
is read off the non-rotating micrometer screw.

A device which has become very important in recent years is
the resistance-strain-sensitive wire gage, first used by Simmons
and Datwyler, further developed by Ruge and De Forest,
marketed under the trade name “‘SR-4

gage’’ by the Baldwin Locomotive \ ____________ .
Works, Philadelphia, Pa., and now in |
universal use, particularly in the air- /C —————————— -

craft industry. The gage is made of
very thin (0.001in.) wire of high electric
resistance (nichrome) arranged as shown in Fig. 49¢ and mounted

between two thin sheets of paper. The total length is about an

inch; the total electric resistance is about 500 ohms. The gage is

glued to the metal object under test, and if the metal (and con-

sequently the nichrome wire) is strained, its electric resistance

changes. The strain-sensitivity factor, which is the percentage

change in resistance divided by the percentage change in length, is

about 3. This means that for a stress of 30,000 Ib./in.? in steel,

where the strain is 0.001, the resistance changes by 0.003, so that in

a gage of 500 ohms resistance the change in resistance is 1.5 ohms.

Figure 49h shows how the gage may be connected in a circuit.

The battery voltage is divided between the gage a and a steady

resistance b. If the strain and hence the resistance of a varies

with time, so will the voltage across its terminals, and this vary-

ing voltage is put on the grid of the first vacuum tube in an-
amplifier, and from there passed on to an oscillograph.

Figure 497 shows the adaptation of this method to the meas-
urement of twist in a shaft. It is well known that in a shaft in
torsion the maximum strains have directions of 45 deg. with
respect to the longitudinal axis of the shaft. Therefore, if two
strain gages are glued on as shown, and the shaft is twisted, one
of the gages will be elongated and the other one will be shortened.
The voltage of the direct-current battery, therefore, will be

I'1a. 499.—Wire-strain gage.
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unequally divided between the two strain gages and the varia-
tions in voltage will follow the strain and consequently the torque
in the shaft.

The particular advantage of the strain gages just described
lies in their extreme lightness. For the measurement of stresses
in airplane propellers or turbine blades, where the centrifugal
field is as high as 9,000 g, only a pickup of practically no weight
is at all feasible. The introduction of electric-resistance-strain
gages has made possible for the first time the reliable measure-
ment of vibrational phenomena in airplane propellers.

For variations of very slow frequency, the ordinary amplifier
does not work, and the gages are encrgized by a high-frequency
current, much as in Fig. 49e. The Foxboro Company, Foxboro,
Mass., is marketing an instrument under the tradc name ‘“ Dyna-
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¥16. 49h.—Circuit for clectric- Fi1g. 497.—Two strain gages
resistance-strain gage. mounted at 45 deg. on a shaft
to form a torsion-sensitive unit.

log” with a 1,000-cycle carrier current generated by a vacuum
tube oscillator built in the instrument. The wiring diagram is
somewhat like Fig. 49e, where ¢, ¢ are the two gages, one in
tension, the other in compression, and d, d are condensers, one
fixed, the other variable. The unbalance current of the bridge,
instead of passing through the ammeter of Fig. 49¢ passes through
a small motor which turns the shaft changing the capacity of the
variable condenser d, until new balance is obtained and the motor
current is zero. The position of the condenser shaft indicates
the strain, which can be read easily to 1 per cent of full scale, the
full scale commonly being a strain of 0.001 in./in.

In conjunction with this Dynalog there are available a number
of “pickups’ for the measurement of various quantities, such as
strain, stress, and pressure. The pressure pickups have the
appearance and size of spark plugs and can be screwed into the
pipeline. They contain a member whichisstrained proportionally
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to the fluid or gas pressure, and to which an SR-4 gage is attached.
They come in various sensitivities, the most sensitive being 0 to
600 1b./in.2 full scale, while the least sensitive ranges from 0 to
20,000 1b./in.% full scale. Also there are spark-pluglike differ-
ential pressure gages, the most sensitive of which registers from
0 to 100 in. of water head full scale, superposed on a basic pressure
of 500 1b./in.? or higher.

The stroboscope is a device for producing intermittent flashes
of light by means of which rapid vibratory motions can be made
to appear to stand still or to move very slowly. In a good strobo-
scope the flashes of light are of extremely short duration. Imag-
ine a vibrating object illuminated with this kind of light which
is adjusted to the same frequency as the vibration. The object
will be seen in a certain position; then it will be dark, and conse-
quently the object is invisible while traveling through its cycle.
When it returns to the first position after one cycle, another flash
of light occurs. Thus the object appears to stand still. 1f the
frequency of the flashes differs slightly from the frequency of the
motion, the vibration will apparently take place very slowly.
There have to be at least 15 flashes per sccond in order to create
a good, non-flickering illusion of standstill, just as in a moving-
picture projector. The sharpness of the picture obtained
depends on the fact that during the time of the flash the object
moves very little. A flash of long duration will blur the picture.
The modern developments in vacuum and gas-filled tubes have
made it possible to construct stroboscopes giving flashes of great
intensity and of very short duration. The frequency of the
flashes can be read on a calibrated dial as in a radio receiver.
Thus for rather large amplitudes the instrument can be used as
frequency and amplitude meter combined.

For smaller amplitudes, the stroboscope in conjunction with
a seismically mounted microscope is useful. Take a seismic mass
of very low frequency, carrying a microscope. Paste a very
small piece of emery cloth to the vibrating object and focus the
microscope on the emery, which is illuminated by stroboscopic
light. The individual emery particles will appear as sharp
points, which, on account of the stroboscope, run through
closed curves. Thus the frequency and the amplitude can be
determined.

Some stroboscopes have two or more lamps available which
are operated from the same circuit and thus flash simultaneously.
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This is very useful for finding phase relations. Suppose that
two parts of a machine are vibrating at the same frequency
and that it is desired to know whether the vibrations are in
phase or in opposition. KEach of two observers takes a lamp,
the flash frequency being regulated so that the vibration appears
very slow. They now observe the two spots and the first
observer signals each time his vibration is in one of the two
extreme positions. The other observer can then easily check
whether his motion is in phase or in opposition. A very con-
venient instrument, developed by Edgerton, is marketed by the
General Radio Company, Cambridge, Mass., under the trade
name ‘‘Strobotac.”

Ezxample: We wish to observe stroboscopically a point located 4 in. from
the axis of a machine rotating at 10,000 r.p.m. If we desire a blurring of less
than 145 in., what should be the duration of the light flashes?

Solution: The point in question travels per second

10,000

60 +2r -4 = 4,200 in. = 135,000 X 14, in.

Thus the flash should last 1/135,000 sec. or less.

An interesting torsiograph, based on an entirely different prin-
ciple, was developed by the General Motors Research Labora-
tories. Itis called the ‘“phase-shift torsiograph’ and consists of
a thin (say 1{g in.) wheel with a large number of equally spaced
teeth (say 300) mounted on the rotating shaft. Two small
electromagnets with windings are brought close to the toothed
wheel, which operates somewhat like an inverted electric clock.
The teeth passing by set up an alternating voltage of tooth-pass-
ing frequency in the two coils. This frequency is constant only
if the shaft rotates uniformly; if the shaft executes a torsional
vibration the record of the current shows alternate sine waves
bunched close together and further apart. This variable fre-
quency output current is fed into a box and mixed with a con-
stant frequency current of average frequency generated by a
vacuum tube oscillator. Thus the two currents will have a
constantly varying phase angle between them, and by a clever
trick it is possible to take an oscillograph record in which the
torsional vibration amplitude shows directly against time. The
advantages of this method are the absence of slip rings, the possi-
bility of installing it on engines so compactly built that there
is no space for any other instrument, and that the record is
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independent of the amplification ratio of the electronic apparatus,
since it depends on phase angles only. It is interesting to note
that the “seismic”’ element in this method is no longer a mechan-
ical flywheel running at constant speed, but rather the vacuum
tube oscillator producing a current of constant frequency.

Finally, for electric wave analyzers, see page 24 in the section
on Fourier series.

19. Theory of Vibration Isolation.—An unbalanced machine
has to be installed in a structure where vibration is undesirable.
Such a situation is not uncommon. An alternating-current
elevator motor in a hospital or hotel and the engine in an auto-
mobile are examples. The problem consists in mounting the
machine in such a manner that no vibrations will appear in the
structure to which it is attached.

Its universal solution consists in properly mounting the
machine on springs, and again Figs. 38 and 40 contain the infor-
mation for the correct design of such mountings. In Fig. 50 the
machine is represented as a mass m with a force P sin wf acting
on it. In Fig. 50a it is attached solidly to its substructure, while
in 500 it is mounted on springs with a combined vertical flexibility
k (the k of Fig. 50a is infinitely large). For simplicity the sub-
structure is assumed to be rigid. If now P, is held constant and
the frequency is varied, the amplitude of motion of m varies
according to the diagram of I'ig. 38.

Our problem consists in finding the magnitude of the force
transmitted to the substructure by the machine. Since only
the springs k are in contact with the foundation, the only trans-
mitted force can be the spring force, which has the amplitude kz
(damping being considered absent). The ordinates of Fig. 38
represent the ratio of the maximum displacement z, of the mass
to the static displacement z,, = Po/k. Thus

. _® _ x _ kxo _ spring force
Ordlnate = x—a—t = })—0/‘7{‘ = ?5; = mm
_ transmitted force

= = = ‘““transmissibility "’
impressed force

The ideal is to have this ratio zero; the practical aim is to make
it rather small. In Fig. 50a the spring constant ¥ = « and
hence the natural or resonant frequency is infinite. Therefore,
the operating frequency w of the force is very slow with respect
to the natural frequency; <.e., we are at the point A of Fig. 38,
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so that the transmitted force equals the impressed force. Phys-
ically this is obvious, since a rigid foundation was assumed and
thus the mass m cannot move: the whole force P, must be trans-
mitted to the foundation. The diagram of Fig. 38 shows immedi-
ately that it ¢s necessary to design the supporting springs so as to
make the natural frequency of the whole machine very slow compared

Pysinwt
1Posinwt osin
m
V7777777777, 7777,
(@)
(b)

I't¢. 50.—A support of very flexible springs prevents vibrations from being
transmitted to the foundation.

with the frequency of the disturbance; in other words, the springs
should be very soft.

An inspection of this diagram and its formula (28a) reveals that
if w is smaller than w,\/2 = +/2K/m, the springs actually make
matters worse: the transmissibility is greater than one. If the
natural frequency is one-fifth of the disturbing frequency, the
transmissibility is 1 part in 24. This is fairly good, but in many
cases it is better to make the springs softer yct.

Thus far, the support has been considered to be entirely with-

out damping, which is practically the condition

Reinwt existing insteel springs. Sometimes, however,
rubber or cork padding is used for this purpose,

and then the damping is not negligible. The

system can then be symbolized by Fig. 51; the

» amplitude of the motion of m being shown by

Fre. 51.—A one of the curves of Fig. 42. In this case the
spring support  digplacement curve is not directly proportional
with damping. . o eqe

to the amplitude of the transmissibility curve,
as was the case with no damping. Now the transmitted force is
made up not only of the spring force kz, but of the damping force
cwtoas well. It wasshown on page 64 that these two forces (being
in phase with the displacement and the velocity respectively) have
a 90-deg. phase angle between them. Consequently their sum,
being the total transmitted force, is [Eq. (6), page 6]

2oVkT F (cw)? (35)
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The amplitude z, is given by formula (32a) on page 64 so that

(35) becomes
2
cw
\/ 1+ (T)
\/ w?\’ c o\
(-2) +(2)
or, since P, is the impressed force,
2
1+ (2ﬁ 2)
Transmissibility = Ce Wn (36)
Y o0 2
1-3) "\%a

which actually reduces to formula (28a) on page 57 for the case
of zero damping, ¢/c. = 0. This relation is shown graphically

Transmitted force = P,
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Fic. 52.—Showing that damping in the spring support is advantageous for
w < wy \/z—, but is detrimental for w > wn \/2_

in Fig. 52. Damping is seen to be advantageous only in the region
w/we < 1.41 (where spring mounting makes matters worse); for
all values of w/w, where spring mounting helps, the presence of
damping makes the transmissibility worse.

This rather paradoxical statement is not quite so important
ag it sounds. In the first place, the bad effect of damping is
not great and can be easily offset by making the springs some-
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what weaker, 7.e., by moving somewhat more to the right in
Fig. 52. On the other hand, though it is not our intention to
run at the resonance point w/w, = 1, this unfortunately may
sometimes occur, and then the presence of damping is highly
desirable. Thus in spite of the dictum of Fig. 52, some damping
in the springs generally is of advantage.

20. Application to Single-phase Electrical Machinery.—Prac-
tical cases of isolation by means of springs occur in many machines.
The main field of application, however, lies in apparatus which is
inherently unbalanced or inherently has a non-uniform torque.
Among the latter, single-phase electric generators or motors and
internal-combustion engines are the most important.

First, single-phase machines are to be discussed. As is well
known, the torque in any electric machine is caused by the pull
of the magnetic field on current-carrying conductors. The
magnetic field itself is caused by a current flowing through the
field coils. If the machine is operated by single-phase alternating
current of say 60 cycles per second, it is clear that the current
flowing into the machine (and through the field coils) must
become zero 120 times per sccond. But at zero current there is
zero magnetic field and hence zero torque. Without knowing
anything about the mechanism of such a machine we may sus-
pect the torque to be some alternating periodic function of
120 cycles per second.

A more exact analysis is as follows: In any electric machine the instan-

taneous power in watts (which is of the dimension of work per second) equals
the product of voltage and current, or

Watts = e

If the voltage on the machine is ¢ = emax sin wt (Where w = 60 X 2 radians
per second), and ¢ = imax Sin (ot — o),

Watts = emaximax SIN wt SN (wt — ¢)
emaximax SIN wf (SIN wt €OS ¢ — COS wt sin ¢)
€maxTmax (SIN? wi COS ¢ — sin wf oS wi sin @)

= e'ﬁgﬂ?[cos ¢(1 — cos 2wt) — sin ¢ sin 2et]

€maxTmax

2—[cos ¢ — cos (2wt — ¢)]

This is seen to consist of two terms, one independent of the time, representing
a steady flow of power (which is the purpose for which the machine is built),
and another harmonically alternating with frequency 2w. This latter term
does not deliver power during a long period of time, because its positive
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parts are neutralized by corresponding negative parts. The forque is found
from the power as follows:

work _ torque X angle
second second

Power = = torque X angular velocity

Thus all conclusions drawn for the power hold also for the torque when the
angular velocity is constant, which is practically the case for a running
machine.

The torque-time relation is given in Fig. 53, showing in this
particular case that the amplitude of torque variation a is 30 per
cent larger than the steady rated torque b of the machine.
Though this represents a bad condition, the best that can possibly
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Fia. 563.—The torque of a single-phase a.c. motor is a periodie function having
twice the frequency of the line voltage.

occur is that ¢ = 0. Then the torque merely becomes zero 120
times per second but does not become negative.

The machine consists of two parts, a rotor and a stator. Though
it is the object of the machine to deliver torque to the rotor,
Newton’s law that action equals rcaction requires that an equal
and opposite torque act on the stator. If this stator is solidly
bolted to its foundation, we have the torsional equivalent of the
case of Fig. 50a. The torque reaction is fully transmitted to the
foundation and from there can travel far and wide. Though
the vibratory motion thus broadcast is usually very small, it may
be that at quite a distance from the source there is a beam or other
structure having for its natural frequency the same 120 cycles.
That structure will pick up the motion and magnify it by reso-
nance. A case is on record concerning a number of large single-
phase generators installed in a basement in New York City.
Complaints of a bad humming noise came from the occupants of
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an apartment house several blocks from where the generators
were located, while the neighbors much closer to the source did
not complain. The obvious explanation was that the complainers
were unfortunate enough to have a floor or ceiling just tuned to
120 cycles per second. The cure for the trouble was found in
mounting the generators on springs, as shown in Fig. 54.

Since the disturbance is a pure torque and not an up-and-down
force, the springs have to be arranged in such a fashion that the
stator can twist (z.e., yield to the torque). The stiffness of the

Fia. 54.—Spring support for large single-phase generators to take the torque
reaction.

springs has to be so chosen that the torsional natural frequency
of the stator on the springs is about one-seventh of 120 cycles per
second.

In an actual construction for a large machine the springs of
Fig. 54 are usually not coil springs as shown but rather beams of
spring-steel loaded in bending, arranged with their length direc-
tion parallel to the axis of rotation of the generator. Figure 55
is a sketch of such a construction (cross section A4 of Fig. 54); a
denotes the stator, b the supporting foot, and ¢ the beam spring,
which carries its load on four points.

Small single-phase motors are used extensively in domestic
appliances like refrigerators, washing machines, etc. Some-
times such motors have a pinion on the shaft, driving a gear, and
then it becomes imperative to support the rotor bearings so that
they are very stiff against either vertical or lateral displacements
in order to secure good operation of the gears. On the other
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hand, the stator should be mounted very flexibly in the rotational
mode of motion.

There are several constructions on the market whereby both
these requirements are satisfied. Two of them will be described
here. Their common feature is that the rotor bearings are built
solidly into the stator (which constitutes a difference from Fig. 54
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F1a. 55.—Detail of beam spring for machine of Fig. 54.

where the bearings are mounted solidly on the floor so that the
springs are between the rotor bearings and the stator). This
solid rotor-stator unit is mounted on springs to the base or floor.
The manner in which this is done, however, varies considerably.
In the first construction (Fig. 56) each end of the stator is
mounted in a heavy rubber ring a which is held in the foot b
bolted to the floor. Rubber is a material which can be stretched

Fra. 566.—Support of small single-phase motor in a rubber ring a, which is
flexible in torsion and stiff against vertical or lateral displacements.
enormously within the elastic limit, but at the same time it is
extremely resistant to changes in volume: if a band of rubber is
stretched to twice its length, its average cross section becomes
half as small. (Another way of stating this is that rubber has a
Poisson’s ratio of one-half.) Owing to this property, the bearing
inside the rubber ring can hardly move sidewise with respect to
the foot, because that would mean thinning of the ring on one
side, which can occur only if rubber escapes vertically. This,
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however, is prevented by friction, so that the ring forms a stiff
link between the bearing and the foot as far as lateral (or vertical)
motions are concerned. Against rotation of the bearing in the
foot, however, the rubber opposes only a shearing reaction, which
can take place without a change in volume, making the ring
flexible with respect to that motion.

The second method of accomplishing the same result is equally
ingenious and is shown in Fig. 57. The bearing is supported
on a strip of steel, bent so as to have two 45-deg. sections and
three horizontal sections (being the spring and supporting foot
in one). This amounts to having two 45-deg. beams between
the floor and the bearing, bult wn at each end. The design is

-

Fig. §7.—Small-motor spring support consisting of two 45-deg. sections passing
through the center of the machine.

such that the center lines of the beams pass through the bearing
center. Any vertical or horizontal displacement of the bearing
is associated with either fension or compression in the beams,
whereas a turning of the bearing only bends the beams. Since
thin strips are flexible in bending but very much stiffer in direct
tension or compression, the desired result is obtained.

21. Application to Automobiles; ‘“Floating Power.””—Internal-
combustion engines have a torque-time diagram which does not
differ appreciably from that of Fig. 53. TFor a four-cycle engine
n
2
number of cylinders. This will be explained in detail on page
248; here it is of interest only to know that the non-uniformity in
torque exists. With the engine mounted rigidly on the frame,
these torque variations have reactions on the car which may
make themselves felt very uncomfortably. The obvious remedy
is to mount the engine so that the free rotary vibration about
the torque axis takes place very slowly, or, more precisely, so
that the natural frequency of such a vibration is appreciably
lower than n/2 times the running speed.

its frequency is 5 X (r.p.m.) cyecles per minute where n is the
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This can be accomplished conveniently by mounting the whole
engine block on two journals, fore and aft, supported in bear-
ings attached to the chassis, enabling the block to rotate about
an axis practically parallel to the torque axis and passing through
the center of gravity (shown as AA in Fig. 58). Without
anything other than the construction just described, the block
would be free to rotate about the A-axis. This is prevented by a
cantilever leaf spring B between the block and the frame, of
which the stiffness is so chosen as to make the natural frequency
sufficiently low.

gA

Besides having an unbalanced torque, a four-cylinder engine
also experiences some horizontal and vertical inertia forces (see
page 221), which naturally have reactions at 4 and B. For
this reason the bearings A as well as the end of the spring B are
cmbedded in rubber.

In the actual construction, the axis AA is not quite parallel
to the torque axis. This is correct procedure, for generally
the torque axis is not a principal axis of inertia and conscquently
does not coincide with the corresponding axis of rotation.

Any rigid body has three ‘‘principal axes of inertia.” Consider, for
instance, an clongated solid piece of rectangular steel (Fig. 59) and attach
to it a (weightless) shaft passing through the center of gravity but not
coinciding with one of the principal axes (here axes of symmetry). The bar
and shaft lie in the plane of the drawing. Apply a sudden torque to the
shaft, and consider the acceleration caused by it. The upper part of the
bar is accelerated into the paper, the lower part comes out of the paper (as
indicated by dots and crosses in the figure). Multiplied by the mass of the
respective elements these accelerations become ‘‘inertia forces.” It is
clear from the figure that these inertia forces multiplied by their distances
from the shaft form a torque, which is equal and opposite to the impressed
torque. Moreover, these forces multiplied by their distances to the vertical
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dotted line have a torque about that line as an axis. This will have its
reaction in the bearings; the right-hand bearing will feel a force pushing it
toward the reader out of the paper, and the left-hand bearing is pushed into
the paper. Now if the bearings were absent, it is clear that under the
influence of the torque the body would not rotate about the torque axis (since
forces at the bearings are required in order to make it do so). Thus, in
general, a body under the influence of a torque will rotate about an axis
not coinciding with the torque axis (if the torque axis is not a principal axis).

F1a. 59.—Rotation about an axis different from a principal axis of inertia results
in rotating reaction forces at the bearings.

The axis, about which the ‘“floating-power’”’ engine has to be
suspended, therefore should not be the torque axis itself but
rather the axis of rotation belonging to the torque axis. Only
when the torque axis is a principal axis do the two coincide.

There are several other constructions of spring-supported auto-
mobiles on the market, most of which are similar in principle to
the scheme of Fig. 58. Some have one rubber support at the
rear of the engine and two rubber supports close together at the
same height in the front. These two are virtually a combination
of the single bearing A and the restoring spring B of Fig. 58.

Ezxample: A four-cylinder automobile engine weighing 400 lb. is supported
as indicated in Fig. 58. The radius of gyration of the engine about the axis
AA is 6 in., the distance a is 18 in., and the length 7 of the cantilever is 4 in.
The diameter of the rear wheels is 30 in. and in high gear the engine makes
three revolutions per rcvolution of the rear wheels. It is desired that the
engine be in resonance at a speed corresponding to 314 m.p.h. in high gear.

a. What should be the spring constant of the centilever?

b. If one of the four cylinders does not spark properly, at what other speed
is trouble to be expected?

Solution: a. 344 m.p.h. = 61 in. per second. The circumference of the
wheel is 30r = 94.2. At the critical speed the wheel makes 61/94.2 =
0.65 r.p.s. and the engine thercfore runs at 3 X 0.65 = 1.95 r.p.s. The
torque curve of the engine goes through a full cycle for every firing. Since
there are two firings per revolution in a four-cylinder, four-cycle engine,
there are 3.9 firings per second. The natural frequency of the engine is
desired to be f, = 3.9 cycles per second or w3 = 47%(3.9)2 = 600 rad.2/sec.?
= k/I. Here k is the torque caused by the cantilever per radian twist.

The deflection at the end of the cantilever for a twist of ¢ radians is 18¢ in.
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If k( be the linear stiffness of the cantilever in Ib./in., the spring force is
18k1¢ Ib., acting on a moment arm of 18 in., so that the torque is 18 X 18k¢.
Thus

k = 324k,
Further
I = %8096. (6)2 = 37 b, in. sec.?
so that
324k,
2 = =
wh = 600 =
and
37
ky = '3_%4600 = 69 Ib. per inch

b. If one cylinder fires inadequately, there is another periodicity in the
torque curve for each two revolutions of the engine. Since this disturbance
is four times as slow as the one discussed, it comes to resonance with the
natural frequency of the engine at a speed of 4 X 3.5 = 14 m.p.h.

Problems

10. Derive the results (32a) and (32b) in the manner indicated directly
below Eq. (31).

11. Derive Eq. (28) by an energy method. / |

12. A rotor of weight W and of moment of inertia I

about its axis of symmetry is laid with its journals on R
two guides with radius of curvature R (Fig. 60). The
radius of the journals is . When the rotor rolls with- N -
out sliding, it executes small harmonic vibrations about \\-]._/
the deepest point of the track. Find the frequency F1a. 60.
(energy method, see pages 46 and 50).

, 13. The same problem as 12,
[ t | except that the track is straight
= A' (R = «) and the rotor is unbal-

B 92(5, anced by a small weight w attached
; to it at a distance r; from the axis.

14. Two cylindrical rolls are
located at a distance 2a apart; their

bearings are anchored and they
rotate with a great speed w in opposite directions (Fig.
o — -1

2o
Fra. 61.

61). On their tops rests a bar of length [ and weight
W. Assuming dry friction of coefficient f between the

rolls and the bar, the bar will oscillate back and forth ZN\/\/‘ 'V\NV%—T—
longitudinally. (a) Calculate its frequency. (b) If k k 2
one end of the bar A is pushed into the paper somewhat

and B is pulled out, is the equilibrium stable or ¢
unstable?

16. A pendulum consists of a stiff weightless bar of
length ! carrying a mass m on its end (Fig. 62). Ata ; |

distance a from the upper end two springs k are at-
tached to the bar. Calculate the frequency of the
vibrations with small amplitude. Fic. 62.
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16. Turn Fig. 62 upside down. (a) Find the relation between @, m, and I
for which the equilibrium is stable. (b) Find the frequency.

17. Calculate the frequency of the stator of Fig. 54. The linear stiffness
of cach of the four springs is k, their average distance from the center of the
rotor is a, and the moment of inertia of the stator is I.

18. Calculate the frequency of Problem 17 for the spring system of Tig. 55.

The beams ¢ arec made of steel with

% a modulus of elasticity E; their

dimensions are ,, I,, w, and ¢ as in-
dicated in the figure.

19. A stiff weightless horizontal
k—a bar of length ! is pivoted at one end

and carries a mass m at its other end
L 1 !m (Fig. 63). Itis held by an inexten-

%? sible string of length 2. If the mass
! | is pulled perpendicularly out of the
Fic. 63. paper and then released, it will oscil-

late. Calculate the frequency.
20. A mass m is attached to the center of a thin wire of cross section A
and total length { which is stretched with a large tension of T Ib. between
two immovable supports. The modulus of elasticity of the wire is E.
Calculate the frequency of the vibrations of the mass in a planc perpendicu-
lar to the wire.

21. A heavy solid eylinder of diameter D, 2
length [, and mass m canroll over a hori- f
zontal surface. Two springs kare attached e 7
to the middle of I at a distance a above the 7707z /;zf,,[?),/_,; 3/4,.',,/;.?/%3

center (Fig. 64). Calculate the frequency. Frc. 64.

22. Find an expression for the linear
spring constant &k of a steel coil spring of wire diameter d, coil diameter D,
and having n turns. Calculate & numerically for d = 0.1 in., D = 115 in.,
and n = 10.

23. Find the torsional-spring constant of a coil spring, i.e., a coil spring
of which the ends are subjected to torques about the longitudinal axis of
the spring. Calculate this k£ numerically for the spring of Problem 22.

24. Find the spring constant k in bending of a coil spring, i.c., the bending
moment to be applied to the ends of the spring divided by the angle through
which the two ends turn with respect to each other. Calculate this &
numerically for the spring of Problem 22.

256. What are the expressions for the linear-spring constants of

a. A cantilever beam of bending stiffness EI with
the mass attached to the end I?

b. A beam of total length [ on two supports with the
mass in the center?

¢. A beam of total length ! built in at hoth ends
with the mass in the center?

26. Calculate the frequency of the small vertical
vibrations of the mass m of Fig. 65. The two bars are
supposed to be stiff and weightless. 'The mass is in the center betwcen k;
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and k4, and ksismidway between &yand k.. The mass is guided so that it can
move up and down only. It can rotate {recly and has no moment of inertia.

27. A point on a machine execcutes simultancously a horizontal and a
vertical vibration of the same frequency. Viewed with the seismie micro-
scope described on page 87 the point will be seen as
an ellipse (Fig. 66). By obscrvation, the lengths h
and AB are found. (a) Calculate from these the
phase angle between the horizontal and vertical mo-
tions. What shapes does the ellipse assume for (b)
¢ = zero, and (¢) ¢ = 90 deg.?

28. A damped vibrating system consists of a spring
of k = 20 Ib. per inch and a weight of 10 1b. 1t is
damped so that cach amplitude is 99 per eent of its
previous one (Z.e., 1 per cent loss in amplitude per full eycle).

a. Find the frequency by formula and from Fig. 29.

b. Find the damping constant.

¢. Find the amplitude of the force of resonant frequency necessary to keep
the system vibrating at 1 in. amplitude.

d. What is the rate of inercase in amplitude if at 1 in. amplitude the
exciting force (at resonant frequency) is doubled?

e. What is the final amplitude to which the system tends under the
influence of this doubled force?

f. Find the amplitude-time relation of this growing vibration.

29. Find the expression for the steady-state torque, assuming no damping,

a. In shaft k of Fig. 26, page 40.

b. In shaft k. of Fig. 27.

30. A “static balancing machine” (page 293) consists of a bearing B
inclined at an angle o with the vertical (I'ig. 67). A
rotor placed in this bearing has a moment of inertia
I and an unbalance m at a distance r from the center.
Write the differential equation of the vibrations of the
rotor in terms of its angle of rotation ¢. Find the
natural frequency for small vibrations ¢.

31. Tind the natural frequency of the small oseilla-
tions of a solid half cylinder (the contour consisting
of a half circle and a diameter), which rolls without
sliding on a horizontal plane.

32. A simple k-m system is at rest. A constant
foree P is applied to the mass during a stated time

@ interval o, after which the force is removed. Find

Fra. 67. the motion of the mass after removal.

33. Set up the differential equations of motion of the system of .Fig. 27;
then, by eclimination, reduce them to a single differential equation in ’?erms
of the variable ¢y = ¢; — ¢2/n, which is an angle that becomes zero if the
shafts are not twisted. In this manner verify the statements made on

age 42.
? 54. A weightless, stiff bar is hinged at one end. At a distance / from tbe
hinge there is a mass m, at a distance 2 there is a dashpot ¢, and at a dis-
tance 31 there is a spring k and an alternating force P sin wt. Set up the

Ira. 66.
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differential equation. Assuming small damping ¢ (but not zero damping),
calculate the natural frequency; the amplitude of forced vibration at the
spring at the natural frequency and at half natural frequency.

86. A circular solid disk of mass A and radius r is suspended in a hori-
zontal plane from a fixed ceiling by three vertical wires of length [, attached
to three equally spaced points on the periphery of the disk.

a. The disk is turned through a small angle about its vertical center
line and let go. Calculate the frequency of rotational vibration.

b. The disk is displaced sidewise through a small distance without rota-
tion and let go. Calculate the frequency of the ensuing swinging motion.

36. Prove the statement made on page 77 that therc is no phase dis-
tortion in a seismographic instrument if the phase-angle diagram Fig. 42b
is a straight diagonal line passing through the origin.

37. A mass m is suspended from a ceiling by a spring k and a dashpot
c. The ceiling has a foreed motion ao sin wt. Calculate the work done by
the ceiling on the system per cycle of vibration in the steady state. Write
the answer in dimensionless form.

38. In the system of Fig. 23 and Fig. 42, the maximum work input by the
force as a function of frequency is only approximately equal to =Poxq, where
zo18 the amplitude at w/w, = 1. The actual maximum work is at a slightly
different frequency. Prove that this maximum work can be computed from
7Poxo by multiplying that quantity by the correction factor

VT = 2(c/c.)?
1 — (c/cc)?

and show that this error is less than 0.1 per cent for a damping as high as
c/cc = 20 per cent.

39. In 1940 a large two-bladed windmill, capable of generating 1,250 kw.
of electric power was built on Grandpa’s Knob near Rutland, Vt. The
diameter of the blade circle is 175 ft, the blades rotate at 30 r.p.m. in a planc
which is considered vertical for our purpose. The blades arec mounted on the
“pintle” or cap, which itsclf can rotate slowly about a vertical axis in order
to make the blades face the wind. Since there are only two blades in the
rotor, the moment of inertia of the rotor about the vertical pintle axis is very
much greater when the blades are pointing horizontally than when they
are vertical, 90 deg. further. Let © be the constant angular speed of the
rotor, w the very much smaller angular speed of the pintle, and /mex and Imin
the extreme values of inertia about the vertical axis.

a. Assuming the driving mechanism of the pintle motion to be extremely
soft torsionally, so that no torque acts on the pintle (except friction, which
is to be neglected), find the ratio between the maximum and mimimum
values of w.

b. Assuming the pintle drive to be extremely stiff torsionally, so that the
pintle motion w is forcibly uniform, find an expression for the torque in the
pintle drive.



CHAPTER III

TWO DEGREES OF FREEDOM

22. Free Vibrations, Natural Modes.—In the preceding
chapter there was discussed the theory of the vibrations of a
system with a single degree of freedom with viscous damping.
Though the exact idealized system with which the theory dealt
oceurs rarely, it was seen that a number of actual cases are suffi-
ciently close to the ideal to permit conciusions of practical
importance. The theory of the single-degree-of-freedom system
enabled us to explain the resonance phenomenon in many
machines, to calculate natural frequencies of a number of struc-
tures, to explain the action of most vibration-measuring instru-
ments, and to discuss spring suspension and vibration isolation.

This exhausts the possibilities of applica-
tion pretty thoroughly, and in order to ex-
plain additional phenomena it is necessary
to develop the theory of more complicated
systems. As a first step consider two degrees
of freedom, which will yield the explanation
of most “vibration dampers,” of the action  x ?k
of a number of contrivances for stabilizing ®
ships against rolling motions in a rough sea,

and of the operation of automobile shock 1_ i
absorbers. *2

The most general undamped two-degree- ke
of-freedom system can be reduced to that of
Fig. 68 and consists of two masses m; and m; 4

. . Fra. 68.—Undamped
suspended from springs k; and k. and tied two-degroe-of-frecdom

together by a ‘‘ coupling spring” k;.  Assum- system with spring
ing that the masses are guided so as to be coupling.

capable of purely vertical motions only, there are evidently two
degrees of freedom, since the two masses can move independently
of each other. By specifying their vertical positions z, and z,

the configuration is entirely determined.
103
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As in the single-degree-of-freedom case, there are a number of
torsional, electrical, ete., two-degree-of-freedom systems which
are completely equivalent to Fig. 68.

Proceeding now to a calculation of the free vibrations, we notice
that there are two distinct forces acting on the mass m;, namely
the force of the main spring k, and that of the coupling spring k;.
The main force is — &z, acting downward (in the 4z ,-direction).
The shortening of the coupling spring is £, — x,, so that its com-
pressive force is kj;(z, — z,). A compressed coupling spring
pushes m, upward, so that the force has to be taken with the
negative sign. These two are the only tangible forces acting on
ma, so that its equation of motion is

miE, = —kixr — ks(zy — z2)
or
mi&, + (kl + k;;)xl - ka.’l!z =0 (37)

The equation of motion for the second mass can be derived in the
same manner. But by turning Fig. 68 upside down and reversing
the directions of z; and z,, m, and k, assume the positions of
my and k; and

MaoZe + (kg "I" k:})xz - k:}.’l?l =0 (38)

Assume now that the masses m; and m, execute harmonic
motions with the same frequency w (as yet unknown) and differ-
ent amplitudes @, and a, (also unknown).

x; = a; sin wt} (39)

Ty = Qg sin wit

This is a mere guess; we do not know whether such a motion is
possible. By substituting in the differential equations we shall
soon find out if it is possible.

[—mia10? + (k1 4 k3)ar — ksaq] sin ot = 0
[—m2a2w2 + (kz + k:{)(lq — k‘:xal] sin wt = 0

These equations must be satisfied at any instant of time. They
represent sine waves, so that in order to make them zero at all
ttmes the amplitudes in the brackets have to be zero.

al(—mlwz + kl + k;;) _ kadz =0 (40)
—ksa, + az(—m2w2 + ks + ks) =0
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If the assumption (39) is correct, it is necessary that Eqs. (40)
be satisfied. In general this is not true, but we must remember
that in (39) nothing was specified about the amplitudes a, and
a, or about the frequency w. It will be possible to choose ai/a.
and w so that (40) is satisfied, and with these values of a,/a,
and » Eq. (39) becomes a solution. In order to find the correct
values we have only to solve them from (40). Thus from (40a)

ay —ks

@ " et — by @
From (40b), also, the amplitude ratio can be solved:
@ maw? = ks — ks
aq - ""k;; o (42)
In order to have agreement, it is necessary that
ks mae® =k = ks
m1w2 - k1 - k3 - ;ks
or
ot — wg{’ﬁc’i’ n ’iz_tk%} ik o Rk o+ Biks _ )
my Mo mime

This equation, known as the “frequency equation,’” leads to two
values for w2 Lach one of these, when substituted in either
(41) or (42), gives a definite value for a;/a,. This means that
(39) can be a solution of the problem and that there are two
such solutions.

For readers familiar with Mohr’s circle diagram in two-dimensional
elasticity, the following construction is of interest. Let in Fig. 68

w? = ki + ka, w? ks + ks 5 ka

a b ’ Wiy = ==
my Mme '\/7n17ﬂ2

The quantities w, and w, are the frequencies of the system in which one
of the masses is held clamped, while wa cxpresses the strength of the cou-
pling. With this notation, Eq. (43) can be written as

ot — (o + af) + (slof — ol) = 0
Lay off in the diagram of Fig. 69 the following distances:
04 = o? OB = o BC = wh

Then draw a circle through C about the mid-point between A and B as
center. The new points D and E thus found determine the natural fre-

quencies of the system:
w} = 0D and w} = OF
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which can be verified from the equation. In particular, when there is no
coupling (BC = 0), the points D and E coincide with A and B, so that then
w, and wy, are the natural frequencies.

For further discussion, let us simplify the system somewhat by
making it symmetrical. Let ky = k; = k and m; = m, = m.
The frequency equation then reduces to

w

L ;k“ + ki ;1;22’“"‘) =0 (43a)

with the solutions

_ktks \/(k +k3>2 RS

m m m?

™

w

or

k and PR T

2
' m m

w

which are the two natural frequencies of the system. Substituting
these frequencies in (41) or (42),

L | and — = —1
Qg Qa2
The physical significance of these results is obvious. The fact
that ai/a; = +1 means (Eq. 39) that the two masses move in
the same direction through
the same distance. The cou-
pling spring is not stretched or
compressed in this process.
Naturally the frequency of this
motion is w? = k/m, since the
system reduces to two inde-
l pendent single-degree-of-free-
Fio. 69.—Mohr's circle for deter- dom systems. The fact that
mining the natural frequencies of Fig. al/a2 = —1 means that the
68.
two masses move through the
same distance but in opposition to each other. This motion is
wholly symmetrical, so that the mid-point of the coupling spring
ks does not move. If this mid-point were held clamped, no
change in the motion would take place. Thus the system is
again split up into two independent single-degree-of-freedom
systems. This time, however, the mass is connected to ground
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by two springs, one of stiffness k¥ and another of stiffness 2k;
(see page 47), so the frequency is w? = (k + 2k;)/m.

Thus there are two “natural modes of motion,” each with its
corresponding natural frequency. The solution shows that if
the system is given an initial disturbance of z; = +1 and
z2 = +1 (Fig. 68) and then released, the ensuing motion will be
purely sinusoidal with the frequency w? = k/m; it swings in the
first natural mode. On the other hand, if the initial displace-
ment is x; = 41 and z; = —1, again a purely sinusoidal motion
follows with the frequency w? = (k + 2k3)/m, the second mode.

Assume next that the initial displacement isz; = 1 and z, = 0,
from which position the system is released. As yet we have no
solution for this case. But this initial displacement can be
considered as the sum of two parts: first z, = 14, 2, = 14 and
seoond z; = 14, z, = — 14, for each of which a solution is known.

Assume now that the ensuing motion is the ‘‘superposition”
of these two partial motions as follows:

21 = Y4 cos wit + 14 cos w2t}

s = 14 cos wit — 1§ cos wat (44)

That this is the correct solution can be concluded from the fact
that on substitution in (37) and (38) the differential equations
are satisfied. Moreover at ¢ = 0, the initial conditions are
satisfied.

Equation (44) shows that the ensuing motion will be one in
the first mode with amplitude 14 and frequency w,, superposed
on a motion with amplitude Y4 and frequency w.. As long as
there is a coupling spring ks, it is seen that w, and w, are different.
Thus the combined motion of either mass can not be sinusoidal
but must be composed of two frequencies. Naturally ‘‘beats”
will occur if the two frequencies are close together (Fig. 8). This
happens if ks < k, or, in words, if the coupling spring is very soft
in comparison to the main springs. With an initial displace-
ment z; = 1, z, = 0, first m, will vibrate with amplitude 1 and
m, will stand practically still. After a time, however, the differ-
ence in the two frequencies will have changed the phase between
the two vibrations by 180 deg. (see Fig. 7). Then instead of

z, = ¥4, z, = 14 (first mode) and
T, = 14, 2, = —14 (second mode)

we have
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xz, = Y4, z, = 14 (first mode) and
1 = —3Y, 2, = +14 (second mode)

Thus the first mass stands still and the second one executes vibra-
tions of amplitude 1. The phenomenon is periodic so that all
motion travels from one mass to the other continuously.

This very interesting experiment can be shown in a number
of variations, of which Fig. 70 gives five possibilities. The first
case consists of two pendulums capable of swinging in the plane

YA ”@\’lw rm—“ ,
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Fia. 70.—Five experiments in which we can obscrve a periodic wandering of the
energy from one part to another.

of the paper. The main springs have been replaced here by
gravity, but the coupling spring exists in the form of a very soft
coil spring. For “small”’ vibrations (say below 30-deg. ampli-
tude) a gravity pendulum behaves like the fundamental mass-
spring system. The spring constant k, which is the restoring
force for unit displacement, is mg/l, so that for a simple pendulum

= k/m = g/l. In further reducing Fig. 70a to Fig. 68, it is
seen that the coupling-spring constant k; in Fig. 68 is the force
at the masses caused by the coupling spring if the masses are
pulled one unit apart. Applying this experimental deﬁnition to

Fig. 70a, we find that, in the absence of gravity, a force of k—l—2 at
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one of the masses pulls those masses 1 in. apart (see also page 48).
Thus the equivalent of k; is ka2/12.

The two natural modes of motion are easily recognized. The
pendulums swing either with each other or against each other,

o ]
the frequencies being w; = \/% and wy = 4 /% + 2ﬁk . %‘

Pulling the left pendulum 1 in. to the left and keeping the right
pendulum in its place is equivalent to the sum of the two dis-
placements shown in Fig. 715 and ¢. Upon releasing the left
pendulum, it will perform vibrations as indicated by Fig. 71a
(the right-hand pendulum stands still). This motion can be

W w

(d) (e) )
F1a. 71.—Any motion can be broken up into the sum of two natural motions
having the two different natural frequencies w1 and wa.

regarded as the sum of two others with frequencies w, and w,
as shown in the diagram. For the first few cycles this motion
of one pendulum only will persist, because the two natural fre-
quencies are sufficiently close together to keep in step for a short
time. However, the second mode actually goes somewhat faster
than the first one and gains on it since w, > w;. After a sufficient
time interval (say 20 cycles), it will be 180 deg. in advance of the
first mode, which is indicated in Fig. 71d and e. Performing the
addition shown in the figure, it is seen that the left pendulum
now stands still, while the right pendulum swings with the full
amplitude. Then the phenomenon repeats itself; the amplitude
wanders from one pendulum to the other continuously, until the
inevitable damping brings everything to rest.

In Fig. 70b the pendulums swing perpendicular to the plane
of the paper. Two natural motions are possible: (1) the pendu-
lums swing together, or (2) they swing against each other, thereby
twisting the very slender connecting shaft, which causes some
increase in the frequency. Pulling out one of the pendulums
while keeping the other in place (thereby slightly twisting the
coupling rod) and then releasing leads to the same phenomenon
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of continuous transfer of all motion from one pendulum to the
other.

Figure 70c¢ shows a system resembling in some respects an auto-
mobile chassis on its springs. Two natural motions of the mass
are possible: (1) a bobbing up and down parallel to itself with the
frequency «? = 2k/m and (2) a rocking about the center of
gravity G in the plane of the drawing with a frequency «* = kl2/21.
The derivation of these frequency formulas is left to the reader.
Now suppose the left-hand end of the chassis is pulled up
1 in. while the right-hand end is kept in place. From this position
the system isreleased. Again the motion is split up into two parts
(Fig. 72a reading from left to right).

If the quantities m, I, k, and [ are such that w; and w, are nearly
the same, the motion of Fig. 72a will keep on for the first few

Wy We
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F1ag. 72.—Illustrates the energy transfer of the experiment of Fig. 70¢.

cycles without marked change. But after a larger number of
cycles one of the motions (say the rocking one) gains 180 deg. on
the other. Read now Fig. 72b from right to left and it is seen
that the body vibrates with the lefi-hand end stationary. Of
course, after an equal interval of time the first motion occurs
again and so on until everything dies out on account of damping.

While in Fig. 70a and b the coupling spring could be easily
seen as a separate part of the system, this is not the case in 70c.
But the essential requirement for the experiment is that the sys-
tem have two degrees of freedom with slightly different natural
frequencies, and it does not matter whether the ‘‘coupling
spring’’ can be recognized or not.

A striking experiment is shown in Tig. 70d known as Wilber-
force’s spring. A mass, suspended from a coil spring, has two
protruding screws with adjustable nuts. The two degrees of
freedom consist of an up-and-down motion and of a twisting
motion. The ‘“‘coupling” exists due to the fact that a coil
spring when pulled out causes a slight torque and when twisted
gives a slight pull. By changing the position of the nuts the
moment of inertia I is changed while the mass m remains con-
stant. Thus by a proper adjustment of the nuts the two natural
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frequencies can be brought to nearly the same value. Then by
pulling down and releasing, an up-and-down motion of the mass
without twist is initiated. After a while only twisting occurs
without vertical motion, and so on.

The last case, illustrated in Fig. 70e, is the electrical analogue
of this phenomenon (see pages 39, 40). Two equal masses (induc-
tances) L connected to equal main springs (condensers) C are
coupled with a weak coupling spring (large coupling condenser C;
since k is equivalent to 1/C). A current initiated in one mesh
will after a time be completely transferred to the other mesh,
and so on. Electrically minded readers may reason out how the
currents flow in each of the two ‘““natural modes’ and what the
frequencies are, and may also construct a figure similar to 71 or
72 for this case.

Ezample: A uniform bar of mass m and length 21 is supported by two
springs, one on each end (Fig. 70c). The springs are not equally stiff, their
constants being k (left) and 2k (right), respectively. Find the two natural
frequencies and the shapes of the corresponding modes of vibration.

Solution: Let x be the upward displacement of the center of the bar and ¢
its (clockwise) angle of rotation. Then the displacement of the left end
is £ + le and that of the right end z — lp. The spring forces are k(z + ly)
and 2k(z — lg), respectively. Thus

mi + k(x + lp) + 2k(xz — lp) =0
and
(41 2ml®) ¢ + kl(z + lo) — 2kl(z — lp) =0

are the differential equations. With the assumption of Eq. (39) we obtain
(—mw? + 3k)xo — klpo =0

—klzo + (—14mw?l? + 3ki2)py = 0

from which follows the frequency equation
(—mw? + 3k)(—Vimw?l? + 3ki2) — k22 =0
or
ok oal E\? _
wé — 1zﬁw2 + 24(5) = 0.

with the solutions

w? = 2.54—£ and w} = 9.46—’S
m m

The shapes of the motion corresponding to these frequencies are found
from the second differential equation, which can be written as

Zo_ _1m,
oy ~ "3 3

Substituting the values for w? just found, this becomes
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Zo Zo
2) = 42 ) = —015
lwo)x +2.16 l<P0)2

This means a rotary vibration of the bar about a point which lies at a dis-
tance of 2.161 to the right of the center of the bar for the first natural fre-
quency and about a point at 0.15/ to the left of the center for the second
natural frequency.

23. The Undamped Dynamic Vibration Absorber.—A machine
or machine part on which a steady alternating force of constant
frequency is acting may take up obnoxious

vibrations, especially when it is close to

K fein wt resonance. In order to improve such a situa-
M tion, we might first attempt to eliminate the
{x, force. Quite often this is not practical or even

K possible. Then we may change the mass or the

spring constant of the system in an attempt to

x; get away from theresonance condition, but in

Fio. 73.—The ad- some cases thisalsoisimpractical. A third possi-

o o™ emall bility lies in the application of the dynamic

large machine K-M wibration absorber, invented by Frahm in
prevents vibration 1909. .

of that machine in . . .
spite of the alternat-  In Fig. 73 let the combination K, M be the

ing force Posin of.  gohematic representation of the machine under
consideration, with the force P, sin wt acting on it. The
vibration absorber consists of a comparatively small vibratory
system k, m attached to the main mass M. The natural

Jrequency \/k/m of the attached absorber is chosen to be equal to
the frequency w of the disturbing force. It will be shown that then
the main mass M does not vibrate at all, and that the small
system k, m vibrates in such a way that its spring force is at
all instants equal and opposite to Py sin wf. Thus there is no
net force acting on M and therefore that mass does not vibrate.

To prove this statement, write down the equations of motion.
This is a simple matter since Fig. 73 is a special case of Fig. 68
in which k, is made zero. Moreover, there is the external force
Py sin wt on the first mass M. Equations (37) and (38) are thus
modified to

M:il + (K + k)il?l - kl‘g = Po sin wt}

m

miy + k(zs — 21) = 0 (45)

The forced vibration of this system will be of the form
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(46)

1 = a; sin i
Tg = (3 Sin wi

This is evident since (45) contains only zi, &, and z,, &,, but not
the first derivatives z, and #,. A sine function remains a sine
function after two differentiations, and consequently, with the
assumption (46), all terms in (45) will be proportional to sin wt.
Division by sin wt transforms the differential equations into
algebraic equations as was seen before with Egs. (37) to (40).
The result is that

al(-—sz + K + k) -_— ’Caz = Po}

—kay + as(—ma? + k) = 0 (A7)

For simplification we want to bring these into a dimensionless
form and for that purpose we introduce the following symbols:
zs: = Po/K = static deflection of main system
w? = k/m = natural frequency of absorber
Q2 = K/M = natural frequency of main system
u = m/M = mass ratio = absorber mass/main mass
Then Eq. (47) becomes

2
al(l + I]% - gz) - 02119{‘ = Tat

. (47a)
a, = a2<1 — %2)
or, solving for a, and a,,
wz
@ _ T
Tt w? k w? k
CAEDE
K2 1

Tet w? k. o? 2
IS

From the first of these equations the truth of our contention
can be seen immediately. The amplitude a, of the main mass is

2
w® . .
zero when the numerator 1 — —; is zero, and this occurs when the

frequency of the force is the same as the natural frequency of the
absorber.
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Let us now examine the second equation (48) for the case that
w = w,. The first factor of the denominator is then zero, so that
this equation reduces to
K. _ _P

Ay = —anz = A

With the main mass standing still and the damper mass having
a motion —Py/k - sin wt the force in the damper spring varies as
—P, sin ot, which is actually equal and opposite to the external
force. -

These relations are true for any value of the ratio w/Q,. It
was seen, however, that the addition of an absorber has not
much reason unless the original system is in resonance or at least
near it. We therefore consider, in what follows, the case for
which

= =
SE

or

Sla

we = Oy or

Sl

The ratio
=m
F=M

then defines the size of the damper as compared to the size of
the main system. For this special case, (48) becomes

2
-
Ty Wy .
T o o sin wt
(l_w_3><1+“—53>—“ (49)
e 1 sin wt

= 7 Z
w? w?

A striking peculiarity of this result and of Eq. (48) is that the
two denominators are equal. This is no coincidence but has a
definite physical reason. When multiplied out, it is seen that the
denominator contains a term proportional to (w?/w?)?, a term
proportional to (w?/w?)! and a term independent of this ratio.
When equated to zero, the denominator is a quadratic equation
in w?/w? which necessarily has two roots. Thus for two values
of the external frequency w both denominators of (49) become
zero, and consequently r, as well as z, becomes infinitely large.
These two frequencies are the resonant or natural frequencies of
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the system. If the two denominators of (49) were not equal to
each other, it could occur that one of them was zero at a certain
w and the other one not zero. This would mean that z, would
be infinite and z, would not. But, if z, is infinite, the extensions
and compressions of the damper spring k& become infinite and
necessarily the force in that spring also. Thus we have the
impossible case that the amplitude z, of the damper mass m is
finite while an infinite force k(x, — x.) is acting on it. Clearly,
therefore, if one of the amplitudes becomes infinite, so must the
other, and consequently the two denominators in (49) must be
the same.

1.5
et L — 125
1.0
f I I
3
05
0 0l 02 0.3 04 05
m/M - —

Fi1a. 74.—The two natural or resonant frequencies of Fig. 73 as a function of the
mass ratio m/M, expressed by Eq. (50).

The natural frequencies are determined by setting the denomi-
nators equal to zero:

or

(—‘i>4 - (3)2(2 Fw+1=0
Wa Wa

with the solutions

@) =(egederr @

This relation is shown graphically in Fig. 74, from which we
find, for example, that an absorber of one-tenth the mass of the
main system causes two natural frequencies of the combined
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system at 1.17 and 0.85 times the natural frequency of the original
system.

The main result (49) is shown in Figs. 75a and b for p = 14,
i.e., for an absorber of one-fifth the mass of the main system.

Follow the diagram 75a for an increasing frequency ratio
w/Q = w/w,. It is seen that z,/z,; = 1 for w = 0, while for
values somewhat larger than zero z, is necessarily positive, since
both the numerator and the denominator of Eq. (49a) are posi-
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F1a. 75a and b.—Amplitudes of the main mass (z1) and of the absorber
mass (z2) of Fig. 73 for various disturbing frequencies w. The absorber mass is
one-fifth of the main mass.

tive. At the first resonance the denominator passes through zero
from positive to negative, hence z:/x,; becomes negative. Still
later, at w = @, = w,, the numerator becomes negative and
z1/x,. becomes positive again, since both numerator and denomi-
nator are negative. At the second resonance the denominator
changes sign once more with negative z; as a result.

The x./x,: diagram passes through similar changes, only here
the numerator remains positive throughout, so that changes in
sign occur only at the resonance points. It was seen in the dis-
cussion of Fig. 38 that such changes in sign merely mean a change
of 180 deg. in the phase angle, which is of no particular impor-
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tance to us. Therefore we draw the dotted lines in Figs. 75a and
b and consider these lines as determining the amplitude, eliminat-
ing from further consideration the parts of the diagrams below the
horizontal axes.

The results obtained thus far may be interpreted in another
manner, which is useful in certain applications. In Fig. 73 let
the Frahm absorber %, m be replaced by a mass Mequ, attached
solidly to the main mass M, and let this equivalent mass be so
chosen that the motion z; is the same as with the absorber.
Since the absorber is more complicated than just a mass, it is
clear that M, cannot be constant but must be different for
each disturbing frequency . The downward force trans-
mitted by the absorber to the main system M is the spring force
k(xe — z,), which, by Eq. 45, is equal to —mi,. If a mass
Meqviv Were solidly attached to M, its downward reaction force
on M would be the pure inertia force — Meuvéi. For equivalence
these two reactions must be equal, so that, by Eq. 46 and the
second Eq. 47a, we have

Meauiv _ &2 _ T2 _ @ _ 1
m T Ty ay 1 w?
wg

which is the well-known resonance relation, shown in Fig. 38,
page59. Thus it is seen that the Frahm dynamic-absorber sys-
tem can be replaced by an equivalent mass attached to the main
system, so that the cquivalent mass is positive for slow disturbing
frequencies, is infinitely large for excitation at the absorber
resonant frequency, and is negative for high frequency excitation.
This way of looking at the operation of the absorber will be
found useful on page 274.

From an inspection of Fig. 75a, which represents the vibrations
of the main mass, it is clear that the undamped dynamic absorber
is useful only in cases where the frequency of the disturbing force
is nearly constant. Then we can operate at w/ws = /@, = 1
with a very small (zero) amplitude. This is the case with all
machinery directly coupled to synchronous electric motors or
generators. In variable-speed machines, however, such as
internal-combustion engines for automotive or aeronautical
applications, the device is entirely useless, since we merely replace
the original system of one resonant speed (at w/Q, = 1) by
another system with two resonant speeds. But even then the
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absorber can be made to work to advantage by the introduction
of a certain amount of damping in the absorber spring, as will be
discussed in the next section.

An interesting application of the absorber is made in an electric
hair elipper which was recently put on the market. It is shown
in Fig. 76 and consists of a 60-cycle alternating-current magnet a
which exerts a 120-cycle alternating force on a vibrating system b.
System b is tuned to a frequency near 120 cycles but sufficiently
far removed from it (20 per cent) to insure an amplitude of the
cutter d, which is not dependent too much on damping. Thus
the cutter blade d will vibrate at about the same amplitude inde-
pendent of whether it is cutting much hair or no hair at all.

Fra. 76.—Electrie hair clipper with vibration absorber. a = magnet, h =
armature tongue, ¢ = pivot, d = cutter, ¢ = guide for cutter, f = vibration
absoiber.

The whole mechanism, being a free body in space without
external forces, must have its center of gravity, as well as its
principal axes of inertia, at vest. Sinee the parts b, d arc in
motion, the housing must move in the opposite direction to
satisfy these two conditions.  The housing vibration is unpleasant
for the barber’s hands and creates a new kind of resistance,
known as sales resistance.  This is overcome to a great extent
by the dynamic vibration absorber f, tuned exactly to 120 cycles
per second, since it prevents all motion of the housing at the loca-
tion of the mass f.  With stroboscopic illumination the masses
d and f are clearly seen to vibrate in phase opposition.

The device as sketehed is not perfeet, for the mass f is not
located correctly. At a certain instant during the vibration,
the cutter d will have a large inertia foree upward, while the
overhung end b will have a small inertia force downward. The
resultant of the inertia forces of the moving parts b, d therefore
is an alternating force located to the left of the cutter d in Fig. 76.

The effect of the absorber is to completely eliminate 120-cycle motion
of a point of the housing right under the absorber mass f, but it does not
prevent the housing from rotating about that motionless point. Complete
elimination of all 120-cycle motion of the housing can be accomplished by
mounting two absorbers fin the device with a certain distance (perpendicular
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to the direction of the cutter motion) between their two masses. The two
masses will then automatically assume such amplitudes as to cause two
inertia forces which will counteract the force as well as the moment of the
inertia action of the cutter assembly d, b, or in different words the two masses
will enforce two motionless points of the housing.

For a torstonal system, such as the crank shaft of an internal-
combustion engine, the Frahm dynamie vibration absorber takes
the shape of a flywheel A that can rotate freely on the shaft on
bearings B and is held to it by mechanical springs &k only (I'ig.
77a). Since the torsional impulses on such an engine are har-
monies of the firing frequency, i.e., have a frequency proportional
to the engine speed, the device
will work for one engine speed
only, while there are two neigh-
boring speeds at which the shaft
goes to resonance (Ifig. 75a).
In order to overcome this, it
has been proposed recently to
replace the mechanical springs of

(b)
: K Fia. 77.-- Torsional dynamie vi-
Flg. 77a l)y the “ccntrlfugal bration absorber with mechanical

) \ . . N
The p(‘ndu- springs' (a) and with centrifugal

spring”’ of Fig. 77b. springs (b).

lum in the centrifugal ficld of that

figure acts in the same manner as an ordinary gravity pendulum
in which the field g is replaced by the centrifugal ficld rw?.  Since
the frequency of a gravity pendulum is 4/g/{, the frequency of a
centrifugal pendulum becomes w/7/l, 4.e., proportional to the
engine speed. Thus a centrifugal pendulum will act as a Frahm
dynamic absorber that is tuned correctly at all engine speeds.
Further details of this device are discussed on page 273.

24. The Damped Vibration Absorber.—Consider the system of
Fig. 73 in which a dashpot is arranged parallel to the damper
spring k, between the masses M and m. The main spring K
remains without dashpot across itself.  Newton’s law applied to
the mass M gives

Mi, + Kz + k(zxy — z2) + c(@1 — &2) = Posinwt  (51)
and applied to the small mass m
miy + k(ry — 21) + c(Z2 — ) =0 (52)

The reader should derive these equations and be perfectly clear
on the various algebraic signs. The argument followed is
analogous to that of page 37 and of page 104. The four terms
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on the left-hand side of (51) signify the ‘‘inertia force” of M,
the main-spring force, the damper-spring force, and the dashpot
force. We are interested in a solution for the forced vibrations
only and do not consider the transient free vibration. Then both
z, and z, are harmonic motions of the frequency w and can be
represented by vectors. Any term in either (51) or (52) is
representable by such a vector rotating with velocity w. The
easiest manner of solving these equations is by writing the vectors
as complex numbers. The equations then are

—Mw”:cl + K(L‘[ + k(I1 bl 1172) + jwc(x1 d Ig) = Pg
—mw?ry + k(ze — 1) + joc(zs — 1)) = 0

where z, and z, are (unknown) complex numbers, the other quan-
tities being real.
Bringing the terms with z, and z, together:

[—Mo? + K + k + jocle, — [k + juclzy = Po} (53)
—[k + jowclzy + [—mw? + k + jwclze = 0

These can be solved for z, and x,. We are primarily interested
in the motion of the main mass x,, and, in order to solve for it, we
express r, in terms of z, by means of the second equation of (53)
and then substitute in the first one. This gives

xr, =
p (k — mw?) + jowc (54)
(=M K)(—mw+k) —mwk} +jwc| — Mw?+ K —maw?]
L fl E, sin wt For readers somewhat familiar with
ARSI [\ alternating electric currents this result
” @ will also be derived by means of the
R equivalent clectric circuit shown in Fig.
78. The equivalence can be established
by setting up the voltage equations
! and comparing them with (51) and (52)
or dircctly by inspection as follows.
K The extension (or veloeity) of the spring
c r K, the displacement (or velocity) of M,
) and the displacement (or velocity) of
Lprbyrr the force Py are all equal to z; (or ).

Fia. 78.—Equivalent electiic cir- Consequently the corresponding electri-
cuit. The small l-c-r “wav( trap"” lel ts 1/C, L dE t ca
corresponds to the absorber. cal elements i an o must carry

the same current (;) and thus must be
connected in secries. The velocities
across k or across the dashpot (f; — #;) are also equal among them-
selves, so that 1/c and r electrically must be in series but must carry
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a different current from that in the main eclements L, C, and E,
The velocity of m is #;, equal to the difference of the velocity of M (&) and
the velocity across the damper spring (& — ;). Hence the current i,
through I must be equal to the difference of ¢, and (iy — 7:). The equiva-
lence of the clectrical circuit and the mechanical system is thus established.

We are interested in the main current /. The impedance of a coil is jwL,
that of a condenser is 1/jwC, that of a resistance simply R. Impedances in
series, when expressed in complex, add directly, and impedances in parallel

add reciprocally. Thus the impedance of the ¢, r branch is r + J—lc— and that
w

of the Ibranch is jwl. The two branches in parallel have an impedance

= ]_;_..., -
1 1
P e ¥ jal

To this has to be added the impedance of the other elements in series, giving

1 K
L S

7 - 1
Z = jwL +ij T

r 4+ 1/joc = jol
By performing some algebra on this expression and translating back into
mechanices, the result (54) follows.
The complex expression (54) can be reduced to the form

X, = 1)11(/11 + ][fl) (540)

where A; and B; are real and do not contain j. The meaning
which has to be attached to (54) is then that in vector representa-
tion the displacement z, consists of two components, one in phase
with the force Py and another a quarter turn ahead of it (compare
Fig. 41a on page 70). Adding these two vectors geometrically,
the magnitude of z, is expressed by

But (54) is not yet in the form (54a); it is rather of the form

A +]B
—_ P VT
o1 IOC + jD

which can be transformed as follows:

. _p . A+iB(C—iD) _ p, (AC+ BD) +j(BC — AD)
P CHD(C = D) C*+ D
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Hence the length of the z, vector is

I _\/ AC + BD\* | /BC — AD\?
P, C* + D2 > + < 2 _+':_D7>

_ \/A 302+ BD* + B:Cr + AD? _ [(A* + BY)(C* + DY)

,,____,(CZ,*,:DZ)Z = (Cz + D2)2
_ A + B?
C* 4+ D2
Applying this to (54), we may write
o
ry

(k — mo*)? + w** (55)
(= Mw?+ K)(—mw?+k) — mwk]2+w2c?(— Mw?+ K —mw?)? "
which is the amplitude of the motion of the main mass M.
It is instructive to verify this result for several particular cases
and see that it reduces to known results as previously obtained.
The reader is advised to do this for some of the following cases:

l. k=

2. k=0;¢=0

3. ¢ =

4. ¢c=0;0=Q, = VK/M =\k/m
5 m =0

Thus we are in a position to calculate the amplitude in all
cases. In Iiq. (5D) x, is a function of seven variables: Py, o, ¢,
K, k, M, and m. However, the number of variables can be
reduced, as the following consideration shows. For example,
if Py is doubled and everything else is kept the same, we should
expeel to see 2y doubled, and there are several relations of this
same character.  In order to reveal them, it is useful to write
Iiq. (55) in a dimensionless form, for which purpose the following
symbols are introduced:

m/M = mass ratio = absorber mass/main mass

=
w? = k/m = natural frequency of absorber
Q2 = K/M = natural frequency of main systemn

f = w./Q, = frequency ratio (natural frequencies) (56)

g = w/Q, = forced frequency ratio
z,s = Po/K = static deflection of system
c. = 2mQ, = “critical” damping (see page 52)
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After performing some algebra Eq. (55) is transformed into

\/ (258) + @ — o
1'u &7
(2—g) (8 — 1+ ug?)’ + g’ — (& — 1) (" — £)]?

This is the amplitude ratio z:/z,; of the main mass as a function
of the four essential variables u, ¢/c., f, and g. Figure 79 shows a
plot of x,/x,, as a function of the frequency ratio g for the definite
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F1a. 79.— Amplitudes of the main mass of Fig. 73 for various values of absorber
damping. The absorber is twenty times as small as the main machine and is

tuned to the same frequency. All curves pass through the fixed points I’ and Q.

system: f = 1, 4 = 1J9, and for various values of the damping
¢/c.. In other words, the figure describes the behavior of a
system in which the main mass is 20 times as great as the damper
mass, while the frequency of the damper is equal to the frequency
of the main system (f = 1).

It is interesting to follow what happens for increasing damping.
For ¢ = 0 we have the same case as Fig. 75a, a known result.
When the damping becomes infinite, the two masses are virtually
clamped together and we have a single-degree-of-freedom system
with a mass 21359M. Two other curves are drawn in Fig. 79,
for ¢/c. = 0.10 and 0.32.

In adding the absorber to the system, the object is to bring
the resonant peak of the amplitude down to its lowest possible
value. With ¢ = 0 the peak is infinite; with ¢ = o it is again
infinite. Somewhere in between there must be a value of ¢ for
which the peak becomes a minimum.
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This situation also can be understood physically as follows.
It was learned on page 62 that the amplitude at resonance of
a single-degree-of-freedom system is limited by damping only.
It was seen that damping energy is dissipated, 7.e., converted
into heat. When the damping force does considerable work,
the amplitude remains small at resonance. This is a relation
that holds for more complicated systems also. The work done
by the damping force is given by the force times the displace-
ment through which it operates. In our case the displacement
is the relative motion between the two masses or also the exten-
sion of the damper spring. If ¢ = 0, the damping force is
zero, no work is done, and hence the resonant amplitude is
infinite. But when ¢ = «, the two masses are locked to each
other so that their relative displacement is zero and again no work
is done. Somewhere in between 0 and « there is a damping for
which the product of damping force and displacement becomes a
maximum, and then the resonant amplitude will be small.

Before proceeding to a calculation of this “optimum damping,”
we observe a remarkable peculiarity in Fig. 79, viz., that all four
curves intersect at the two points P and Q. (Sec Fig. 52, p. 91.)
This, we shall presently prove, is no accident; all curves pass
through these two points independent of the damping. If we can
calculate their location, our problem is practieally solved, because
the most favorable curve ts the one which passes with a horizontal
tangent through the highest of the two fixed points P or Q. The best
obtainable “resonant amplitude’” (at optimum damping) is the
ordinate of that point.

Even this is not all that can be done. By changing the relative
“tuning” f = w,/Q, of the damper with respect to the main
system, the two fixed points P and @ can be shifted up and down
the curve for ¢ = 0. By changing f, one point goes up and the
other down. Clearly the most favorable case is such that first
by a proper choice of f the two fixed points are adjusted to equal
heights, and second by a proper choice of ¢/c. the curve is adjusted
to pass with a horizontal tangent through one of them. It will
be seen later (IFig. 80) that it makes practically no difference
which one of the two (P or Q) we choose.

Now return to Eq. (57) to see if there are any values of g for
which z,/z.; becomes independent of c¢/c.. The formula is of
the form
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o B +8
= e(f) +p

This is independent of damping if .{/C = B/D, or written out
fully, if

—A”];* 2 _ o »gz _f.! - 2
g’ — 1+ ug? uf’g? — (g* — 1)(g* — f2)>

We can obliterate the square sign on both sides but then have
to add a + in front of the right-hand side. With the minus
sign, after cross-multiplication,

ug — @ - DE - ) = —@ - )@ — 1+ 48 (8)

It is seen that the whole of the second term on the left-hand side
cancels a part of the right-hand side, so that

uf’g? = —ug*(g® — 1)
or
f2 = —g? 4 f2 so that g2=0

This is a trivial (but true) result. At g = 0 or w = 0 the ampli-
tude is z,; independent of the damping, simply because things
move so slowly that there is no chance for a damping force to
build up (damping is proportional to velocity).

The other alternative is the plus sign before the right-hand side
of (58). After a short calculation the equation then becomes

1+ £ 4 uf2 | 22
t __9g2. 0 T A =
& & 2+ +2+#

This is a quadratic equation in g2, giving two values, the ‘fixed
points’’ we are secking. Let the two roots of this equation be
g? and gi. It is seen that g, and g, (i.e., the horizontal coordi-
nates of the fixed points P and @) are still functions of x and f.

Our next objective is to adjust the tuning f so that the ordinates
z/z, of P and @ are equal. To solve Eq. (59) for g, and g, to
substitute these values in (57), and then to equate the two expres-
sions so obtained is very time consuming. Fortunately, it is not
necessary. In the first place, we remember that at P and @ the
value of z/z,; is independent of the damping, so we may as well
select such a value of ¢/c. that (57) reduces to its simplest possible
form. This happens for ¢ = «, when (57) becomes

0 (59)
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o _ 1
T 1 — g1+ u (60)

Substituting g; and g. in this equation gives

1 1

1—gil+u) 1-gl+4u
However, this is not quite correct for the following reason.
Iiquation (60) is really not represented by the curve ¢ = « of
Fig. 79 but rather by a curve which is negative for values of g
larger than 1/4/1 + u (sce also Fig. 38). Since P and Q lie on
different sides of this value of g, the ordinate of P is positive and
that of @ negative, so that Iiq. (61) should be corrected by a
minus sign on one side or the other. By simple algebra the equa-
tion, thus corrected, becomes

(61)

g+ 8= (62)

Now it is not even necessary to solve liq. (59) for g, and g, if
we remember that the negative coefficient of the middle term in a
quadratic equation is equal to the sum of the roots. In LEq. (59)
that sum is

o _ 2(1+ 2 + uf?)

2 —
gl + g2 2 + u
Substitute this in Kq. (62) with the result that
1
f=—"-" 63
T4, (63)

This very simple formula gives the correct ‘‘tuning’’ for each
absorber size. For a very small absorber (1 = 0) the tuning
f ~ 1, or the damper frequency should be the same as the main-
system frequency. Ior a damper one-fifth as large as the main
mass, f = 5§ or the damper has to be made 17 per cent slower
than the main system.

Now we know how to tune, but we do not know yet what
amplitude r/x,, we shall finally get. Figure 80 is a case of such
tuning for p = 4. Two curves are drawn. One passes hori-
zontally through P and then is not horizontal at Q; the other
is horizontal at Q@ and not at P. It is seen that practically no
error is made by taking the amplitude of either point as the
maximum amplitude of the curve. This amplitude is easily
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calculated. Merely substitute a root of (59) in the expression
for z1/xs, and since at this point, (P or Q) x,/x,, is independent
of damping, take for it form (60). The result is

I ] 2

oL g | ! 4

Xgt \/ + I (6 )
This represents the most favorable possibility, if the natural

frequency of the damper differs from that of the main system in
the manner prescribed by (63).
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Fig. 80.—Resonance curves for the motion of the main mass fitted with the
most favorably tuned vibration absorber system of one-fourth of the size of the
main machine.

It is interesting to compare the result (64) with some other
cases which are sometimes encountered in actual machines
(Iig. 81).

First, consider the wibration absorber with constant tuning,
f = 1, where the small damper is tuned to the same frequency as
the main system, independent of the size of the damper. The
equation for the two fixed points (59) becomes

‘_ggry 2 _
g'— 28t T 0
or

2 =1 + Lk
& _\/2+u

For the usual damper sizes, the peak for the smaller g is higher
than for the larger g (see Fig. 79; also check the location of
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the fixed points with the formula). Thus we substitute

g2=1—-4 [245_—# in (60), with the result that

o ! . (65)

U+ )J—5—~
IS U 2+ 4

Next, consider the apparatus known as the “Lanchester
damper”’ (see page 255) with viscous friction, consisting of the
system of Fig. 73, in which the damper spring has been replaced
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Fia. 8la.—Peak amplitudes of the main mass as a function of the ratio m /3
for various absorbers attached to the main mass: curve 1 for the most favorably
tuned and damped absorber; curve 2 for the most favorably damped absorber
tuned to the frequency of the main system; curve 3 for the most favorably
damped viscous Lanchester damper; curve 4 for the most favorably damped
Coulomb Lanchester damper.

by a lincar dashpot. Thus k = 0and it is seen from Eq. (56) that
wq and f also are zero. The fixed-point equation (59) becomes

1
L - b 2 =
g — %y =0

so that one of the fixed points is permanently at gr = 0, and the
other is given by

g =5 (66)

The undamped and the infinitely damped constructions are
single-degree-of-freedom systems, becausc in the first case the
damper mass is completely loose and in the second case it is rigidly
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coupled to the main mass. This is shown clearly in Fig. 82, from
which we also can conclude that the most favorable resonant
amplitude is that of the fixed point . Substitute (66) in (60)
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Fia. 81b.—Peak relative amplitudes between the masses M and m for vanous
absorbers: curve 1 for the most favorably tuned and damped absorber; curve 2
for the most favorably damped absorber tuned to the frequency of the main
system; curve 3 for the viscous Lanchester damper.
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Fic. 8le.—Damping constants, required for most favorable operation of the
absorber, t.e., for obtaining the results of Figs. 81a and 81b: curve 1 for the most
favorably tuned absorber; curve 2 for the absorber tuned to the frequency of
the main system; curve 3 for the viscous Lanchester damper (see Problem 53).

and find, for the optimum amplitude,

T 2
2144 67
. +2 (67)

The usual construction of the Lanchester damper, however,
does not have viscous friction but rather ‘“Coulomb” or dry
friction. The analysis of that case is more complicated and will
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be discussed on page 257. The result for the most favorable
resonant amplitude with such a damper is approximately

z, _ w246
— 8
Tst 4# M (6 )

The four cases alrecady treated are shown in the curves of
Fig. 8la. A damper of u = !{g or {9 is a practical size. It
iy scen that the springless or Lanchester dampers are much
less efficient than the spring dampers or “damped dynamic
absorbers.”  However, the design of the correet spring in the
dynamic absorber is often difficult, because the small amplitudes
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Fia. 82.—Resonance curves of a simple system equipped with a Lanchester
damper with viscous fiiction for zero damping, infinite damping and optimum

damping. All curves pass through the fixed points P and Q.

of the main mass arc obtained at the expense of large deflections
and stresses in the damper spring.

Before proceeding with the ealculation of the stress in the damper spring,
it is necessary to find the optimum damping: (c/¢c)ope.  The optimum ampli-
tude was found merely by stating that there must be a value of ¢/c. for which
the curve passes horizontally through cither £ or Q in Fig. 80. The damping
at which this occurs has not been determined as yet, and now for the first
time complications arise.

Start from Iq. (57) and substitute Iq. (63) into it in order to make it
apply to the case of “optimum tuning.” Differentiate the so modified
Iiq. (57) with respect to g, thus finding the slope, and equate that slope to
zero for the point P, From the equation thus obtained c¢/c. can be caleu-
lated. This is a long and tedious job which leads to the result

( ) u(3'—\/u/ﬂ+2
Ce

T8O+
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as shox.vn in the.: paper by Brock, quoted in the Bibliography. On the other

hand, if dx/dg is set equal to zero, not at point P, but rather at point @, and

the resulting equation is solved for ¢/c., we get

(5) -l tyhni?
e 8 +ws '

A useful average value between the two gives the optimum damping for the

case, Iq. (63), of optimum tuning:

c\? _ 3u .
(&) =srs (o9)

The same procedure applied to the case of the constantly tuned absorber
f = 1, for zero slope at P, gives

(_r_)z _ule + 30+ valp +2)

: (p +3)U + vulu (69a)

8(1 4 )

Similarly, for the Lanchester damper f = 0 (Fig. 82), zero damping at  is
attained for

c\? 1 .
(5) =2z +a (690)
These results are shown graphically in Ing. Sle.

Now we are ready to find the relative motion between the two masses
M and m, determining the stress in the damper spring.  An exact caleula-
tion of this quantity would be very laborious, beeause it would be necessary
to go back to the original differential equations.  Therefore we are satisfied
with an approximation and make use of the relation found on page 63,
stating that near a maximum or resonant amplitude the phase angle between
force and motion is 90 deg.

Thus the work done per cycle by the foree Iy is [see Iq. (9), page 14]

W = xPgx sin 90° = #Pox,

This is approximate, but the approximation is rather good hecause, even if ¢
differs considerably from 90 deg., sin ¢ does not differ much from unity.

On the other hand, the work dissipated per eycle by damping is, by the
same formula, = X damping force X relative amplitude z,q4, since the
damping foree heing in phase with the velocity has exactly 90-deg. phase angle
with the displacement amplitude. Thus

W dissipated = T(CwTrel) * Trel = TCWTIy

Equating the two,

rPo T, = erI?d
or
I X
cw
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Written in a dimensionless form this becomes

Trel
(xll ) I,t 2“30/05 (70)

This formula determines the relative motion and consequently the stress
in the damper spring. Upon substitution of the proper values for 4, g, etc.,
this formula is applicable to the viscous Lanchester damper, as well as to the
two kinds of dynamic absorbers.

The curves of Fig. 81b show the results of these calculations.
It is seen that the relative motions or spring extensions are
quite large, three or four times as large as the motion of the
main system. If springs can be designed to withstand such
stresses in fatigue, all is well, but this quite often will prove to
be very difficult, if not impossible, within the space available
for the springs. This is the reason why the Lanchester damper,
though very much less effective than the spring absorber, enjoys
a wide practical use.

Ezxample: 1t is desired to design a damper for the system of Fig. 73, in
which Mg =10 lb.; mg =1 1lb.; Py = 1 lb,, and K = 102 lb./in., which
will operate for all frequencies of the disturbing force. If first the absorber
spring is taken as k = 10.2 1b. in.,

a. What is the best damping coefficient across the absorber?

b. What is the maximum amplitude of the main mass?

c. What is the maximum stress in the absorber spring?

Further, if we drop the requirement k/K = m/M,

d. For what k is the best over-all effect obtained?

e. Same question ag a but now for the new value of k.

f. Same question as b but now for the new value of k.

g. Same question as ¢ but now for the new value of k.

Solution: 'The answers are all contained in Figs. 81a, b, and ¢.

a. From Fig. 81¢c we find: ¢/2mQ, = 0.205 or

¢ = 041mQ, = 0.41%4g¢ 20r = 0.067 1b./in./sec.
b. Figure 8la or Eq. (65) gives z/z,, = 7.2,
Zy = Po/K = Y02, so that z = 7.2/102 = 0.071 in.

c. Figure 81b gives for the relative motion across the absorber spring
Zea /Tt = 12.8 s0 that z,q = 12.8/102 = 0.126 in. The force is kz,q =
10.2 X 0.126 = 1.28 Ib.

. . Lwe _ 1 10
d. The most favorable tuning follows from Eq. (63): o = TF5 - ir
so that ( ) }g? Since m, M, and K are the same now as in all pre-

vious questions, (w./Q.)? is proportional to k. Thus the new absorber
spring should be

k =109{g; X 10.2 = 8.4 1b./in.
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e. Figure 8lc gives ¢/2mQ, = 0.166. Since 2m2, is the same as in

question a, we have
0.166

C = ——

~ 0.205

X 0.067 = 0.054 1b. in."? see.

f. From Fig. 81a or Eq. (64) we find z/x,, = 4.6. Since from b we have

Zse = Y o2, the maximum amplitude is

=26 _ 00451

102

g. Figure 81b gives z.a/zy = 19.5, so that z,q = 19.5/102 = 0.191 in
With k = 8.4 1b./in., this leads to a maximum force in the spring of 8.4 X

0.191 = 1.60 Ib.

The principal applications of dampers and absorbers of this
type are in internal-combustion engines (page 266) and in ship

stabilization, which will be treated in the next
However, an “absorber” may be pre-
without being  very

section.
sent in a construction
conspicuous.

An cexample of this is found in the gears of
clectric street cars which, in operation, may be
ringing like bells if no precautions are taken. In
fact a great part of the objectionable noise in
street cars is caused by their gears. 1t has been
found by experience that this noise can be
climinated to a great extent (the wheels ““dead-
ened”’) by shrinking two steel or cast-iron rings
a, a (Fig. 83) on the inside of the rim. If the
shrink fit is too loose, no deadening occurs; if it
is shrunk very tight the ecffect is again very
small, but for some intermediate shrink pressure
the deadening effect is astonishingly complete.
Two identical gears, onc with and the other with-
out rings, may be placed upright on the ground
and their rims struck with a hammer. The first
gear will sound like a piece of lead while the
second one will ring for ten or more seconds.

a7 Y
I

Fra. 83.—Gear
with sound-dead-
ening rings in-
serted. Theso
should be either
shrunk or tack-
welded in a few
spots 80 u’ to
allow some rela-
tive rubbing dur-
ing the vibra-
tion.

The cast-iron inserts evidently act as Lanchester dampers.
26. Ship Stabilization by Means of Frahm Tanks.—Onc of

the most interesting applications of the rather lengthy theory
of the preceding section is the prevention of the ‘“‘rolling” of
ships in a rough sca by means of certain devices installed on
board.
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First consider the rolling of the ship itself without any damping
device. Imagine the ship to be floating in still water (Fig. 84a),
the weight W and the buoyancy B being two equal and opposite
forces both passing through the center of gravity G. Now hold
the ship at a slightly inclined position by some external couple
(Fig. 84b). The weight W still acts through the point G, but
the buoyancy force B is displaced slightly to the left. The line
of action of this force interseccts the center line of the ship in
some point M, which is technically known as the metacenter.
It is clear that the location of this point is determined by the
geometry of the hull of the ship. The distance h between M
and G is called the metacentric height.

F1a. 84.—The buoyancy and weight forces acting on a ship. For stability
the metacenter A has to be located above the center of gravity G. The distance
MG is the metacentric height A.

The determination of this quantity from a drawing of the ship
is an important task of the designer, since upon it the rolling
stability depends.  In Fig. 84b it is seen that the forces W and B
form a couple tending to restore the ship to its vertical position.
This is always the case when the metacenter is above the center
of gravilty or when the metacentric height h is positive. In
case h were negative, the W-B couple of Fig. 84b would tend to
increase the inclination of the ship and the equilibrium would be
unstable.

Ezample: A ship has a rectangular cross section and the submerged part
has a square section of which the sides have a length 2a. The center of
gravity lies in the vertical line of symmetry at a height x above the bottom
of the ship. For small values of z the ship is stable, for large values of z
it is statically unstable. Find the value of x where the equilibrium is just
indifferent.
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Solution: Consider a submerged piece of the ship of dimensions 2a X
2a X 1in. By taking such a slab of unit thickness we gain the advantage
that the submerged volumes become numerically equal to the corresponding
cross-sectional areas. By tilting through the angle ¢ the submerged figure
changes from a square to a square from which a small triangle has been
subtracted on the right side and to which a similar triangle has been added
at the left side. The area of such a triangle is a/2 X ap = a?p/2. Since
the center of gravity of these triangles is at one-third of the height from the
base, the shift of the triangle from right to left shifts the center of gravity
of an area a%¢/2 through a distance of 25 - 2a. The product of these quanti-
ties equals the total area of the square 4a? multiplied by the horizontal shift y
of the center of gravity of the whole figure. Thus

daty = %4a% or y=-+

The center of gravity of the submerged figure is shifted to the left over this
distance from the original vertical axis of symmetry. A vertical line through
this new center of gravity intersccts the symmetry axis at a distance a/6
above the original location of the center of gravity. Since this intersection

is the metacenter A/, we find that M lies at a distance of a + g = —Za above

the bottom of the ship. This is also the desired position of the center of
gravity of the ship for indifferent equilibrium.

The ship is a vibratory system, since when it is displaced from
its equilibrium position it shows a tendency to come back. Ifor
small angles ¢ the location of M is independent of ¢. The
restoring couple is —Wh sin ¢ or —Whe for sufficiently small o.
By the action of this couple the ship will roll back about some
longitudinal axis. Let the moment of inertia about that axis be
I, (the subscript s stands for ship). Newton’s law can be written

I.p = —Who
or

b+ e =0 (71)

which we recognize as Eq. (13) of page 42 for the undamped
single-degree-of-freedom system. Consequently the ship rolls

with a natural frequency
L 72)

Of the quantities appearing in this equation, W and h can be
determined rather accurately from drawings before the ship
is built. This is not so for I,, which is somewhat open to conjec-
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ture because we do not know exactly about what axis the ship
rolls. It would be the axis through G, if during the rolling the
water exerted no lateral forces on the hull. Since this is not
the case, the center of rotation is somewhat below G. The exact
location can best be determined by an experiment on a model
in which W and w, are mecasured in the test, h is calculated or

Frs. 85.~—Frahm antirolling tanks,
old type. tion of Frahm’'s antirolling tanks.

possibly measured by a static test, and I, is then caleulated
from (72).

Imagine the ship to be in a rough sea. Waves will strike it
more or less periodically and exert a variable couple on it.
Though this action is not very regular, it may be regarded
approximately as a harmonic disturbing torque T sin wt to be
written on the right-hand side of Eq. (71). In case the wave
frequency  is near to the
natural frequency w, of the
ship’s roll, the oscillations may
become very large. In rough
scas the angle ¢ has been
observed to reach 20 deg.
Equations (71) and (72) tell
us that, as far as vibrational
properties go, the system of

A Fig. 84 is equivalent to Fig.

Fia. 87.—Idealized Frahm tank showing 24 or to the upper part of Fig.

definition of R, ¢, and y. 73. Thercfore the addition of

a damper of the type shown in Fig. 73 should help. This has

been done by Frahm, in 1902, who built into a ship a system of

two tanks (Fig. 85) half filled with water, communicating through

a water pipe below and through an air pipe with valve V above.

The secondary or ‘‘absorber” system corresponds approximately
to Fig. 31, page 48.
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In more recent constructions the lower connecting pipe between
the tanks is omitted and is replaced by the open ocean as indi-
cated in Fig. 86. The ‘‘blisters” extend along two-thirds the
length of the ship and are subdivided into three or more com-
partments by vertical partitions. Thus there are three or more
air pipes with valves. Both these constructions are really more
complicated than Fig. 77, though the older construction, Ifig. 85,
comes quite close to it.

In order to derive the differential equations, let us idealize
Fig. 85 to such an extent that the tanks and the two connect-
ing pipes are arranged in a cirele of radius 2 with the center of
rotation of the ship as center (Iig. 87). Morcover, there is so
much water in this circular pipe of constant cross scetion A that
just 180 deg. of it is filled. Further let

¢ = angle of the ship
¥ = angle of tank-water level with respect to sea
¥ — ¢ = angle of tank-water level with respect to ship
I, = moment of inertia of ship + tank water clamped
solidaty — ¢ =0
I, = moment of inertia of tank water about center of

rotation

K,y = static torque exerted on ship by ocean for a small
angle ¢ with tank water clamped at ¢y — ¢ = 0

k.y = static torque exerted on ship for ¢ = 0 and a small
angle y (in radians)

¢ = friction torque on ship when ¢, ¢, and ¢ are zero
while ¢ is 1 rad. per second
T, sin ot = external torque on ship due to sea waves.

We shall now set up Newton’s equation, first for the ship and
then for the tank water. On the ship four external torques are
acting: first, — K,¢ duc to the quiet ocean water trying to right
the ship; second, —k.(y — ¢) from the tank water which is dis-
placed from one tank to the other; third, —c¢(¢ — ¥) from the
friction of the tank water moving through the pipes (and from
the air through the throttle valve); and fourth, 7% sin ot, the dis-
turbing torque from the waves. The sum of these, being the
total torque on the ship, must be equal to I,p. The equation
of motion of the tank water can be derived in a like manner:

Il

1o + Ko — k(e — ¢) + c(¢ — ¥) = Tosin wt} (73)
Iy + kit +cd —¢) =0
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It is well to consider how the various constants K,, k., etc.,
can be found from Fig. 87. The ship’s “spring constant” K,
is Wh, the product of the weight and the metacentric height.

The spring constant of the water k. should be calculated by the
reader to be 2R2Ay, where v is the weight of 1 cu. in. of water
and A is the cross-sectional area of the tube. The unit friction
torque ¢ is caused not so much by the water flowing through the
pipes directly as by the air passing through the throttle valve.

Comparing Kqgs. (73) with (51) and (52), it is scen that they
do not coincide completely, the difference being that the spring
torque in the sccondary equation is proportional to z; — z, in
the first casc and to ¢ alone in the seccond case. Though this
means that the numerical results of Fig. 81 are not directly appli-
cable to the Frahm antirolling tank, the general conclusions are
the same.  These state that

1. When the throttle valve is completely closed (¢ = ), the
roll of the ship is not diminished by the tank (Fig. 79).

2. When the throttle is completely open (¢ = 0), the roll is
not diminished either; in fact, it becomes large for two different
sca-wave frequencies.

3. There cxists a sctting of the throttle between the two
extremes where the roll is effectively diminished at all sea-wave
frequencies.

The foregoing analysis applies to Fig. 87, which is an idealiza-
tion of Fig. 85. 1In the case of the construction shown in Fig. 86
it 1s still more difficult to precalculate exactly what happens.
With the ship standing still, the water in the tanks is in itself a
two-degree-of-freedom system. In Fig. 85 the water level in
onc tank determines that in the other, so that cverything is
described by giving the level in one of the tanks only. In Fig. 86,
however, the two water heights are independent of cach other
and thus require two numbers to specify the configuration.
Consequently the ship-tank assembly has three degrees of free-
dom and three resonant frequencies. This makes it practically
impossible to make an exact calculation. But the three general
conclusions just mentioned still hold.

In practice the tanks in cither construction are designed so
that the period of the water motion in them is approximately
equal to the natural period of roll of the ship (corresponding to
the absorber with *“constant tuning” of Fig. 81). In a rough



GYROSCOPIC SHIP STABILIZERS 139

sea the valve in the air pipe is adjusted to give the best possible
operating condition.

Frahm antirolling tanks were installed on the large German
liners ‘“Bremen’’ and ‘“Europa.” For the more modern con-
struction of ‘‘activated’” tanks, where the water is pumped from
one tank to the other, see page 142.

26. Gyroscopic Ship Stabilizers.—Another method of reducing
ship roll, which apparently is entirely different from Frahm’s
tanks but really operates on much the same principle, is the
gyroscope of Schlick (Fig. 88). This device consists of a heavy
gyroscope rotating at high speed about a vertical axis. The
gyroscope bearings AA are mounted in a frame which is sus-
pended in two bearings BB so that the frame is capable of rota-
tion about an axis across the ship. The axis BB lies above the
center of gravity of the gyroscope and its fiame. A brake drum
C is attached to BB, so that the swinging motion of the gyroscope
frame can be damped. The weight of the gyrorotor is of the
order of 1 per cent of the ship’s weight. It is driven clectrically
to the highest possible speed compatible with its bursting strength
under centrifugal stress.

TFor an understanding of the operation of this device, it is neces-
sary to know the main property of a gyroscope, namely that the
torque exerted on it is represented veetorially by the rate of
change of the angular momentum veetor. For readers not
entirely familiar with this theorem, a short exposition of it is
given in Appendix I on page 453.

Let the direction of rotation of the rotor be counterclockwise
when viewed from above, so that the momentum veetor T
points upward. When the ship is rolling clockwise (viewed from
the rear) with the angular velocity ¢, the rate of change of 31
is a vector of length 9M¢ directed across the ship to the right.
This vector represents the torque exerted on the rotor by its
frame. The torque exerted by the rotor on its frame is directed
opposite to this, so that the frame is accelerated in the direction
of increasing ¢ (so that the lower part of the frame tends to ge
to the rear of the ship).

On the other hand, if the rotor frame is swinging with a positive
angular velocity ¥, the momentum vector I increases by an
amount MY each second in a direction pointing toward the front
of the ship. This vector is a torque tending to rotate the rotor
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clockwise, and consequently the ship counterclockwise, when
viewed from the rear.

Thus the ship is “‘coupled” to the gyroscope in much the same
sensc ay the ship is coupled to the Frahm water tanks, though the
mechanism is entircly different. Consequently the differential
equations will be different from (51), (52), but still it can be
shown that the same three general conclusions hold.

Without damping in the swinging motion of the rotor frame,
the presence of the gyroscope merely changes the one natural
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Fra. 88-—Scheme of Schlick’s anti-ship-rolling gytoscope. It operates by virtue
of energy dissipation at the brake drum C.

rolling frequency of the ship into fwo other natural rolling fre-
quencies. A resonance with sea waves leads to infinite ampli-
tudes ¢ of the ship. An infinite amount of damping clamps the
rotor frame solidly in the ship. Then a roll of the ship merely
creates a pitching torque on the ship’s frame and conversely the
clamped gyroscope will convert a pitching motion of the ship
into a rolling torque on it. At resonance of the sea waves with
the onc natural rolling frequency again an infinite rolling ampli-
tude results. But at some intermediate damping the two reso-
nant peaks can be materially decreased.

In order to investigate more in detail the similarity and also the differ-
ences in behavior between the Schlick gyroscope and the Frahm tanks, we
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shall derive the differential equations. The torques acting on the ship’s
hull in the ¢-direction are the sca-wave torque 7 sin wt, the spring torque of
the water —K.p, and the gyroscopic torque. It has been scen that this
last torque has the magnitude 9Ny, its direction being such as to decrease
¢ when ¢ is positive. Thus Newton’s equation for the ship becomes

I.p = =Ko — MY + Tosin wt (51a)

In the same manner the equation for the rotary motion of the gyroscope
frame is

Iy} = —kb — o) + Mg (52a)

In this the quantity k, the spring constant of the gyroscope frame as a
pendulum, can be easily shown to be equal to wa, where w is the weight of
the frame and rotor combined and a is the distance between the eenter of
gravity of w and the axis of support. The equations have been labeled here
(51a) and (52a) in order to emphasize their similarity to (51) and (52) for the
case of Fig. 73. Though the two sets of cquations are not identieal, the
whole argument of Sec. 24 can be repeated word for word and similar results
obtained. In particular, after going through the caleulations corresponding
to those performed on page 122, we arrive at the analogue of (57).

27g) + (g2 — 1)
¥ /4 ( Ce ) - —— (57a)

- V@ﬁﬁ“'”+ww—w—n@-mv

The various symbols used in this formula are not literally the same as those
defined by (56), because they pertain to a different problem, but the differ-
ence is not great. For instance, f in this case is the ratio between the
natural frequencies of the gyroscope and the ship:

wa

f=20 o 1y
Q, \@ (56a)

la

I

Also g = 0w/ and ¢ = 21,9,

Equation 57a can be interpreted by diagrams like Figs. 79 and 80. DBut
the fundamental difference lies in the definition of p. In the dynamic
absorber of Fig. 73, u was defined as m/M, and with the Sehlick gyroscope.

2

uo= 1:’;—223 (56a)

With the Frahm tank it is evident that 4 = m/M cannot be much greater
than 14,. On the other hand, it is casy to make the gyroscopic u con-
siderably greater than unity. (Schlick on his 8,500-ton experimental ship
“Silvana® had u = 20 approximately.) One would be tempted to eonclude
from this relation in the values of u that a gyroscope is of the order of 400
times as effective as a Frahm tank. This, however, is not so, because when
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adjusting the damping c/c. on the brake drum of Fig. 88 to the “optimum”
value (such as to make the curve of Fig. 80 pass horizontally through P and
Q), it is found that the ‘“precessing” angle y of the rotor frame becomes
many times 360 deg. This makes the analysis inapplicable, because in
practice y is limited to about 30 deg. by stops on each side. It is necessary,
therefore, to make the damping considerably greater than optimum to
prevent the gyroscope from swinging too far, and this fact makes the Schlick
gyroscope less effective than one would imagine from a comparison of the
values of u.

26a. Activated Ship Stabilizers.—The motion of the water in
the Frahm tank, as well as the precession of the Schlick gyroscope,
is brought about by the rolling of the ship itself, and in both
cases is impeded by a brake. This is not a perfect solution, since
the best brake adjustment is different for different frequencies
and other conditions. These systems arc designated as ‘‘pas-
sive’” systems to distinguish them from the more modern
‘“active” systems, where the Frahm water is pumped from one
tank to the other, where the Schlick gyro precession is forced.
There is no longer a brake, but there is a governor or device which
feels the roll of the ship and gives the proper signals controlling
the Frahm pump or the Schlick precession drive, so that the
phase of the counter torque is always correct.

The first of these activated devices reaching practical perfec-
tion was the Sperry gyroscopic ship’s stabilizer, illustrated
schematically in Fig. 89. It consists of a main gyroscope, which
differs from Schlick’s only in the fact that the axis BB passes
through the center of gravity, and that the brake drum C is
replaced by a gear segment meshing with a pinion on the shaft of
a direct-current motor D. Besides the main gyroscope there is
the pilot gyroscope (Fig. 89b, ¢) which has an over-all dimension
of some 5 in. and is nearly an exact replica of the main one. The
only difference is that there is no gear C, but instcad of that
there are two electrical contacts d; and dz, one in front and one
behind the rotor frame.

The operation is as follows. When the ship has a clockwise
rolling velocity ¢ (looking from the rear) the top of the pilot
rotor frame is accelerated toward the front of the ship and closes
the contact d,. 'This action sets certain electrical relays working
which start the precession motor D so as to turn the main frame
about the axis BB in the same direction as the pilot frame. In
other words, the top of the main frame moves to the front of the
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ship. This necessitates a clockwise ¢-torque on the main rotor,
which has a counterclockwise reaction on the main-rotor frame
and thus on the ship. Therefore the main gyroscope creates a
torque on the ship which is in opposition to the velocity of roll and
in that manner most effectively counteracts the roll. As soon
as the velocity of roll of the ship becomes zcro, the pilot torque
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Fig. 89.—Sperry’s gyroscope for diminishing ship roll. The precession is
forced by a motor D, which is controlled by a small pilot gyroscope shown in
(b) and (c).

disappears and the pilot rotor is pulled back to its neutral posi-
tion by two springs e as shown in Fig. 89c. Only when the roll
acquires a velocity in the opposite direction doecs the pilot go
out of its equilibrium position again closing the contact d;, which
sets the precession motor going in the opposite direction. Thus
there is always a torque acting on the ship in opposition to the
instantaneous velocity of rolling. With the torque always
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against the angular velocity, a maximum amount of energy of
the rolling motion is destroyed. (See the three rules on pages 18
and 19.)

The direction of the desired y-precession of the main gyro was
scen to be the same as that of the free pilot gyro, which means
that the motor D turns the main gyro in the direction in which
it would go by itself, if it were free to move in the bearings B.
However, it can be casily verified that, if such freedom existed,
the main gyro would precess extremely fast in an accclerated
manner and would reach ¢ = 90 deg. in a very short fraction
of the roll period. At this position the roll would no longer
affcct the gyro. Therefore the motor D does not push the main
gyro (except at the very beginning of the precession) but really
acts like a brake, holding the speed of precession down to a
proper value. Schemes have been proposed to do away alto-
gether with the motor D, reverting to the old Schlick brake drum,
with the difference, however, that the tightness of the brake
would be controlled electrically by signals coming from the pilot
gyro.

In actual constructions the pilot gyroscope has its axis AA
horizontal and across the ship, while its frame axis BB is vertical.
The line connecting the contacts dy and d» remains parallel to
the ship’s longitudinal axis as before.  The reader should reason
out, for himself that with this arrangement the same action is
obtained as with the one shown in I'ig. 89.

Sperry gyro stabilizers have been installed with success on
many yachts. An appliecation to the Italian liner “Conte di
Savoia’” showed that a large roll was very effectively damped
down by the device. However, in the roughest Atlantic storms
single waves were found to tilt the ship 17 deg.; and since the
power of the gyros was sufficient only to swing the ship 2 deg,
at one time, the greatest roll angles with and without stabilizer
did not differ materially. A gyroscope that would hold the ship
down even in the roughest weather would become prohibitively
large, of the order of 5 per cent of the weight of the ship.

Another antiroll device that has been proposed but never
built utilizes the principle of lift on airplane wings. Imagine
an airplane of a wing span of say 20 ft., and swell the fusclage
of that plane to the size of an ocean liner, leaving the wing size
unchanged. The wings are located below the water line. While
the ship moves through the water, a lift will be developed on the
wings. The wings can be rotated through a small angle about
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their longitudinal (athwartship) axis. If the rotation of the
wings (the leading edge downward, the sharp trailing edge
upward) is some 15 deg., the “angle of attack’ of the water
on the wing is reversed and the ““lift”’ is changed to a downpush-
During the ship’s roll one wing always has an uplift, the other
one a downpush, giving a resulting torque opposite to the diree-
tion of roll. The angle of attack of the wings is continuously
changed by a motor which is operated from the contacts of a
pilot gyro. In order to obtain a sufficient torque, wings of
comparatively small size and weight are adequate, but on the
other hand the resistance of the ship is inercased by them.
Although the increase is of the order of only 1 per cent of the
entire resistance, this means that 1 per cent of the weight and
cost of the engines and fuel must, be charged against the deviee.

Activated Frahm tanks with large centiifugal pumps trans-
ferring the water from one side to the other, governed by a pilot
gyroscope, were installed experimentally in vessels of the U. S.
Navy.

Ezample: A Sperry gyroscope of moment of inertia I, and angular speed
is mounted on a ship with a moment of inertia I,, which is rolling according
to ¢ = gosin wat. The gyroscope precesses in a damping sense all the time
at a constant speed of either 4w or —w, depending on the direction of roll.
During this process the angle of precession ¢ remains small, say between
+20 and —20 deg. Find the rate of decay of the rolling angle.

Solution: The momentum veector has the length 71,9. Its increase per
sccond in the direction of the roll axis (longitudinal axis of the ship) is I, - w,
ag is explained in Eq. (236) and Fig. 280 of Appendix I. Thus the roll-
damping torque acting on the ship is 1,2 - «.  The angle through which this
torque operates for a full roll from left to right is 2¢, so that the work done
per swing (half cycle) is 2¢0f,Qw.

The maximum angular veloeity of roll in the middle of a swing is gow, and
thus the kinetic energy is 25/,08w2.  The decrease of this must be equal
to the damping work. Thus

A4 Letw) = Jilwia(e}) = LwieoAps = 2¢0lsQw
from which

21,00
oo = par .
This is the decrease in angle of roll per half cycle. The expression is

independent of o, so that the angle of roll diminishes as an arithmetic scries
and not geometrically as in Fig. 35.

27. Automobile Shock Absorbers.—An automobile of conven-
tional design on its springs and tires is a very complicated vibra-
tional system. There are three distinct ‘“masses’: the body,
the front axle, and the rear axle; and eight distinct ‘“‘springs’’:
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the four springs proper and the four tires (Fig. 90). A solid
body free in space has six degrees of freedom: it can bob up
and down, sway back and forth, move forward and backward
(the three translations); and, moreover, it can have three rotations,
known under the technical names of:

1. Rolling about a longitudinal axis.

2. Pitching about a lateral axis.

3. Yawing or nosing about a vertical axis.
Since the automobile has three such bodies, it really has 18 degrees
of freedom. However, a good many of those 18 are rather unim-
portant. For example, a side-
wise motion of any axle, with
the chassis fixed in space, is
hardly possible on account of
the great lateral stiffness both
of the springs and of the tires.

Body

L

< Springs

Axles

Tires >

Fira. 90.—Idealized scheme of con-
ventional automobile with front and rear

The most important motions
are:

1. A bobbing up and down
of the body with the axles
practically steady.

2. A pitching of the body

axles and shock absorbers. .
with the axles nearly steady.

3. A bobbing up and down of cach axle on the tire clasticity
with the chassis practically undisturbed.

4. A rolling of the axles with little motion of the body.

The first two motions were discussed on page 110. TFor an
entircly symmetrical car (which naturally does not exist) the
two natural modes are a pure vertical parallel motion and a pure
pitching about the center of gravity, but in the actual unsym-
metrical case each mode is a mixture of the two. In practice,
the natural frequencies for the first two modes are close together,
being somewhat slower than 1 cycle per second in modern cars.
The motions 3 and 4 have frequencies roughly equal to cach other
but much faster than the body motions. With older cars the
axle natural frequency may be as high as 6 or 8 cycles per second;
with modern cars having balloon tires and heavier axles on
account of front wheel brakes, the frequency is lower. On
account of the fact that the body frequency and the axle fre-
quency are so far apart, the one motion (1 or 2) can exist prac-
tically independent of the other (3 or 4). For when the body
moves up and down at the rate of 1 cycle per second, the force
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variation in the main spring is six times as slow as the natural
frequency of the axle mass on the tire spring and thus the axle
ignores the alternating force. And similarly, while the axle
vibrates at the rate of 6 cycles per second, the main body springs
experience an alternating force at that rate, which, however, is
far too fast to make an appreciable impression on the car body
(Fig. 38, page 59).

Resonances with either frequency occur quite often and ean be
observed easily on any old-model car or also on a modern car when
the shock absorbers (dampers) are removed. The pitching
motion of the body gets in resonance at medium speeds when
running over a road with unevennesses of long wave length.  For
cxample, at some 30 m.p.h. on old concrete highways having
joints spaced regularly at about 40 ft. apart, very violent pitching
usually occurs in cars with insufficient shock absorbers.  The
other natural frequency often comes to resonance at rather low
speeds when running over cobblestones.  The axles then may
vibrate so that the tires leave the ground at each eycle.

The worst of the evils just described
have been eliminated by introducing m
shock absorbers across the body
springs, whic}} introduce damping in & -~
the same fashion as a dashpot would. ~_—7"
Before starting a discussion of their Fra. 91.—Automobile riding
action, it is well to consider first the over & wavy road.
influence of the springs and tires themsclves on the “riding
quality,” or “riding comfort.”

Assuming that the car is moving forward at a constant speed
what quantity should be considered to be a measure of comfort?
Tt might be the vertical displacement of the chassis or any of its
derivatives. It is not the displacement amplitude itself, for a
ride over a mountain, being a ““vibration” of amplitude 3,000 ft.
at the rate of 1 cycle per hour, may be very comfortable. It is
not the vertical velocity, for there are no objections to a fast
ride up a steep slope. Nor is it the vertical acceleration, for a
steady acceleration is felt as a steady foree, which amounts only
to an apparent change in g that cannot be felt. But sudden
shocks produce uncomfortable scnsations. Therefore a criterion
for comfort is the rate of change of acccleration d®y/dt?, a quan-
tity that has been called the ““jerk.”

Figure 91 represents a wheel or axle on its tire spring. The
wheel runs over a road of which the surface is a sinusoid. If the
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car moves at a constant speed, the bottom of the tire experiences
a motion ao sin wt. Consider various wheels of the same mass m
running with the same speed over the same road a, sin wt but
differing among each other in the elasticity k of their tire springs.
The force F transmitted by the spring from the road to the wheel
or axle is k times the relative displacement, which by Eq. (30),
page 61, is
2
P = by = T

or in a dimensionless form,

__F  (Vk/mw?®)? (74)

moiay 1 — (\/k/mw?)?
If the dimensionless force F'//mw?a, is plotted vertically against the
dimensionless square root of the tire spring constant v/k/\/mew?,
Kq. (74) shows that the diagram Fig. 40 (page 61) is obtained.

We sce that stiff springs (large k or steel-rimmed wheels) are

represented by points in the

p e rigl.lt-hand part of the diagram,

Fra. 92, A bump in the roud. which means consu%erable force

transmission. Little force
transmission occurs for weak springs (i.e., balloon tires) repre-
sented by points close to the origin of Fig. 40.

This can be appreciated also from a somewhat different stand-
point. Consider a given ‘‘sinusoidal”’ road or a smooth road with
a single bump on it, and let the steel-tired wheel be completely
rigid. The vertical accelerations of the wheel now <ncrease
with the square of the speed, which can be seen as follows. Let
the bump on the road be represented by y = f(z) as in Fig. 92.
For a car with speed v we have z = vf. Then the vertical
velocity is

dy dy dy

at = Vded) T Vdx

and the vertical acceleration is

d (dy d_(dy d<vdy> L4
di\dt d(vt) dt Ydx v dz?
Since d2?y/dx? is a property of the shape of the bump only, inde-

pendent of the velocity, it is seen that the vertical acceleration
increases with the square of the speed. If the wheel is rigid
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(no tire), the forces acting on the wheel as well as on the road are
the product of the wheel mass and this acceleration. Thus the
force on the road also increases with the square of the speed,
making the rubber tire an absolute necessity even for moderate
speeds, which is a matter of common observation.

The tires arc primarily there for a protection of the road and
of the wheels, whereas the main springs take care of riding com-
fort. With a given axle movement ao, how do we have to design
the main springs for maximum riding comfort, 7.e., for minimum
“jerk” d3y/dt3? From Eq. (30) we have

w2a0

so that by differentiation

;ga—o = ’1—_*—1w2m + €Oos wi (74(1)
Again Fig. 40 represents this relation, and the springs have to
be made as soft as possible in the vertical direction. Then
most road shocks will be faster than the natural frequency
of the car and will not give it any appreciable acceleration,
The introduction of damping is undesirable at these high road
frequencies. But the case of resonance is not excluded, and
from that standpoint damping is very desirable.

There is still another viewpoint to the question. TFigure 40
pertains to steady-state forced vibrations, i.e., to road shocks
following each other with great regularity. Practically this does
not occur very often as the bumps on actual roads are irregularly
spaced. Thus the motion will consist of a combination of forced
and free vibrations, and damping is desirable to destroy the free
vibrations quickly after the road is once again smooth.

The shock absorbers on most automobiles are hydraulic and
operate on the dashpot principle. Any relative motion between
the axle and the car body results in a piston moving in a cylinder
filled with oil. This oil has to leak through small openings,
or it has to pass through a valve which has been set up by a
spring so that it opens only when a certain pressure difference
exists on the two sides of the piston. In this manner a consider-
able force opposing the relative motion across the car body springs
is created, and this force is roughly proportional to the velocity
of the relative spring motion.
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The most desirable amount of damping in these shock absorb-
ers depends on the road condition. When running over a smooth
road with rolling hills and valleys which are taken at the rate
of approximately one hill per second, it is clear that critical
damping is wanted. On the other hand, if the road has short
quick bumps, a small damping is desirable. With this in mind,
some cars had a ‘‘dash control” system, whereby the leakage
openings in the shock absorbers could be adjusted from the dash-
board of the car to suit the driver. However, it appeared that
the variability in the types of road unevenness is too great for the
driver to make an intelligent use of his opportunity for changing
the damping constant.

Some shock absorbers have one-way valves in them, so that
for a spreading apart of the axle and the body a different damping
occurs than for their coming together. This is accomplished
by forcing the oil through different sets of openings by means of
check valves. Usually the arrangement is such that when the
body and axle are spreading apart the damping is great, while
when they are coming together a small force is applied by the
shock absorbers. The theories and arguments given by the
manufacturers as a justification of this practice do not seem to
be quite rational.

Problems

40. Calculate the abscissas and ordinates of the points A, P, and @ in
I'ig. 80.

41. Calculate the natural frequency of the water in the tank system of
Iig. 87 (sce page 136).

42. Find the metacentric height of a body made of solid material of
specific gravity 14, floating in water, having the shape of a parallepiped with

a. Square cross section h X h, floating with one of its sides parallel to
the water.

b. Triangular cross section of base b and height A floating with the base
down and the point emerging from the water.

c. The same triangular section with the point down.

43. a. Calculate the two natural frequencies of the system of Fig. 93a,
consisting of a weightless bar of length 2/, two masses m, and two springs k.

b. Find the location of the ‘‘node” or center of rotation of the bar in
each of the two natural modes.

44. A weightless string is stretched with a large tension of T 1b. between
two solid immovable supports. The length of the string is 37 and it carries
two masses m at distances [ and 2! from one of the supports. Find the
shapes of the natural modes of motion by reasoning alone (without mathe-
matics), and then calculate the two natural frequencies (¢f. Problem 20,
page 100).
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46. In the undamped vibration absorber of Fig. 73 let the mass ratio
M /m be 5, and let the damper be tuned to the main system so that also
K/k = 5. Furtherlet the external force Pobe absent. Find the two natural
modes of motion, z.e., the ratio between the amplitudes of M and m at the
natural frequencies. Also calculate those frequencies.

1 — e |
() |
n g

A ”

FiG. 93a.—Problem 43.

46. Let the system of Problem 45 be provided with a dashpot across the
damper spring, having a damping constant of 5 per cent of “critical”
(c = ~/4km/20). Assuming that the natural modes of motion calculated
in Problem 45 are not appreciably altered by this small amount of damping,
calculate the rate of decay in each of the two natural motions.

47. The period of roll of the ‘“Conte di Savoia’ (sce page 144) is 25 sec.,
the metacentric height is 2.2 ft., and the weight of the ship is 45,000 tons.
Calculate

a. Its moment of inertia about the roll axis.

b. Its maximum angular momentum when rolling 10 deg. to either side.

The characteristics of each one of the three gyroscopes installed on board
the ship are:

Gyro moment of inertia, 4.7 108/32.2 ft. 1b. sec.?
Yyro speed, 800 r.p.m.

Let these three gyroscopes precess from y = —30 deg. to ¢y = +30 deg.,
and let this happen during a time (say 2 sce.) which is short in comparison
with a half period of the ship’s roll. Let this precession take place at the
middle of a roll always in a sense to cause positive damping.

¢. Find the rate of decay of a rolling motion of the ship, assumning that no
damping action exists other than that of the gyroscopes.

48. An automobile has main springs which are compressed 4 in. under the
weight of the body. Assume the tires to be infinitely stiff. The car stands
on a platform which is first at rest and then is suddenly moved downward
with an acceleration 2g.

a. How far does the platform move before the tires leave it?

b. Assuming the car to have a speed of 30 m.p.h., draw the profile of the
road which would correspond to the 2g-accelerated platform. This question
has meaning for front wheels only.

49. The car of Problem 48 runs over a road surface consisting of sine
waves of 1 in. amplitude (i.e., having 2 in. height difference between crests
and valleys) and with distances of 42 ft. between consecutive crests. There
are no shock absorbers.

a. Find the cnitical speed of the car.

b. Find the amplitude of vertical vibration of the chassis at a forward
speed of 40 m.p.h.
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60. A double pendulum consists of two equal masses m, hanging on weight-
less strings of length ! each (Fig. 93b). In addition to gravity, there are
two mechanical springs of stiffness k. The equilibrium position is a vertical
line. Set up the differential equations of motion carefully and calculate the
two natural frequencies. (Small angles.)

V.
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F1a. 93b.—Problem 50.

61. A weightless cantilever spring of length 2l and bending stiffness E7 car-
ries two concentrated weights, cach of mass m, one at the free end 2! and
the other at the center I. Calculate the two natural frequencies.

62. In the centrifugal pendulum of Fig. 77b let © be the speed of rotation
of the disk, a the distance from the disk center to the center of swing of the
pendulum, b the distance from the swing center to the eenter of gravity of the
pendulum, and finally k the radius of gyration of the pendulum mass about
its swing center. Find the natural frequency and try to design a pendulum
that will swing back and forth three times per revolution.

63. Prove that the most favorable damping in the viscous Lanchester
damper (curve 3 of Fig. 81¢, page 129) is given by

c
2ma

64. A three-bladed airplane propeller is idealized as three flat massless
cantilever springs, spaced 120 deg. apart and carrying concentrated masses
m at their ends, at a distance R away from the shaft center. They are
built in at a distance r from the shaft center into a hub having & moment of
inertia 7, with a definite angle « between the blade plane and the plane of the
entire propeller (Fig. 93c). Let the spring constant of each blade in its limber
direction be k; and let the blade be infinitely stiff against bending in its stiff
direction (90 deg. from the limber direction). Let the hub be mounted on a
shaft of torsional stiffness k£;. Find the two natural frequencies of the non-
rotating system (the ‘“‘blade frequency” and the ‘“hub frequency’’), as a
function of the blade angle «, and find in particular whether the blade fre-
quency is raised or lowered with increasing blade angle .

66. The same as Problem 54; this time the shaft k, is stiff against torsion,
but flexible against extension. The hub therefore can vibrate linearly
in the shaft direction. Let k, mean the extensional spring constant of the
shaft and let the inertia of the hub be expressed by its mass M rather than
its moment of inertia.

=[2(1 + &) (2 + W™
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66. The same as Problem 54, but this time the blade stiffness in its own
plane is no longer considered infinite. Let the stiffness of one blade in its

stiff plane be k; and in its limber plane k;; let k; as before be the torsional
stiffness of the shaft. For simplicity let 7 = 0.

ko\ ‘A — __}
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Z

¥i1G. 93c.- —Probleins 54 to 57.

67. A combination of Problems 55 and 56, the blade having stiffnesses
ks and k., the shaft being stiff in torsion and having k; in extension, and the
hub mass A being zero for simplicity.

568. A mass m is suspended at distance ! below the ceiling by two equal
springs k arranged symmetrically at an angle « (Fig. 93d). 'This angle « is

Fra. 93d.—Problem. 58,

the angle under the static influcnce of gravity with the springs carrying the
weight.  Find

a. The natural frequency of up-and-down motion.

b. The natural frequency of sidewise motion.

69. In Wilberforce’s spring experiment (page 110) let m and mp? be the
mass and moment of incrtia of the suspended mass, let further k;; be the
linear spring constant (pounds per inch deflection), k,; the torsional spring
constant (inch-pounds per radian twist), and k2 = k2 the coupling constant
(inch pounds torque per inch deflection or pounds pull per radian twist).
Note that k2 > > k.

a. Set up the differential equations of motion in terms of the longitudinal
displacement = and the tangential displacement y = pe¢, by the process of
page 104.

b. Find the two natural frequencies and the two configurations z/y.

¢. Determine the condition imposed on these values for z/y in order to
insure good Wilberforce operation.

d. Find the two values for z/y numerically.
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e. Find the ratio of the beat frequency to the natural frequency in terms
of the spring constants, assuming the two natural frequencies to be so close
“ogether that their difference is negligible.

r
w

o

—_ W
Fia. 93¢.- -Problem 60.

60. A uniform disk of weight W and radius r rolls without sliding on a
plane table. At its center it carries a hinge with a weightless pendulum of
length [ and a concentrated weight w at its end (Fig. 93¢). Find the natural
frequencies for motion in the plane of the paper.



CHAPTER 1V

MANY DEGREES OF FREEDOM

28. Free Vibration without Damping.—When the number of
degrees of freedom becomes greater than two, no essential new
aspects enter into the problem. We obtain as many natural
frequencies and as many modes of motion as there are degrees of
freedom. The general process of analysis will be discussed in
the next few sections for a three-degree system; for four or more
degrees of freedom the calculations are analogous.

Consider for example Fig. 94, representing a weightless bar
on two rigid supports, carrying three masses m., mg, and mas.

If the upward deflections of " FL i
these masses be denoted by /’E;”_l}““f
21, %o, and i, the first of the F& | | L_F —1 &

Cqua.tlons of mOtl,On can be F1a. 94.—A round shaft with three
obtained by equating m.#; to disks on stiff bearings is a system having
the elastic force on the first three degrees of freedom in bending.
mass. This force is the difference between the lateral shear
forces in the bar to the left and to the right of m,, a quantity
depending on all three deflections z,, x2, and z;, complicated and
difficult to calculate.

It is more in the nature of this particular problem to describe
its elasticity by the influence numbers. The definition of an
influence number «;, is ‘“ the deflection of mass 1 caused by a force
of 11b. at the location of mass 2. We have three direct influence
numbers, a1, az, and asz; where the unit force and the deflection
are measured at the same location, and six cross influence num-
beI'S, ayp, @21, Q13, 31, (23, and Qasg, where the two locations are
different. By Maxwell’s theorem of reciprocity,

a2 = Qa1

or, in words: the deflection at one location caused by a unit load
at another location equals the deflection at this second location
caused by a unit load at the first location. These influence

numbers can be calculated for any system by the principles of
155
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strength of materials. The equations of motion can be written
with them as follows. In the position z,, z,, z; of maximum
deflection of the bar (Fig. 94), the masses have accelerations %,
#s, &3 and consequently experience forces mik;, mo¥s, mais.
These forces are exerted by the bar on the masses. By the princi-
ple of action and reaction, the masses exert the inertia forces
—myty, —meis, —mzi; on the bar. The deflection at the first
mass caused by these three forces is

T = —oanMiE — aeMefs — argmsis

and analogously for the second and third masses,
Ty = —anmify — apMads — axzmsls (75)
T3 = —anMiE; — azeMels — agsmsis

Although these equations cannot be interpreted directly as the
Newton equation for each mass, nevertheless the three together
determine the three unknown motions z;, x,, and zs.

As before, on page 104, in order to reduce them from differential
equations to algebraic equations, we put

T = a; sin wt
Ty = Qg sin wt (76)
T3 = @3 Sin wl

and substitute, with the result

a, = anmwia, + agmawia, 4 azmswias
Ay = aMw’ar + aMew’as + azymsw’as (76a)
a3 = azgmw?a; + azemawiay + azzmawias

These equations are homogencous in a;, a,, and a;, which can be
seen better after rearranging and dividing by w?:

1
(’mxau ot ay + Mact12Qs maai3a; = 0
1
Myo1@y + | Mootgs — 1) + Maagsaz = 0 ) (77)
1
mazia; + Maasels + \ Macsz—— Jas =0
w

If such homogeneous equations are divided by a,, for example,
we have three equations in wo unknowns, a,/a, and as/a;. If we
solve these unknowns from the first two equations of (77) and
substitute the answers in the third one, we usually find that
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the result is not zero. Only if a certain relation exists among the
coefficients of ai, a;, and a;, can there be a solution. In the
theory of determinants it is shown that this relation is

nayy — Moy Mmiayg
>
1
mias Maottyy — Zl}"" VUEL 2X] = 0 (78)
1
masy maatze maazs — P

The argument is analogous to that given on page 105 for the
two-degree-of-freedom system. The determinant expanded is
a cubic equation in terms of
1/w? knownasthe ‘“frequency
equation,” which has three so-
lutions and hence three natural

m

1—-"|—1-»|-E-1»|31~»

frequencies. To each of these | ) (a) |
solutions belongs a set of val- W
ues for a./a, and as/a,, which (b)

determines a Conﬁgumtion of Fig. 95.—Showing calculation of

vibration. Thus there arc influence numbers for a string with
. A three masses.

three natural modes of motion.

We shall carry out these calculations in detail for the sim-
plest possible example, obtained by making all masses equal
m, = me = msz = m and replacing the bar by a string of tension T
and length 41. It aload of 1 1b. is placed on location 1, the defor-
mation will be as shown in Fig. 95b. The tension in the string
is T and the vertical component of the tension in the part of the

. . 8 . . o s
string to the left of m; is -ZT while to the right of m, it is B%T.
The sum of these vertical components must be equal to the load

of 1 1b. so that § = 3,—1{- This is the deflection at 1 caused by
31
1 1b. at 1, or a1 = ZT-.

The deflection at the masses 2 and 3 caused by the same load
can also be found from Fig. 95b:
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The other influence numbers can be found in a similar manner:

_ L
a22—T
o = o 31
11 = a33 = R
4T
11 (79)
a12=a21=a32=a23=2,-1—,
11!

a3y = a3 = 4T

and Maxwell’s reciprocity relations are seen to be true. The
equations of motion are obtained by substituting these values
for the influence numbers in Eq. (75). However, since nearly
every term is proportional to ml/T, we divide by this quantity
and introduce the abbreviation

m’lrw2 = F (the frequency function) (80)
Then Iigs. (77) become
(34 — Fa: + Y4a; + Yas =0
a1 + (1 — Flap + 14as = 0 (81)
Yia, + Y6as + (34 — Flas = 0

Dividing the first of these by a,, the second by 2a;, and sub-
tracting them from each other leads to

@ _ g1 (82)

Substituting this in the first equation of (81) and solving for
as/a gives
Qas

2
o= "T+HAF+5 (83)

Substituting both these ratios in the third equation of (81) gives
the following equation for F (the frequency equation):
F* — 5F* + 3F — 34 = 0 (84)

This result could have been found also by working out the deter-
minant (78). Evidently (84) has three roots for F. We note
that none of these can be negative since for a negative F all four
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terms on the left become negative and then their sum cannot be
zero. Since by (80) a negative F corresponds to an imaginary w,
we see that our three-degree-of-freedom system must have three
real natural frequencies. This is true not only for the particular
system under consideration. In general it can be shown that an
n-degree-of-freedom vibrational system withoul damping has n
real natural frequencies, i.e., the roots of a frequency equation
such as (43), (78), or (84) are always real and positive.

The cubic (84) is solved by trial of some values for F. F =0
makes the left-hand side —14, while F = 2 makes it +34;
evidently at least one root must be between 0 and 2. A few {rials
will show that F = 14 is a root, so that IZq. (84) can be written

(F— 14)(F* — 2F + 15) = 0

having the three roots

PPN 1y |
e 0597l w2=2 ¥ wt=341Tml
(a) (h) (c)

F1a. 96.—The three natural modes of a string with three equal and equidistant
masses.

With the relations (80), (82), and (83) the complete resuit
becomes

Fo= 1707 ot =059~ #Z_14 B- 1
ml a ay

Fo=0500 wi= 2L %_ o %&_ _4
ml a ai

Fy = 0203 o =341 B _ _q141 B_
ml a; a

This gives the shapes of the vibration, or the ‘““normal modes”

as shown in Fig. 96. These are the only three configurations in
which the system can be in equilibrium under the influence of
forces which are proportional to the displacements z (as the
inertia forces are). The second mode is of particular interest
because the middle mass does not move at all. If that fact had
been known in advance, the frequency could have been found
very easily by considering the left half of the system as one of
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a single degree of freedom with the spring constant k = 2T/l
(see Problem 20, page 100).

29. Forced Vibration without Damping.—Suppose an alter-
nating force P, sin wt to be

Ry sin wt

2 acting on the first mass of
3 the previous example (Fig.

lh X X3 A

97a). The force P, sin wt
by itself would cause “static”
deflections at 1, 2, and 3 of
C(uPQ sin wt, aglpo sin wl,
and a3 Py sin wf. The equa-
F1a. 97.—Forced vibrations of a string tions of forced motion are

with threc masses. There are two fre- obtained from (75) by add-

quencies at which the disturbed mass does .
not move; these are the frequencies of the ing these terms to the
generalized-dynamic-vibration-absorber right-hand sides. With the

effect. assumption (76) the equa-
tions then are reduced to the algebraic form

1 P,
(mxau T ot a + Maat12@s + maa13ds = @
1 Py
miaid + (mzan Tt az + Myao3dy = @21 9
1 P,
mionay + Maciantz + \ Macss — = Jas = asi—y
: w

With the influence numbers (79) and with the definition of F
given in (80), they become

3 1 1 3 P,
(z - F)‘“ to gt 1% = T Tmet
1 1 1 P

éal + (1 — F)(l;’ + -2-(13 = § — (85)
3 1 P
o %"H(Z‘F)‘“: ~§ mo?

These equations are no longer homogeneous in a;, a., as, as were
the corresponding ones (81) for free vibration. They are truly
a set of three equations with three unknowns and can be solved
by ordinary algebra. In the calculations, the cubic (84) appears
in the denominators and is broken up into its three linear factors,
with the result that
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a, = .&. %Fz —F + %
t T me? (F = 1.707)(F — 0.500) (F — 0.293)
Py MFE -9
% = ot F = L70D(F — 0.500)(F = 0.203)( 0
as = Po 1/F?
=

mew? (F — 1.707)(F — 0.500)(F — 0.293)

The physical meaning of these expressions is best disclosed by
plotting them as resonance diagrams corresponding to Fig. 38
on page 59 or to I'igs. 75a and b on page 116. For that purpose

note that F, being proportional to 1/w? is not a suitable variable.
For the ordinate y of our diagrams we take the quantities

The denominator Pol/T would be the ‘“static deflection” of the
middle of the string if the (constant) load P, were placed there
(a2s = 1/T), so that y is a ‘“dimensionless amplitude.” For
the abscissa « we take

1 w?

=% T Tl

The denominator T/ml can be interpreted as the w? of a mass m
on a spring constant T/I, so that v/z is a “dimensionless fre-
quency.” With these two new variables, Iqs. (86) are trans-
formed into

_ '"272 + 4.’1} - 3 o
= T =059 — 2)( — 3.41)
_ (x —2)
Y2 = = 0.59)(x — 2)(z — 3.41) (87)
—1

Y1 = @ =059 — 2)(x — 341)

plotted in Figs. 98, 99, and 100. The reader should satisfy
himself that for the static case z = 0, all three expressions (87)
give the proper static deflections. An interesting property of
(87) is that the factor (x — 2) can be divided out in the expression
for y,. This means physically that the middle mass does not
get infinite amplitudes at the second resonance, while both the
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first and third masses do go to infinity. A glance at the second
normal mode of Fig. 96 shows that this should be so.

3 T T
j 1 |

\ |

\ |

\ \

\ \

\ \

T [7 ‘ \\ \\

U
1
|
|
i
n
|
z

, /1
-2 [ /
0 05 1 2 3 34 4 5
w"/l —_—
ml
F1g. 98.—Sce legend under Fig. 100.

3 T T

| |

| |
2 ] ]

\ I

/

P

/

,:’<—>
O o —

2
0 059 1 3 34 4 5

2

wz/l —_
ml

Fiu. 99.—S8ce legend under Fig. 100.

While the numerators of y; and y; show no peculiarities, it is
seen that the numerator of y, is a quadratic which necessarily
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becomes zero for two frequencies, viz.,, for xt =1 and z =3
(Fig. 98). At these frequencies the first mass, on which the force
is acting, does not move, whereas the two other masses do
vibrate. We have before us a generalization of the dynamic
vibration absorber of page 112. If the first mass does not move,

3
I T
| [ \ !
| / |
2 \ ,/ ]
|
\ | |
o/ |
T | - k’:'l \‘ —
\
-YS / \\
0 ;:.:
. /

0 059 | 3 341 4 S

2
wfT—
ml

T1c. 100.

Figs. 98-100.—Resonance diagrams for the motion of mass 1 (Fig. 98), mass 2
(Fig. 99) and mass 3 (Fig. 100) of the system of Fig. 97a, excited at the first mass.
Only the first mass has two frequencies at which it does not move. The masses
2 or 3 move at all frequencies.

we can consider it clamped and the system reduces to one of two
degrees of freedom (Fig. 97). Such a system has two natural
frequencies which can easily be calculated to bex = 1and z = 3.
The action can then be imagined as follows. At two resonant
frequencies the two-dimensional system can be excited to finite
amplitudes by an infinitely small excitation, in this case by an
infinitely small alternating motion of mass 1. On mass 1 in
Fig. 97b or ¢ two alternating forces are acting, one being the
vertical component of the string tension from the right and the
other one being the external force P, sin wf. These two forces
must be always equal and opposite, because m, does not move.
Generalizing, we thus might be tempted to make the following
statement: If an alternating force acts on a mass of an n-degree-
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of-freedom system, there will be n — 1 frequencies at which that
mass will stand still while the rest of the system vibrates. Care
has to be exercised, however, in making such sweeping generaliza-

! t
P EN
=
1
5
0 ol__lose 2 341

0.59 2
1y, T _°
w/ml ‘”7/;\11-

F1a. 101.—Resonance diagrams for the symmetrical string with three masses
of which the middle mass is excited by an alternating force.

tions. For example, an exception to the rule can be pointed out

immediately by exciting our system at the middle mass. On

account of this mass being a node at the second resonance

(Fig. 96), the force can per-

form no work on it at that

frequency so that no infinite

ﬁ E amplitudes can be built up.

w2 L The “‘resonant frequency”

Fia. 102.—Vibration absorber effect in gnd the ‘‘vibration absorber

stx.'ing with three masses of which the fre nev” h nto coincide
middle one is excited. quency "’ happen to

in this case. In reasoning

out the shape of the three resonance curves for excitation

at the middle mass, it should be borne in mind that the

system is completely sym-

metrical so that the y, and the % ° . ° 4

ys diagrams must be alike. a é v
. . i 2

Wlth.out cz?.rrymg (-)LIt the cal F1G. 103.—Damping at the central mass

culations in detail, we can of the string.

conclude that the result must

have the general shape shown in Fig. 101. Below z = 2 all
three masses are in phase, somewhat like Fig. 96a; above that
frequency they are in opposite phase, somewhat like Fig. 96c.
At the second natural frequency, however, the configuration



DAMPED FREE VIBRATIONS 165

must, for reasons of symmetry, be as shown in Fig. 102. The
amplitude of motion of the masses 1 and 3
must be determined by the value of the excit-
ing force, so that the sum of the vertical com-
ponents of the tensions in the two pieces of
string attached to m, must be equal and
opposite to the exciting force.

30. Free and Forced Vibrations with Damp-
ing.—If there is damping in a system of many

1 1

y 1
2o L 1 1w

4

| ,
7 Elcql

F1G. 104.—The lon- Fi1a. 105.—Torsional equivalent of the
gitudinal vibrations of system of Fig. 103 or Fig. 104.
this system are com- . . .
pletely equivalent to degrees of freedom, we are practically inter-

the vibration ofeither ggted in two questions: (a) in the rate of
Fig. 103 or Fig. 105. . X

decay of amplitude of the free vibration;
(b) in the amplitude at resonance of the forced vibration. ‘The
method of calculation employed in the exact classical theory
will be shown in the example of the string with three equal and
equidistant masses.

Let a damping force —c#, be acting on the middle mass (Fig.
103). This force causes deflections of —aiac®s, — agcd;, and
—ageci, at the three masses. The differential equations (75)
for the free vibration become

NNNNNN

Ty = —aumis — aomEy — agmEs — a1l
Xy = —aumx’l — oMy — agsMmis — anCi'z (88)
T3 = —anmi; — azpmis — asamEs — azlls

where the various influence numbers have the values expressed by
(79). By algebraic manipulations these can be transformed into

mz, + %xl + %(xl — 1) =0
., T T ;
mi, + 'l‘(x2 — 1) + ’l'(xﬂ —z3) +cdy =0 (89)

T
mi; + —l—(xs —&2) + %xs =0
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The first equation of (89) is found by subtracting the second of
(88) from twice the first of (88), 7.e., by forming 2z, — z,. The
second equation of (89) is obtained by calculating z; + x3 — 2z
and the third one by forming z, — 2z;. The physical signifi-
cance of Eqs. (89) is apparent. They are the Newtonian equa-
tions for the various masses, the first term being the inertia force,
the second the vertical component of the string tension to the left
of the mass, the third that same component to the right, and the
fourth the damping force.

In this case it would have been possible and easier to write
the equations in the last form directly without using the influence
numbers. However, for the example of the beam with which
this chapter started (I'ig. 94), influence numbers afford the
simplest manner of approach.

Before proceeding with the solution of (89), it may be well
to point out that these equations may represent two other sys-
tems as well, shown in Figs. 104 and 105. In Fig. 104 the masses
are restricted to vertical motion alone, and the spring constant &
has to be made equal to T/l to give complete analogy with Fig.
103. The second example, Fig. 105, is a torsional one. The
reader will do well to interpret the results shown in Figs. 95 to 102
for these two cases.

In solving Egs. (89), we know from the last two chapters that
an assumption of the form z = a sin «f, which is perfectly
justifiable for the undamped case, will not lead to a result if
damping is present. The solution is rather expected to be of
the form ¢ = a-e 7 sin q¢. This is met by assuming

T, = ale”l
Ty = age’t (90)
T3 = aze'

where s is a complex number, s = p + 7q. The value —p gives
the exponent of decay of amplitude and ¢ is the natural frequency
(see page 51). Substituting (90) in (89),
(ms2 + 2’—rl->a1 - Ilag + 0 =0
—'%a1+ ms’+cs+2-'§)a2— %a3=0

0 bt %az + ms® + 2%‘)(13 =0
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This is a homogeneous set of equations in a,, a;, and a; and can
have a solution only if the determinant vanishes:

ms2+2%‘ —%‘ 0
T T T

- 2 = - = —
] ms +rs+2l ] =0
0 -—%‘ ms'3+2%‘

or, written out,

(ms2 + 2%)[(77232 + 2§>(ms2 +cs+ 2%) — 2(%)2] =0 (91)

This equation of the sixth degree in s is known also as the “fre-
quency equation,” though s in this case is not the frequency but
a complex number expressing frequency and rate of decay com-
bined. The quantity s is called the ‘‘complex frequency.”
In this particular case the equation falls into two factors of
which the first one leads to
2T 2T

2 — 2= = ) [==
S ml or S1,2 tJ ml

with a solution of the form
. [2T . [2T
Aej\/mt +Be N

which can be transformed to [see Eq. (8a), page 13]

2T . 2T
C, cos 4 ’mt + C; sin \/;n—‘lt

This solution therefore gives a frequency w? = 2T/ml, while
the rate of decay of amplitude is zero, since s does not contain
any real part. The frequency coincides with that of Fig. 96b
for the undamped case, in which the middle mass is a node.
Therefore the damping force can do no work, which is the reason
for the absence of a rate of decay in this second mode and also
the reason for the fact that the natural frequency is not affected
at all by the damping.

The other factor of (91), after multiplying out, becomes

~>"+;n~S’ —{—47—’;-13 +2mms+ 2(ml) =0
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having four roots for s, which we do expect to have real parts,
since in the modes of Figs. 96a and ¢ the damping does perform
work. The roots of s will be of the form

S3 = —P1 + .7111

Sa = —p1— Jn

$s = —p2 + 772

S¢ = — P2 — Jq2
because the complex roots of algebraic equations always occur
in conjugate pairs.

The numerical calculation of these roots from the numerical
values of m, ¢, T, and ! is cumbersome even for the compara-
tively simple equation of the fourth degree.* Therefore this
classical method is unsuited to a practical solution of the problem.
It has been discussed here merely because in Chap. VII we shall
consider cases in which the real parts of s become positive, which
means a decay function of the form e*?!, which is not decay but
actually a building up of the vibration; the motion is then called
“self-excited.”

In practical cases the damping is usually so small that the
natural frequency and the mode of motion are very little affected
by it (Fig. 36, page 54). Hence the rate of decay of the free
vibration may be calculated by assuming the configuration
and frequency which would occur if no damping existed, as follows.

If the amplitude of the middle mass be a; and the frequency
be w, Eq. (34), page 68, gives for the work dissipated per cycle
by the damping force casw:

W = wcwal
The kinetic energy of the system when passing through its neutral
position is
Yomaw?(a} + af + @) = Vomwa} (92)
where the factor f depends on the configuration. This energy
is diminished by mcwa? each cycle, or
d(V4mwHa3) = mw*a.da, = rewa}

Hence,
dag wC

asq maof

* The mathematical method by which this can be done is discussed in
‘“Mathematical Methods in Engineering’’ by Th. von K4rmén and M. A.
Biot, p. 246.
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If in a natural mode of motion one of the masses reduces its
amplitude to one-half, all other masses do the same, so that

da, _ da, das mc

In the first mode of motion, Fig. 96a, the factor f, as defined

by (92), is seen to be 2, whereas w = w, = 0.59;;%» so that

the percentage decay per cycle is

da, _ ) 7lﬁ
w = 2.04¢ \/T
T

In the third mode of motion f is also 2, but ws = 4 [3.41%2 S0
that

da1 l

o = 0.850\/m
This method gives perfectly satisfactory results for the usual
damping values. Of course, when the damping becomes an appre-
ciable fraction of ¢, the procedure ceases to be reliable.

For forced vibrations with damping, the “classical’”’ method is
even more complicated than for free vibrations. It becomes so
cumbersome as to be entirely useless for practical numerical
purposes. However, for technically important values of the
damping the above energy method gives us a good approximation
for the amplitude at resonance in which we are most interested.

As before, we assume that at resonance the damping force and
exciting force are so small with respect to the inertia and elastic
forces (see Fig. 41, page 64, for the single-degree case) that the
mode of motion is practically undistorted. Then the damping
dissipation per cycle can be calculated in the same manner as
has just been done for the free vibration. In the steady-state
case this dissipation must be equal to the work per cycle done
on the system by the exciting force or forces. In general, there
is some phase angle between the force and the motion. At
‘““resonance,” however, this phase angle becomes 90 deg., as
explained on page 68, at which value of the phase angle the
work input for a given force and motion becomes a maximum.
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As an example, take the combined Figs. 97a and 103. The
work input of the force per cycle is 7Poa;, and the resonant ampli-
tude is calculated from

2
43
wPoa, = wewal or, 7Py = wcw(a—> a;

1
PU ay 2
(al>r¢~u = ?{;) a—2>

In the first mode we have a;/a; = 1.41 and w = \/0.59;;—% (page
162), so that

Hence

Py
(al),.,. = 06572‘ """

For the two other natural frequencies we find

(a1)ree = © (second mode)
Po [ml . .
(@1)ce = 0.27°7 T (third mode)

The most important technical application of this method is in
connection with torsional vibration in the crank shafts of Diesel

f engines, as discussed in Chap.
V.

Y~ | 31. Strings, Organ Pipes,

ol Longitudinal and Torsional

3::«& 2 Vibration of Uniform Bars.—

(2 These four types of problem

T%{ﬂg{.dx == will be treated together be-

/T/’Y cause their mathematical and

T T physical interpretations are

identical.
(b) I he 1 § .
F1a. 106.—Vertical components of the n the last few sections
tensions acting on an clement dz of a a string with three masses
stretched string. has been investigated. The
‘“string” itself was supposed to have no weight; the masses
were supposed to be concentrated at a few distinct points. By
imagining the number of masses to increase without limit we
arrive at the concept of a uniform string with distributed mass.
The equation of motion is derived by writing Newton’s law
for a small element dz of the string, of which again the tension
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T is assumed to be constant. Let the deflection curve during
the vibration be y(x, t), where the ordinate varies both with the
location along the string and with the time. The vertical com-
ponent of the tension T pulling to the left at a certain point z
of the string is (Fig. 106)

dy
Ta:c

negative because it pulls downward, whereas y is positive upward.
The differential coefficient is partial, because the string is con-
sidered at a certain instant, 7.e., ¢ is a constant in the differentia-
tion. At the right-hand end of the element dr, the vertical
component of the tension is

Y 07/ ay 9 (Y Q1/ ik 1/
+T -I— (’)( ) Tax -+ 0E<T I)dx + T

This quantity is positive because it pulls upward. The factor
9? . . .
(%ﬁd:v expresses the increase in slope along dr. Since the two

vertical forces on the element dx are not equal (Iig. 106b), there
is an excess upward pull of

a*y

T&I‘Z(

lx

which must accelerate the element in the upward direction. If
we denote the mass per unit length of the string by u,, the mass
of dr is pidr and Newton’s law gives

9%y
ot?

Ta”

wmdr o

Dividing by dz we obtain the partial differential equation of the
string:

621/ T6“~’y

Miger = “o2 (93)

The reader should compare the structure of this formula with
the first of the equations (89) and determine the physical
meaning of each term.

The problem of longitudinal vibrations tn a bar is quite similar
to that of the string and is a generalization of Fig. 104 (without
damping) when we take more and smaller masses and more and



172 MANY DEGREES OF FREEDOM

shorter springs. Now the masses are not numbered 1, 2, 3 as
in Fig. 104 but designated by their position z along the bar
(Fig. 107). Let the longi-
tudinal displacement of each
: point z be indicated by the
‘_‘__HV\J Greek equivalent of z, namely
bral o £, Thus the state of motion
o . 107 Tonsiadinel ibrations o of the bar is known if we know
point, and £ is the displacement during {£(z, ), again a function of two
vibration of each point z. variables.
The cross section z goes to z + £, and the section z + dz
goes to (z + dx) + (£ 4+ d&). At some instant ¢ the length dz
becomes

—~ &

NS\

9¢
dzx + &d:c

Thus d¢/dzx is the unit elongation which causes at the section z
of the bar a tensile stress of

08
Lp

EASe ealdk + 2 o)

where FE is the modulus of elasticity. b
If the bar were stretched with a constant  Fis.  108.—Longitudinal

E clastic forces on an element

stress, 14 — would be constant along the of the beam of Fig. 107.

length of thc bar, and the element dz would be pulled to the left with

the same force as to the right. But if the stress Eg—g varies
xr

from point to point, there will be an excess force on the element to
accelerate it longitudinally.

In Fig. 108 let the element dx be represented with its two
forces which are the stresses multiplied by the cross-sectional

area A. The force to the left is AEg—i’ and that to the right

is AE 9% plus the increment due to the increase dz in the abscissa.

This increment of force is a—(AEaE)dx. Hence the excess force

to the right is
AB S
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Let the mass per unit length of the bar be y;, and Newton’s law
becomes

29
(uldx) 3 r = AE—ds
or
6 9% _ 0%
by = lEazz (93a)

where AE is the tension stiffness of the bar. This is the same
differential equation as (93).

A variant of this case is the organ pipe, where an air column
instead of a steel column execcutes longitudinal vibrations.
Equation (93a) evidently must be the same; p, signifies the mass
of air per unit length of pipe, and F is its modulus of elasticity.
Instead of the stress in the above derivation, we have here the
pressure and since the definition of E in elasticity is

stress _ clongation

E  original length’
we have correspondingly for the £ in gases

increase in pressure _ decrease in volume
E original volume

or
dp
E = "—VE;
As in elasticity, the quantity E in gases is measured in pounds
per square inch.

Finally, an inspection of Figs. 103, 104, and 105 will make it
clear that the torsional vibration of a uniform shaft with dis-
tributed moment of inertia also leads to the same differential
equation. The variable in this case is the angle of twist ¢(z, t),
and the differential equation is

2
wg = 61,38 (93b)
where p; is the moment of inertia per inch length of shaft and
GI, is the torsional stiffness of the shaft. It is left as an exercise
to the reader to derive this result.

Proceeding to a solution of (93), (93a), or (93b), we assume
that the string vibrates harmonically at some natural frequency
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and in some natural or normal configuration. It remains to be
scen whether such an assumption is correct. In mathematical
language this means that we assume

y(x, t) = y(r) sin wt (94)
Substitute this in (93), which then becomes

@y
dz?

le2

+ y=20 (95)
T

which is an ordinary differential equation. Whereas in all pre-
vious problems this sort of assumption simplified the ordinary
differential equations to algebraic ones, we have here the simplifi-
cation of a partial differential equation to an ordinary differential
cquation.

It is scen that (95) has the same mathematical form as [q. (13),
page 1 or in words: the amplitude of the string as a function
of spuce acts in the same manner as the amplitude of a single-
degree-of-freedom system as a function of time.

Therefore the general solution of (95) is by Eq. (14)

2 2
y(x) = C, sin ‘r\/y,'f,"- + C; cos r\/“}lﬁ"»— (96)

which determines the shape of the string at the instant of maxi-
muin deflection.  The integration constants C; and C, can be
determined from the condition that at the ends of the string the
amplitudes must be zero, or

y=0 for r=0 andfor r =1
Substituting r = 0 gives
YO =0 =C, 0+ Cy-1

so that (', = 0. With & = [, we get

/ma;"
\NT
This can be satisfied by making €, = 0, which gives the correct
but uninteresting solution of the string remaining at rest. How-

ever, (97) can also be satisfied by making the argument of the
sine an integer multiple of » or 180 deg.

y) =0 = C,sinl (97)
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o2
l\/}f};- =0,m 2r, 31, -+ - (98)

This determines the natural frequencies, while the corresponding
normal modes can be found at once by substitution of Iq. (98)
in kiq. (96). The results are illustrated in Fig. 109.

There is an infinite number of normal elastic curves and corre-
spondingly an infinite number of natural frequencies. The

r
Wy = I\T M

2r -
wy - l N T/

o= TN T

N

Fra. 109, The first three natural modes of motion of the lateral vibration
of a uniform string or of the lonmtudinal or torsional vibration of & uniform
bar bult in at both ends.

motion in each one of these modes is such that the amplitude
of every point of the string varies harmonically with the time,
and consequently the normal curve remains similar to itself.
Therefore, if a string is defleeted in one of the shapes of Fig. 109
and then released, it will return to
its original position in an interval of
time determined by the natural period
of the vibration. At that frequency
and shape the inertia foree and spring
force of cach element dr of the string 15t
are in equilibrium with each other at
any instant.

If the string is given an initial dis-
placement of a shape different from ~— 3rd
any of those of Fig. 109, e.g., a dis- " g 110 Shape  of o
placement such asis shown in Fig. 110, “plucked” string  with  the
the shape can be considered to be f:;”,t'h:l't";}f,,P:’””” components

pe.
composed of a (Fourier) series of the
normal shapes (sce page 20). IEach Fourier component then
will execute a motion conformal to itself, but each one will
do this at its own particular frequency. Thus after one-cighth
period of the fundamental mode, the amplitude of that

b

2nd
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fundamental component will have decreased to 0.707 of its
original value, the second component will have zero ampli-
tude, while the fourth mode will have reversed its amplitude.
Thus the compound shape of Fig. 110 is not preserved during the
motion. However, after a full period of the fundamental motion
the original shape recurs.

b ! |

(a) ﬁ

3 (‘antilever

() I Organ pipe

o L—""_ Vv I

(d) 1/\ .
N

(e) I/\ / Pam i
) </ - Al
Fra. 111.—Longitudinal vibrations of a steel column or air column of which one
end is fixed and one end free.

i

I

3 R
’ Zﬂf\/fll';/m

The shapes of Fig. 109 pertain also to the longitudinal (or
torsional) vibrations of a bar with both ends built in or to the
vibrations of an “organ pipe” with both ends closed. The ordi-
nates then signify displacements along the bar.  The frequencies
are evidently the same, except for a substitution of the ““tension
stiffness” A K instead of the tension T.

For the longitudinal (or torsional) vibrations of a cantilever
bar or of an organ pipe with one open end, the general expression
(96) for the shape still holds, but the end conditions for deter-
mining C, and C. are different,

At the closed end r = 0, we still have y = 0, because the air
cannot penetrate the solid wall at the closed end of the pipe.
At the open end, however, there can be displacement but no
stress (in the bar) or no pressure excess (in the organ pipe). In
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the derivation of the differential equation this stress was seen
to be proportional to d&/dr (or dy/dr in the string notation).
The end conditions are therefore

r=20 y=20

r=1 dy/dr =0
The first of these makes C» = 0 in (96), while the second one can
be satisfied by equating the length of the bar to 1, 3, 5, ete.,
wave lengths, as shown in Fig. 111.

In conclusion, a number of results previously obtained are
assembled in Fig. 112. The first of these is half of Fig. 96b;

IA Wi d L A‘ wis 12 JT_
g 1, L & 1.y, L
2 w6 g w= 12 or

N ] 2N st
oo w .ﬂ.m w 'ﬂ'ML

Fia. 112, By increasing the number of cquidistant masses on the string the
uniform mass distribution is approsched gradually.  ‘The convergence is too slow
to have practical significance.

the second one is Ilig. 97b, and the third one is Fig. 96a.  The
inscribed frequencies also have been taken from the same sourees,
except that M now stands for all the masses combined and L for
the total length of the string.

In the right half of Fig. 112 two masses have been added at the
points of support. These masses do not affect the frequency
since they do not move. However, they do affect the value of M,
which is the total mass. By increasing the number of muasses
from 1 to 2, 3, ete., we must finally approach the fundamental
frequency of the continuous string. In the left half of the figure
the frequency of the continuous string is approached from below,
because the masses are concentrated too close to the center where
their inertia is very effective. Conversely, in the right half of
the figure the mass is too close to the supports where it con-
tributes a very small amount of kinetic energy; hence the fre-
quencies are too large.
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It is seen that the exact factor #2 = 9.87 is approached very
slowly, and therefore that a quick approximate method for finding
the natural frequency based on such shifting of masses is rather
unsatisfactory.

32. Rayleigh’s Method.—The string problem is the simplest
one among all those having an infinite number of degrees of free-
dom. Though for this problem an exact solution of the natural
frequencies can be obtained, this is far from possible for the
general problem of a system with distributed mass and dis-
tributed flexibility. Therefore it is of great importance to have
an approximate method for finding the lowest or fundamental
frequency, a method which will always work. Such a procedure
has been developed by Rayleigh; it is a generalization of the
energy method discussed on page 46.

Briefly, a shape is assumed for the first normal elastic curve;
with this assumption the (maximum) potential and kinetic
energies are calculated and are equated. Of course, if the exact
shape had been taken as a basis for the calculation, the calculated

frequency would be exactly cor-

] ds, rect also; for a shape differing
y ’r somewhat from the exact curve a
| dx X = very useful and close approxi-

Fra. 113.—Calculation of the poten- mation for the frequency is ob-

tisl energy of a string. tained. Since the exact solution
for the string is known, we choose it as an example for the explana-
tion of Rayleigh’s method, which will enable us to judge the error
of the approximate result.

For a calculation of the potential energy we observe that the
deflected string has a greater length than the straight one. It
is subjected to a tension T all the time, so that in going into
the deflected shape an amount of work TAl has to be performed
on it. This is stored in the string in the form of potential
energy. For a calculation of the increase in length Al, we observe
that the length of an element ds is (Fig. 113)

s = V@ @ = deyfs 4 () = a1 1 Y(20)]

The increase in length of that element is

o dy\
ds dx—§<%> dx



RAYLEIGH'S METHOD 179

T (Y dy

This result can be derived somewhat differently as follows. In the deriva-

so that

2,
tion of Eq. (93), page 171, it was seen that the right-hand side Tg}% signifies

the downward force per unit length of the string. Imagine the string to be
brought into its deflected shape by a static loading q(z) which grows pro-
portional to the deflection y(z). The work done on an element dz by q(z)
in bringing it to the fully deflected position y(z) is X4q(z)y(z)dz, and the
potential energy is

Pot = 14 j(; lq(z)y(w)d-’c

dy

Since q(z) = — Zt

_T d?y
Pot = =3 Y d:z;*dx (99a)

By a process of partial integration this can be shown to be equal to (99):

L dxzd j;yd (E) ‘/d:c _];)Zl?vdy

The first term is zero because y is zero at 0 and I. The integral in the second

term can be written
ldy d1 _ ( ) e
o dz dz

The total kinetic energy is the sum of the kinetic energies
Lemv? = 14 (uidr) (yw)? of the various elements:

!
Kin = %mwz f yidz (100)
0

As in the case of a single degree of freedom (page 46), the
expressions (99) and (100) are the mazximum energies; the maxi-
mum potential energy occurs in the most deflected position, and
the maximum kinetic energy occurs in the undeformed position
where the velocity is greatest. KEquating the two energies we
find for the frequency:

l
dy\?
T f<d—) dz
Wt = — JONE/ (101)

The value w? obtained with this formula depends on the form
y(x) which we assume. First consider the exact shape:
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y=yosin7—'%lC

By kq. (99) the potential energy is

1l 2 2
Pol = %f) (y.,’lr cos ’fl{) dr = ;ﬁ,’}zé (see page 16)
Similarly we find for the kinetic energy: Kin = ‘i‘sz'yg{’ so that

—— the frequency becomes

0
p Yo HIHH] é r |T 3.142 [T
—_— —— = e —— — 2
%/LOI [ o= . \/#1 (102)

y which is the exact value.

Fra. 114.—A parabolic arc as the Next assume a pumbolic arc
approximate (Rayleigh) shape of a for the shapc of the String. The
vibrating string. . .

cquation of a parabola in the
xy system of Fig. 114 isy = pz? The parabola can be made to
pass through the two points ¥y = yo and z = +1/2 by giving p
?2
12
ordinates of Fig. 114. The deflection of the string is y, minus

the shaded ordinate:
2
y = .r/w(l - 4;)

Using this value for y in (99) and (100), we have after a simple
integration:

the value 4y,/1% The equation y = 4y,5; describes the shaded

2
Pot = ?:T];Q

Kin

i

1
L

and
o = V10 /TA _ 3_.162\/’1?_
' [ Nm I Nm

which is only 0.7 per cent greater than the exact value. The
error is surprisingly small, since it can be seen physically that the
parabola cannot be the true shape. The spring effect driving a
particle dr of the string back to equilibrium lies in the curvature,
or dty/dr?, of the string. At the ends the string particles do not
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move, so that there they have obviously neither inertia force
nor spring force. Therefore the exact shape must have no
curvature at the ends, which condition is violated by the parabola.

To test the power of Rayleigh’s method we shall now apply
it to a most improbable shape of deflection curve (Fig. 115):

r
y = y"l,?; for v =1/2
We find successively,

Pot = 2Ty2/1
Kin = u,0*ly3/6

_ }/iié\/lf _ 3.4(34\/’?
wu= l e M

which is 10 per cent greater than the exaet value (102).

Rayleigh’s approximation al-
ways gives for the lowest natural
frequency a value which is some-
what too high.  Among a number
of approximate results found Fra. 115 Another Raylegh approx-
in this manner the smallest is imation for hall s sine wive.
always the best one. A proof for this statement will be given
on page 200.

Finally, we shall solve the combination problem of a heavy
string of total mass M, in the middle of which is attached a single
concentrated weight of the same mass M. This problem is
again equivalent to that of the longitudinal (or torsional) vibra-
tions of a bar clamped at both ends and having a concentrated
disk in the middle with a mass (or moment of inertia) equal to
that of the bar itself.

Regarding the elastic curve, it can be said that, if the central
mass were absent, the curve would be sinusoidal, whereas if the
string mass were absent, it would be as shown in Fig. 115, The
actual shape will lie between these two. Assuming first a
sinusoid, we note that the potential energy is not affected by
the presence of the central mass. The kinetic energy, however,
is increased by ! Mw?y? which is twice as great as the kinetic
energy of the string itself, since M = u,l. Thus the total kinetic
energy is three times as large as without the central mass and

consequently the frequency is v/3 times as small:

and
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w1 = \/.l Ml— 181\/Ml

With the string deformed as shown in Fig. 115, again the potential
energy is not affected, and the kinetic energy becomes Mw?y?/2
larger, i.e., (34 + Y4)/16 = 4 times as great as before. Thus

the frequency is
_ V12 1}2 \f 173 /
M1

Since this last value is smaller than the one found before, it is
the better approximation. The exact solution for this problem is

T

This exact solution, though somewhat complicated, can be found from
the theory developed on page 174. Equation (96) gives the general shape of
a vibrating string, which we apply now to the left half of our string. The
condition that the left end is at rest gives C: = 0 as before, so that the shape
of the left half of the string is determined by

2
y=Csnz % (103)

where C and o are unknown. The amplitude C is of no particular impor-
tance, but the frequency « deter-

a } T T~ mines the “wave length’ of the
£;‘~\ c \\\\ §ine curve. In Fig.‘ 116 the shape
N > > is shown, with the right half of the

! A J string as a mirrored image of the

left half. The central mass M
experiences an inertia force Mw?y,
and an elastic force 2T tan « and,
as these two forees must be in equilibrium,

2T tan a = Mw?y, (104)
The values yo and tan « are the ordinate and the slope of (103) at the point

where ¢ = 1/2, or
2
Yo = Csin 3 L \/#'w

= OV cos L1
tana—C\/T cos 5 T

Since u1 I = M, a substitution of these expressions in (104) gives

“’\/E—— t L M
T ~%'3NT

Fig. 116.—Ezxact calculation of heavy
string with central mass.
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Thus we have to find an angle of which the magnitude in radians equals
the value of the cotangent. For zero degrees the angle is zero and the
cotangent infinite; for 90 deg. the angle is 1.6 radians and the cotangent is
zero. Clearly the equality must occur somewhere between 0 and 90 deg.
From a trigonometric table we find that it occurs at 49.3 deg. = 0.8603

radian. Thus
W, [M1
oNT = 0.8603

T

Since the smallest value obtained for the frequency is always
the best one, Rayleigh sometimes writes down a formula for the
shape which is not entirely determined but contains an arbitrary
parameter. With this formula the frequency is calculated in
the regular manner, giving a result which also contains the
parameter. By giving the parameter various values, the fre-
quency also assumes different values. The best value among
these is the smallest one, 7.e., the minimum frequency as a func-
tion of the parameter. The approximation thus obtained is
very much better than with the normal Rayleigh method.

Ritz has generalized this procedure to more than one param-
eter. The Ritz method of finding natural frequencies is very
accurate but unfortunately requires rather elaborate calculations.

or

Ezxample: A ship drive consists of an engine, a propeller shaft of 150 ft.
length and 10 in. diameter, and a propeller of which the moment of inertia
is the same as that of a solid steel disk of 4 in. thickness and 4 ft. diameter.
The inertia of the engine may be considered infinitely great. Find the
natural frequency of torsional vibration.

Solution: On account of the great engine inertia the engine end of the shaft
can be considered as built in, so that the system might be described as a
“torsional cantilever.” The shape of the deflection curve (i.e., angle ¢ vs.
distance z from engine) would be a quarter sine wave if there were no pro-
peller, and it would be a straight line through the origin if the shaft inertia
were negligible with respect to that of the propeller. We choose the latter
straight line as our Rayleigh shape, thus: ¢ = Cz.

From the strength of materials we take two results:

1. The relation between torque M and angle of twist ¢:

Mdx
de = a1,
2. The potential energy stored in a slice dz of the shaft:
M2z
d Pot = T,

where GI, is the torsional stiffness of the shaft.
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Since our assumed Rayleigh curve has a constant slope do/dz = C, it
follows from the first of these equations that the torque M = CGI, is con-
stant along the length of the shaft. The second equation can thus be
integrated immediately:

The kinetic energy of a shaft element dz is 14(I.dz)¢? where I, is the
mass moment of inertia per unit length of the shaft. But ¢ = we = wCz =
oMz /G,

The kinetic energy of the shaft becomes

w 1 szzla
Km.=z((’ )f:cdx-:—_-—(ﬁl—z—
P

The angular amplitude of the propeller (of which the inertia is I) is ¢, =
Cl = MI/GI,, and its kinctic energy:

Equating the sum of the two kinetic encrgies to the potential energy and
solving for w? we find:
Gl,

l(l + ‘l)

from which it is scen that one-third of the shaft inertia is to be thought of as
concentrated at the propeller.
With the numerical data of the problem we find:

_ 1 2 — 2 H 9 2
1= Zmr 386 1rr 4) = 1,510 in. 1b. sec.
1 0.28 .
= .mr?l = S a2 2] = 2
Il gmr 1 (380” l)r ! = 1,280 in. 1b. sec.
Gl, _Gr,_ 12108 « _ . .
T =713 T isox12 2 54 = 6.55 108 in. 1b.,
so that
6.55 10¢
2 — = 2 2
® 1510 & 427 3,380 rad.?/sec.
and

w 1 29 — 2/
f= o = 9—7;\/-3,.380 = 9.3 cycles/scc.

An exact solution ean be found by a process very similar to that discussed
on page 182. In fact, IYig. 116 can be suitably interpreted for this
propeller shaft. The frequency equation becomes

L
1

g

,2

’

= 0.846

atan a =

1

2]
(=]

1

where « is an abbreviation for
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i
GI,
By trial the solution of this transcendental equation is found to be
a = 46.3 deg. = 0.809 radian

from which

= (0. 809)2 1—21— = 3,350 rad.?/secc

which is 1 per cent smaller than the Rayleigh result.
33. Bending Vibrations of Uniform Beams.—In the various
textbooks on strength of materials the differential equation

of the static loading of a beam is usually given in the following
form:

M = EI a_7/
dQM
=S (105)
. _d? d*y
or combined q= ( Idz~>

where q is the load per running inch and M is the bending
moment.

If the cross section of the beam is constant along its length,
the factor EI does not depend on x and the equation simpli-
fies to

- %Y
q= lex‘ (106)
The various diagrams for a beam on two supports under two
stretches of uniform loading are shown in Fig. 117, but Kqs.
(105) and (106) are generally true and hold just as well for other
manners of support, e.g., for cantilevers.

If a beam is in a state of sustained vibration at a certain
natural frequency, the “loading” acting on it is an alternating
inertia load. In order to get a physical conception of this state-
ment, note that in the position of maximum downward deflection
(Fig. 117¢) each particle of the beam is subjected to a maximum
upward acceleration. Multiplied by the mass of the particle,
this gives an upward inertia force which the beam must exert
on the particle. By the principle of action and reaction the
particle in question must exert a downward force on the beam.
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All these downward forces of the various particles constituting
the beam form a loading q which is responsible for the deflection
and is related to it by (105) or (106). Naturally, while the beam
is passing through its equilibrium position, the accelerations and
thercfore the loadings are zero, but then the deflections are also
Zero.

Thus the differential equation of the vibrating bar of uniform
cross section is

0y 9%y
(1101'4 = — M -

(107)

Shear force

S = Kly"”
Bending
moment
Vo= Ely”
Slope
.

dr
Deflection
v o= flr)

Fra. 117. - IHustrating the differential equations of a beam in bending.

wbere py is the mass of the beam per unit length. Assuming a
sus tained free vibration at o frequency w, we have, as on page 174,

y(r, 1) = y(2) sin wt (94)
wlich gives to (107) the form

g", pwly (108)

EI
The left side of this is the elastic expression for the loading
[q. (106)], while the right side is the maximum value of the
inertin load. From it we sce that the physical characteristic
of any “normal elastic curve” of the beam is that the q loading
diagram must have the same shape as the deflection diagram. Any
loading that can produce a deflection curve similar to the loading
curve can be regarded as an inertia loading during a vibration;
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the natural frequency appears merely in the numerical factor
wiw? connecting the two.

The functions which satisfy (108) must have the property
that, when differentiated four times, they return to their original
form multiplied by a positive constant www?/KI. We may
remember four functions that will do this, 1z

e, e, sin ax, and cos ar

where the coefficient @ has to be so chosen that

4"
Mw”
a = , )
\/1',1 (109)
Thus the general solution of (108) containing four integration
constants can be writien

y(r) = Cer™ + Coemo* 4 Cysinar + Cieos ar  (110)

This expression determines the shape of the various “normal
elastic curves.” The four integration constants € have to be
calculated from the end conditions.  Ior each end of the beam
there are two such conditions, making the required four for the
two ends. They are for a
Simply supported end: y =0,y =0

(zero defleetion and bending moment)

Free end: y' =0,4" =0
(zero bending moment and shear foree)
Clamped end: y =0,y =0

(zero deflection and slope)

which will be clear from a consideration of the physical meaning
of the various derivatives as shown in I'ig. 117, For any specific
case the four end conditions substituted in (110) give four
homogeneous algebraic equations in the four (s, The determi-
nant of that system equated to zero is an equation in «, which
by (109) is the frequency equation.  This process has been car-
ried out for the various kinds of beams (beam on two supports,
cantilever or ‘‘clamped-free” beam, clamped-clamped  beam,
ete.), but we prefer here to find approximate solutions by using
Rayleigh’s method. Only for the beam on two simple supports
can the exact solution be recognized from (110) in a simple man-
ner. The end conditions are in this case

r=0,y=%"=0 and z=Ly=9%"=0
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We see immediately that a sine-wave shape satisfies these con-
ditions, and that the cosine or e-functions violate them. Thus
for a beam on two supports (110) simplifies to

y(x) = C sin az

s0 that the normal elastic curves of a uniform beam on two

supports are the same as those of the string shown in Fig. 109,

but the frequencies are different.  They are found by making

the argument of the sine cqual to an integer number times = or
|w2

al = l 77 n=1,23 --"+)

so that

w2 [EI 4r? K1 nir? |KI
w; = li* I’ Wy = l2 #1’ y Wn = —lz‘ *E (111)

Whereas the consecutive natural frequencies of the string increase
as 1, 2, 3, 4, cte. (page 175), for the beam on two supports they
increase as 1, 4, 9, 16, cte.

We have seen that in a natural shape of the uniform beam the
inertia loading diagram is similar to the deflection diagram,
because the inertia load at cach point is pidrw?y, proportional to
the defleetion y. Thus to cach natural shape there belongs a
natural loading curve pw?y. This concept is useful for solving
a group of problems, of which the following is a typical example:

A beam on two supports is in a state of rest. A load P is
suddenly applied to the center and remains on it for ¢, seconds.
Then it is removed.  What is the ensuing state of motion?

The concentrated load, being not one of the natural loadings,
will exeite many of the natural motions.  In order to see through
the situation, the applied loading is resolved into a series of
natural loadings, in this case into a Fourier series. A concen-
trated load P is hard to work with; we replace it by a distributed
load of intensity q acting over a short length 8, such that ¢6 = P.
Then, by LKq. (11a), page 21, the various Fourier coefficients
become

1,3
2 (! 2 ( . oz
a, = I'(x) sin 0T T = 2 sin n—d——
™ l l ™) 1 s 11
272
i?il .7 i2P
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where the + sign holds for n =1, 5, 9 and the — sign for
n=3,7 11, - - - . Thus a concentrated force P at the center
of a beam is equivalent to a series of sine loadings of the same
intensity 2P/l. The first few terms are illustrated in Iig. 118a.

We investigate the influence on the motion of each of these
natural loadings individually. Any of them will influence only
the natural motion to which they belong, and under one of these
loadings the system acts as one of a single degree of freedom, to

/ 7 5

3

F1G. 118~ Fourier components of 1 concentrated load.

which the solution of problem 32 (page 101) may be applied.
Thus for the first loading

Y = yulcos w(t — t) — cos wy
])

sin

l

nwar

The static defleetion curve under a loading ¢ = 18

found by integrating Iq. (106) four times:

2103 nmwr
Wedn = pgep

The entire motion is the superposition of the individual motions
for cach mode and can be written as

1 ¢ sin 1TF
2213 n : L} -
y(x, ) = Y (=1) 2 n"l - eos wa(t = o) — cos wat]

1,35

where the values of w, are to be found from Iq. (111).

Suppose the load is applied during a time £ which is a multiple
of a period of the first harmonic motion (and therefore a multiple
of the period of any higher harmonic as well).  Then cos w,(f — £)
= cos wat, and the whole solution y(x, ) reduces to zero. No
motion results after the load ceases to apply.
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Next consider the case where the load stays on for 14 period of
the first harmonic (and therefore for 24 period of the third
harmonie, 254 period of the fifth, ete.). Then cos w,(t — to) =
—cos w.t, and the square bracket heeomes —2 cos wit, so that

4P 1 5":}1. nrx
y(z, 0) = %l —(—1) * sin 7 Cos wnl
1,35
All harmonies are present in the motion, but their amplitudes are
proportional to 1/n%. Thus, while the first harmonic has an

Fru. 118b.- Potential energy of Hexure in a beam element.

amplitude of 2PI3/n*EI at the center of the span, the third
harmonic is only lg; times as large, the fifth 1§o5, ete.

In applying Rayleigh’s method, the expression (100) for the
kinetie energy holds for the bar as well as for the string. But
the expression (99) for the potential energy will be different since
the spring effeet in this ease is due to the bending resistance KT
rather than to the tension T, From strength of materials we
have the following formulas for the potential or clastic enecrgy
stored in an element of length dx of the beam:

d Pot = ;JE}(I;C

_ EIfdwy\’

These can be derived simply as follows.  Consider an element dzunder the
influenee of the bending moment M (Fig. 118b).  The element is originally
straight and is bent through an angle de by the moment M. If the
left-hand end of the element be assumed to be clamped, the moment M at
the right-hand end turns through the angle de. The work done by M on
the beam is 1;Mdy, where the factor 1§ appears because both M and dy
are increasing {rom zcro together. This work is stored as potential energy
in the beam element.

or
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Now calculate the angle de.  If the slope at the left-hand end r be dy ‘dx,
then the slope at the right-hand end i is 7 IU + (d ”) dr and the difference in

slope do is
d?y

i

dx?

de

so that
d Pot = },My"dx

With the differential equation of bending M = Ely”, the two forms given
above follow immediately.

Thus the total potential energy in the beam is

pot = 11 J (:5;;’/3)“(1; (112)
4-4 () o

Tt is left as an exercise to the reader to derive the first natural
frequeney of a beam on two supports

-
by substituting in the expressions (100) 7 "
and (112) half 2 sine wave for the shape y. . —;,;

Let us now caleulate the fundamental ! -+
Y ‘ 4
frequency of a cantilever or “clamped- ﬁ

free” beam. We have to choose a curve g, 119 Quarter cosine

(Fig. 119) which is horizontal at x = 0 wave as a Rayleigh shape
. for a cantilever.

and has no curvature or bending moment

y" at the end I. A quarter cosine wave has these properties:

y = y‘,<1 cos —2[> (113)

Since this expression cannot be forced into the form (110) by
manipulating the four C’s, (113) is not the exact form of the
normal curve. Substituted in (112) and (100), we find with
the aid of the integral of page 16:

) ?r__llf
Po ob = gg Yo

Kin = pio’y? (2 - ?r)

Equating these two expressions, the frequency becomes

366 EI
\/ \/,ull“ = o (114)
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The ezact solution contains the factor 3.52 which is 4 per cent
smaller than 3.66. Figure 120 gives the exact shape together
with that of the second mode.
The normal elastic curve of
4 oo~ w1 = 352VEI/wml'  a beam which is built in at both
ends (a ‘“‘clamped-clamped”’ bar)
ki must have a shape that is sym-
wr = 220v/EI7zz¢  metrical and horizontal at both
Fio. 120.—The first two natural ¢Dds (Fig. 121). A full cosine
modes of motion of a cantilever in  wave displaced upward by o
bending. . . .
is a simple curve fitting these

[ 27rx]
Y =1Yy|1l— cos e

We find successively:

Jo—— | ———>

conditions:

[‘I 1()7r4 l
P()t = l“ - §
Kin = yowzl[l + %]

47 0l 227 [EI
= :/3\/;;14 = \[ W (115)

whereas the exact solution is 22.4 or 1.3 per cent smaller than 22.7

Yo T J w = 22.4\/1—3—1/;‘11‘

I—>x

3
4

F1a. 121.—Normal elastic curve of a clamped-clamped bar.

Finally, we consider the ‘‘free-free’” bar, 7.e., a bar which is
suspended freely from one or more strings or which is floatingon
a liquid. The simplest mode of vibration (Fig. 122) must have
two nodes and no curvature y’’ at either end. Such a shape
can be had conveniently in the form of half a sine wave displaced
vertically through a short distance a:

. T
Y = Yo SIn —l‘ i/ ]
The amount of vertical displacement a is important, since it

determines the location of the two nodes. For a = 0 they are
at the ends of the beam; for a = y, they are both at the center.
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The actual value of @ between 0 and y, can be found from the fact
that since no external alternating force is acting on the beam,
its total vertical momentum must be zero. While the beam is
passing through its equilibrium position, the ends have downward
velocities wy and the middle has an upward velocity wy. Since
the beam is uniform, 7.e., since all particles dr have the same mass,
these values wy are proportional to the momentum as well. The
total momentum is zero if the areas above and below the center
line in Fig. 122 are equal or if

1 ! 1
0= fydx = yofsinﬁdx — fadx = gyol —al
0 0 l Jo T

so that
2yo
a = Y
™
‘\\ yid
. Z w1 = 22.4\/EI/mlé
~~J2-~ a

FiG. 122.,—Normal elastic curve of a free-free bur.

With that expression for the shape of the vibration we find

mt ETy?
POt = “4‘ l" 0

Kin = wa’y%l[l - 2]
4 T

’ EI 2272 |k

o= — - \/ BL_: . \/ [ (116)

2\/(1 2\l * N m
4 7

The exact result is the same as that of the clamped-clamped bar,

namely 22.4 which is 1 per cent smaller than 22.72,

Ezxample: A cantilever beam EI, of length ! and of mass u; per unit length
(total mass m = ul) carries a conecentrated mass M at its end. Find the
natural frequency by Rayleigh’s method, and in particular find what frac-
tion of m should be added to M in order to make the simple formula (16)
applicable (page 43).

Solution: The shape of the deflection curve has to satisfy the same require-
ments that were used in deriving Eq. (113), so that we shall retain the
expression employed there. The potential energy is not affected by the
addition of a mass M at the end of the bar, but since the amplitude of that
end is y,, the kinetic energy is increased by ¥ Mw?2 With m = pyl, the
total kinetic energy can be written as
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Kin = l-wzyg[M +mfd - i“)] = Loryz0 + 0.23m).
3 3 x 5

With the expression of page 184 for the potential energy the frequency becomes
3.03E7T

w L

Thus 23 per cent of the mass of the bar has to be added to the end mass.
In case the bar is supposed weightless, m = 0 and the result for »? found
here is 1 per cent greater than the exact value, where the coefficient is 3.

34. Beams of Variable Cross Section.—In many practical
cases the eross section of the beamn is not constant over its length.
The most common example of a beam on two supports is a shaft
in its bearings, the shaft usually having a greater cross section
in its middle portion than near its ends. A steel ship in the water
sometimes executes vibrations as a free-free bar, somewhat in
the form of Iig. 122. These vibrations become of importance
if the unbalanced forces of the propelling machinery have the
same frequency as the natural frequenecy of the ship. But the
bending stiffness of a ship is by no means constant over its entire
length.

The method of Rayleigh can be applied to such non-uniform
beams also, since it is always possible to make some reasonable
estimate regarding the shape of the deflection curve. The
calculations are the same as those for the beam of constant
section, with the evident exception that the expression (112)
for the potential energy has to be modified by bringing the now
variable stiffness KI under the integral sign. If the stiffness
raries in a more or less complicated manner along the length z,
the evaluation of the integral for the potential energy may
become difficult, but, even if the exact calculation is impossible,
the integral can always be evaluated graphically.

A somewhat different manner of finding the frequency has
been developed by Stodola, primarily for application to turbine
rotors. His process is capable of being repeated a number of
times and of giving a better result after cach repetition. Briefly
it consists of drawing first some reasonable assumed deflection
curve for the shaft in question. By multiplying this curve with
the mass and the square of the (unknown) frequency ui(x)w?, it
becomes an assumed inertia loading. Since w? is not known, it
is arbitrarily taken equal to unity to begin with. Then with
the inertia loading y(x)u:(x) the deflection curve y(zx) is con-
structed by the regular methods of graphical statics. Of course
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this second deflection curve sy(z) coincides with the originally
assumed one y(z) only if

1. y(z) is exactly the normal elastic curve.

2. The natural frequency «? is exactly unity.
The first of these conditions is fulfilled approximately, but the
second is generally far from the facts. The deflection »y(x) has
more or less the shape of the original assumption y(x), but its
ordinates may be 10,000 times smaller. If that is so, we could
have obtained approximately equal ordinates for sy (x) and y(x) by
assuming a frequency w? = 10,000. In that case, the original
inertia load would have been 10,000 times as large and the final
deflection oy (x) also 10,000 times as large, .c., approximately equal
to the original assumption. Therefore, the ratio of the ordinates
of y(x) and 2y () gives a first approximation for the frequency w?.

With a fairly reasonable guess at a deflection curve, the
accuracy obtained with this procedure is very good. If greater
accuracy is desired, we can repeat the construction with oy(x) as
our original estimate, finding a third curve sy(xr). It will be
proved on page 201 that the process for finding the fundamental
mode of vibration is convergent, 7.c., each successive curve is
nearer to the true shape than the previous one. In fact, the
convergence is so rapid that usually no difference can be detected
between the shape of sy(2) and .y (z).

For the second and higher modes of vibration the process is
not convergent. Nevertheless Stodola’s method, properly modi-
fied, can be used for the higher modes, as explained on page 202.

The details of the construction belong to the field of graphical statics
rather than to vibration dynamics. As a practical example consider a shaft
of 72 in. length, on two solid bearings, shown in Fig. 123, 1. Dividing it into
six sections of equal lengths, the masses and bending stiffness E1 of the vari-
ous scctions are shown in the table below, where the modulus of clasticity
E has been taken as 30.10¢ Ib per square inch.

Scction Mass per inch, Scetion mass, Kl
No 1h. in.”2 sce.? Ib. in.”! sec.? b, in.2
1 0.0142 0.17 9.13 X 108
2 0.0320 0.38 46.2 X 10®
3 0.0568 0.68 146 X 108
4 0.0568 0.68 146 X 108
5 0.0320 0.38 46.2 X 108
6 0.0142 0.17 9.13 X 108

The assumed deflection curve is designated by II. It has been made
rather flat in the center portion because that part is much stiffer than the rest
of the structure. In order to obtain the inertia load
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Yymw? = yu; - 1,

the ordinates y have to be multiplied with the mass per running inch gy, i.e.,
with the sccond column of the table. This gives curve III, which is
drawn so that each ordinate “inch” represents 0.025 1b./in. All lengths
are measured in actual shaft inches indicated by the scale above I. Thus
one “inch” of the shaft is roughly 145 in. in the printed figure. The ordi-
nate of II in the center of the shaft is 15 in. and the middle ordinate of III is
0.852 1bh./in. (15 X 0.0568).

In order to find the deflection curve under this loading, four integrations
have to be performed, divided into two groups of two ecach. In the first
group we integrate twice and arrive at the bending moment M:

_aM

== (105b)

The first integration is performed by evaluating the arcas of the six sections
of curve 1II.  For instance, the area of the first section, being nearly tri-
angular, is 14 X 12 in. X 0.138 1b./in, = 0.83 1b. This is the combined
inertia foree (for @ = 1 rad./second) of the whole first section and thus is
the change in the shear force between the left end and the right end of
scction 1, The six arcas of curve 111 are sct off vertically below cach other
in diagram IV, such that ABis 0.83 1b.; BC = 4.40 1b. = the area of section
2 of curve III. Thus the vertical line on the left of IV represents the shear
forces S and is the result of the first integration. Now take an arbitrary
horizontal distance I, here taken equal to 22.5 1b. and connect its end O
with A, B, C, cte. Then, in curve V, draw lines parallel to the rays of
diagram 1V, so that the line parallel to OB in 1V (which separates section 1
from section 2) runs between the vertical dotted lines through the centers of
gravity of the arcas 1 and 2 of curve III. The diagram V represents the
bending moments; the scale being 1 in. = H; = 22.5 in. 1b. Thus, for
example, the bending moment in the middle of the shaft is 396 in. 1b.

In order to pass from the bending moment curve V to the deflection curve
VIII, we have to perform two more integrations:

M d%
EI ~ dz?
This equation is built exactly like (105b); in fact, the deflection y can be
considered to be the “bending moment curve of a beam with the loading
M/EL.” The values of EI for the various sections are given in the last
column of the table, and curve VI shows the M/EI diagram. We can
repeat the process that has led from III via IV to V, and find VIII from VI
via VII. The ordinates of IIl were measured in lb./in. and those of VI in
in.71; so that the dimensions of VI, VII, VIII are found from their counter-
parts I1I, IV, V by dividing through by pounds. In particular, the hori-
zontal distance H; of VII has no dimension; it is a pure number.
The deflection curve VIII has more or less the appearance of the first
guess II; however, its middle ordinate is

12.2 X 2.5 X 107¢ in. = 30.5 X 10~¢ in.,
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whereas the same ordinate in diagram II was 15 in. Thus the first
approximation for the natural frequency of the shaft is

—i5—
W = \/3‘0,_5*>ZT0——6 = 700 rad./sec.

For other graphical and numerical methods to solve the prob-
lem of the natural frequencies of flexural vibration of a
bar of variable stiffness and inertia, see page 290.

36. Normal Functions and Their Applications.—We now turn
to the proofs of Rayleigh’s minimum theorem and of the con-
vergence of Stodola’s process. Though these proofs are not
essential for an understanding of the subsequent parts of the
book, they may give the reader a clearer insight into the nature
of ““normal modes of motion.”

With the string and the beam on two supports, it was seen that
the various normal elastic curves are sine functions:

. T . 2mx . nax
Y1 = sin Yo = sin = =1 + - - |y, = sin - ;=
l l l
In these expressions the amplitudes of the motions have been
arbitrarily assumed to be such that their maximum deflections
are 1 inch.

On the other hand, the normal elastic curves of a cantilever
beam (page 192) or of a beam with non-uniform cross section are
curves of much greater complication.

We know from page 20 that any arbitrary curve between 0
and [ can be developed into a trigonometric or Fourier series and
that one of the most important properties of such a series is

1 ,
fsin @;’f sin %de =0, (m = n)
aJ

as explained on page 18.

Applied to the special case of string vibration, this means that
any elastic curve y(z) which may be given to the string by an
external loading can be split up into a series of “normal” com-
ponents. This is true not only for the string with its sine func-
tions, but generally for any elastic system.

If the normal elastic curves of a system of length [ are y,(x),
ya(x), . . ., ya(x) . . ., then any arbitrary deflection curve
y(z) of that system can be developed into a series:

y(@) = awa(z) + aws() + - - - aayalz) + - - - (117)
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Moreover, the relation
!
[ m@y@yn@ds =0 (1 m) (118)

bolds, so that any coefficient a. in (117) can be found by exactly
the same process as that employed on page 21:

fm@y@y. @iz

aﬂ=—

[AOTACLE

This gives us a wide gencralization of the concept of Fourier
series.

(119)

To prove (118), consider an elastic syster: (beam) of length ! of which
the elastic properties are determined by the “influcnice functions” I(x, zi),
with the following definition (Fig. 124): the
deflection at a point z of the beam caused by ’(— '*"i
a load of 1 Ib. at a point z,is I(z, z;). In this oTh)
expression both z and z; are variables running
from 0 to I (sce page 155).

Maxwell’s reciprocity theorem in the strength 1 >
of materials states that the deflection at point ¥r1a. 124. -Definition of in-
1 due to a unit load at point 2 equals the fluence function 1(z1, 2).
deflection at 2 due to a unit load at 1. Thus the influcnce funetion satisfies
the relation

Xy -

I(z, z1) = I(z), x)

Let the beam be vibrating at one of its natural frequencies with the shape
Ya(x). The maximum inertia foree acting on a scetion dz, of the beam with
mass pp per unit length is

pi(@)dT 10}y n(21)
and the deflection caused by that load at a point z is
oy (@) (z, 21 (z1)dz,

There are inertia loads of this kind on every section dx; between 0 and [, so
that the actual deflection curve is the sum of all the partial deflection curves

!
yu(z) = wﬁj; yn(x) (2, z)m1(z1)dzs (120)
This relation holds only when y.(x) is a natural mode, hecause only then can

the beam be in equilibrium with loads proportional to its own displacen.ents.,
In order to prove (118) we multiply (120) by u1(z)ym(x)dz and integrate:

Llﬂx(x)ym(x)yn(x)d:c = w? j; ' j; @)@ (2, zm(Edm@dzde  (121)

Since (120) holds for any natural frequency, we may replace n by m. Then
we can multiply by ui1(z)w.(z)dz and integrate, with the result:
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Ll#l(x)ym(z)yn(x)dz = wn’.j:ﬁlym(r;)yn(z)l(x, z)p1(Z) 1 (2)dzdz

In this last double integral we may reverse the order of integration, t.e.,
reverse z and z;:

j;'mc)ym(z)yn(z)dz = wl j;’ ﬂymmyn(zx)l(xl, )11 (@)pis (1) dzdzs

This double integral is seen to be the same as that in (121) on account of
Maxwell’s theorem that I(z, z,) = I(z1, z). Let the value of the double
integral be 4; then, on subtracting the last result from (121), we obtain:

0= (2 —wl)4

This means that for w, # wa, the double integral A is zero, which makes the
left-hand side of (121) also zero, so that the proposition (118) is proved.

Proof of Rayleigh’s Minimum Theorem.—The approximate curve y(z)
assumed in the Rayleigh procedure ir not a normal elastic curve but can be
expanded in a series of such curves:

y() = yi(x) + aaya(x) + asys(z) 4+ + « + anyn(2) + - - -

In order to express the fact that y(z) is an approximation of y,(2), its coeffi-
cient has been taken equal to unity, whereas the other cocfficients as, as,
ete., may be small numbers. A normal elastic curve y.(z) is a curve that
can be caused by a static loading piwiy.(x).

Thus the static loading p(z) which causes the assumed curve y(z) is

(@) = mlwfyi(z) + awiy(r) + -+ - + anwiya(z)]

The potential energy of an element dz is Ly (z)p(z)dz, and the total poten-
tial encrgy is

1
Pot = ,‘/éj(;#l[!jx(l) + awya(z) +asys(z) + - - -+ aya @) - - awwlya(z)ldz

Since by (118) all integrals of products with m £ n are zero, this becomes
) 1 1
Pot = 34(ot f[mtde + - -+ + ool [Lunidz + - - - )

The kinetic energy of an element dz vibrating through the neutral position
with a velocity wy(z) is }4w?y?uidz, and

l 1 !
Kin = Y4t j; wydz = }ng( J; wyidz 4 - - +a j; y,y,’,dx)

since again all terms with products ymy. drop out.

It is seen that both the potential and kinetic energies consist of the sum of
the various energies of the components y,, y, etc. This is so only if y,, y;
are normal modes; if this is not the case, the integrals of the products ynym
have to be considered also.
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By Rayleigh’s procedure we equate the two energies and solve for w?:
7 !
w?ﬁ)uny%dx +-- -+ a?.w.’.j; wydde + - - -
w? 7 - 1
J;.uxyfdx 4+ +ﬂ.3fmy3.d:: 4+
2 3
) )
) 5 (122)
vaa(P) +a(l) +-

where the symbols (7{) are abbreviations for

or w? = w?

f ul?lld-x

Since w; > w; and ws > wg, ete., it isseen that in (122) the various entries in the
numerator are larger than the ones just below them in the denominator.
Thus the fraction in (122) is greater than 1, from which it follows that

o)L

w > w

or the frequency w found by Rayleigh’s procedure is greater than the first
natural frequency wy, which was to be proved.

Morcover, an mspeetion of (122) will show that this property holds only
for the first or lowest frequency but not for the second or higher ones.

Proof of the Convergence of Stodola’s Process.—l.et the first assumption
for the deflection curve be y(r), where

y(@) = yi(x) + aw:(z) + asys(z) + - - - + awyalz) + - - -
With a mass distribution u;(z) and an arbitrary frequency w = 1 the inertia
loading hecomes
my = py1 + @Yz + aspays + - - 0+ aGnpays + - - -

The deflection curve for the loading piw?y, is ya; consequently the loading
anmyn gives a deflection anyn/w?, so that the sccond deflection curve of the
process becomes

Jl(ﬂ:) 4. +anynz(:c)+”

y(z) =

t

which differs from the first curve in that each term is divided by the square
of its natural frequency. Proceeding in this manner we find for the (n + 1)st
deflection curve

npll) = 2"[yx +( ) @2Y2 +( ) asys + - ]

Since w1 < w2and w; < ws, ete., it is seen that with increasing n the impurities
Y2, Ys . . . decrease, and the first mode y, appears more and more pure.
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3b6a. Stodola’s Method for Higher Modes.—The above proof
shows that an attempt to construct the second normal elastic curve
by Stodola’s method will end in failure because any impurity of the
fundamental elastic curve contained in the guess for the second
curve will be magnified more than the second curve itself. After
a large number of repetitions it will be found that the second
mode disappears altogether and that only the fundamental mode
is left. Still it is possible to find the second mode if before each
operation the deflection curve is purified from its first-mode con-
tent. TFor this it is necessary first to know the shape of the first
mode with sufficient accuracy.

Let y(x) be the assumed shape for the second mode which
unfortunately will contain some first harmonic impurity, say
Ayi(z). Then we want to find

y(x) — Ayi(x)

which will be free from first harmonic contamination. In order
to find A, substitute the above expression in Fq. (118).

[ @) = Ap@n() de = 0

or

Jim@u@u) de = A fful)yi) de

= Jn@y(Dy(2) dz (118a)
Jm(@)yi(z) dx

The integrand in the numerator, apart from the factor u.(z), is
the product of the known first harmonic deflection curve and the
assumed approximation for the second harmonic deflection curve
y(z). In the denominator the integrand is the product of the
mass ui(z) and the square of the first harmonic curve. Both
integrals can be evaluated graphically; thus 4 is determined, and
the assumed shape for the second mode can be purified from its
first-mode contamination. Then the Stodola process is applied
to this curve.

For the third or higher modes the procedure is similar, but
the assumed curve for the third harmonic has to be purified from
the first as well as from the second harmonic by Eq. (118a).
Thus the Stodola process cannot be applied to a higher mode of
vibration until after all lower modes have been determined with
sufficient accuracy.

or
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The method is not necessarily restricted to the graphical form
of page 197. It is sometimes applied arithmetically, as will now
be shown for the simple example of the string with three equal
masses of Fig. 95. In the equations (76a) the terms on the right
are the deflections caused by the individual inertia forces.  With
the influence numbers of Eq. (79), the elastic deflection equations
(76a) are rewritten (m; = my = my = m).

3 1 |
mett" T A T gt

l(11 + as + ;(13 (76D)

matl™ = 2
3

T I | :
mzlﬂ:x =" + Q(lz -+ T

i

With Stodola, we now assume a shape for the deformation in the
first mode, and for the purpose of illustrating the convergence
of the method we intentionally make a stupid choice: a; = aq
= a3 = 1. Substitute that into the right-hand sides of 15q. (76b),
and calculate their sums.

Ca, = 113 Cay = 2 Cag = 113
where €' = T/mw¥. By reducing the middle amplitude to unity

(the same value as assumed first)) we thus find for the second
approximation of the deflection curve

a=3 =1 a=3
Put this into the right sides of 12q. (76b), and find

Ca; = 111, Cay, = 137, Cuy = 114
or again reduced to unity at the center, the third approximation

becomes
ay =%, a=1 a3=5% =074
Another substitution leads to the fourth approximation
a; = 1744; a; =1, a; = 174, = 0.707

The fifth approximation is

Il

2941 = 0.707

which is identical with the previous one within slide rule accuracy.
Substituting this into the first of the equations (76b), we have

a; = 29%44; as =1; as
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0.707——T~ = 1.207 or w}= 0.5862
mw?l ml

as found before on page 159.

Proceeding to the second mode, its shape is obvious (page 159)
from the symmetry of the case. However, for the purpose of
illustrating the method we start with a very bad assumption:

ar = 1.000, a, = 0500, a3= —0.750 (first)

First this expression is to be purified from its fundamental har-
monic content by means of Eq. (118a).  All masses are equal and
divide out from (118a). The expression thus is

4 = 1:000 X 0.707 + 0.500 X 1.000 — 0.750 X 0.707 _ ) 550
T 0.707 X 0.707 + 1.000 X 1.000 + 0.707 X 0.707 ~ "

The first harmonic amount to be subtracted from the above
assumption then is
a; = 0.338 X 0.707 = 0.240, a, = 0.338, a; = 0.240
which lcads to
a; = 0.760, a; = 0.162, a; = —0.990

or multiplying by a constant so as to make a, equal to unity, for
purposes of comparison,

a, = 1.000, as = 0.213, az = —1.302 (first, purified)

Substituting this into Kq. (76b), and multiplying by a constant
80 as to make a; = 1.000 leads to

a; = 1.000, a; = 0.116, a3 = —1.181 (sccond)
a, = 1.000, a: = 0.051, a; = —1.125 (third)
ar = 1.000, a; = —0.024, a3 = —1.148  (fourth)

By this time considerable first harmonic error has crept into the
solution, so that it is necessary to purify again by means of
Eq. (118a).

a, = 1.000, a; = +0.038, az = —1.058 (fourth, purified)
Continuing

a; = 1000, Ay = +0.018, az = —1.035 (ﬁfth)
a; = 1.000, a, = 0.000, a; = —1.034 (sixth)

]
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Again it becomes necessary to throw out the first harmonic, which
has crept in,

a; = 1.000, az = +0.012, a3 = —1.018 (sixth, purified)

I

a, = 1.000, as = +0.006, az = —1.012 (seventh)
a; = 1.000, az= 0.000, a3= —1.012 (eighth)
a; = 1.000, az= 40.004, @s= —1.006 (eighth, purified)
ap = 1.000, a3=+40.002, @a;= —1.004 (ninth)
a; =1000, a= 0,000, a3=—1.004 (tenth)

It is seen that the convergence is very slow, and that the first
harmonic creeps in continually and has to be thrown out about
every other step.

36. Rings, Membranes, and Plates.— The strings and beams
thus far discussed suffice in many cases to give a tolerably accu-
rate idealization of the actual constructions or machines with

w = 2.68/EI/mict w e 759\ kI /mis w = 14.55/EI/mR¢
Fi1a. 125.—Normal modes of a 1ing bending in its own plane.

which we are dealing. Where this is no longer possible, an
idealization in terms of rings (curved beams), membranes, or
plates may be helpful. But the calculation of the natural fre-
quencies of these elements is much more complicated than
anything we have thus far considered. Therefore, in this section
the results only will be given, while for the detailed derivations
the reader is referred to the literature, especially to the book of
Timoshenko, quoted on page 461.

Full Ring.—Of the many possible motions of a full ring, the
bending vibrations are the most important. If the ring has uni-
form mass and stiffness, it can be shown that the exact shape of
the mode of vibration consists of a curve which is a sinusoid on
the developed circumference of the ring. In Fig. 125 these shapes
are shown for the four, six, and eight noded modes or for two,
three, and four full waves along the circumference of the ring.

The exact formula for the natural frequencies is
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oy = M2 =D \/ EI (123)
vt 4+ 1 Nmk!

where n is the number of full waves, u; is the mass per unit length
of the ring, EI the bending stiffness, and R the radius.

One of the most important applications of this result is to the
frames of electric machines. As these machines often carry
salient poles, which act as concentrated masses (Iig. 193, page
325), the exact shapes of vibration are no longer developed
sinusoids, although in the spirit of Rayleigh’s procedure the
sinusoid may be considered as an approximate shape. The
potential energy of deformation is not altered by the addition
of the poles, but the kinetic cnergy changes from Kin, to
Kin, + Kin,, where the subseripts pertain to the ring and poles,
respecetively,  Therefore, the result (123) for the frequeney has
to be corrected by the factor

Kin,
G . 12
'\/I\m, + Kin, a2y
In case the number of poles is 2n, 7.c., equal to the number of
half waves along the ring, and in case these poles are located
in the antinodes so that they move parallel to themselves (Fig.
191b), the correction (121) becomes specifically

M T
- Dy = — - (124a)
M+, 2 2 M,

n* + 1

where M, is the mass of the complete ring and 3, is the mass of
all poles combined, so that A1,/, is the ratio of one pole mass
to the ring mass per pole.

Another important case occurs when the 2n poles are located
at the nodes of the radial vibration and there execute rocking
motions about the node axis. The correction factor for this
~ase (Fig. 194¢) is

1
one M,
n:+ 1 M,R?

(124D)
1+

in which I, is the moment of inertia of a single pole for the axis
about which it rotates during the vibration. The actual location
of that axis is somewhat doubtful (on account of the fact that the
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“node’’ of the ring is a node only in the radial motion but moves
back and forth tangentially), but no great error is made by taking
the axis on the center line of the ring at the node.

Partial Ring.—Quite often the stators of electric motors or
generators are bolted on a foundation in the manner shown in
Fig. 126a. If the foundation or bedplate is very stiff, the stator
may be regarded as a partial
ring of angle « built in
(clamped) at both ends. The
fundamental mode of vibra-
tion of such a ring in its own
plane will be approximately as U
sketched in Fig. 126b. Tts Fra. 126.—~The fundamental flexural
natural period, caleulated by  mode in its own plane of n partial
the procedure of Rayleigh, ™*
leads to a result which dimensionally is the same as (123), but
the numerical factor depends on the central angle & and has to be
written f(a):

El or
w = f(a)\/mm (125)

The values of the constant f(«) for the various angles between
a = 180 deg. (half circle) and @ = 360 deg. (full circle clamped
at one point) are shown in Iig. 127.

In casc the stator carries salient poles, the correction (121)
has to be applied. No greater error is committed by distributing
5 the pole masses uniformly

. N\ @ along the ring, since the vari-

ous pole-carrying points of

ts Irig. 1266 move through
32 roughly the same amplitudes
G

(which is totally different from

1 ~. some of the cases of IFig. 125)

some e cases ig. 125).

% The natural frequency caleu-

e 20__500 ¥ Jated from I5q. (125) and TFig.

F16. 127.—The coeflicient f(a) in Eq. 127 isusually somewhat (of the

(125) for the frequency of Fig. 126. order of 10 per cent) high on

account of the fact that the feet of the stator do not constitute a
complete ‘“clamping’”’ but admit some angular motion.

If the ring of Fig. 126 has a small dimension in the direction

perpendicular to the paper (i.e., in the direction of the axis of the
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cylinder), another motion has caused trouble in some cases.
It is a vibration perpendicular to the plane of the paper. If
Fig. 126 were viewed from the side, it would be seen as a canti-
lever beam of height h. The lateral vibration would then appear
in a form similar to that shown in Iig. 120a. In this case the

20 l
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Fra. 128.—Coeflicients f(a, KI2/C) of Eq. (126) for the frequency of a partial ring
vibrating perpendiculaily to its own plane.

elastie resistance of the ring consists of a combination of bending
and twist determined by the quantities

EI, = bending stiffness (now in a plane perpendicular to the
paper, 90 deg. from the EI in Eqs. (123) and (125),
and

torsional stiffness, which has the form GI, for a bar of
circular cross section.

C

The frequency can be written in the form
_ El, EI,
w = f(a, C ) R (126)

where the numerical constant is shown in Fig. 128. This figure
was found by a modified Rayleigh method and subsequently
verified by laboratory tests, showing the results to be substan-
tially correct.
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A membrane is a skin which is stretched with a great tension
and which has no bending stiffness whatever. It is therefore
to be considered as a two-dimensional generalization of a string.
A circular membrane or drumhead has an infinite number of
natural modes of motion whereby the nodes appear as diameters
and also as smaller concentric circles. However, we shall
discuss here the fundamental mode only, having no nodes except
the boundary. The shape of the vibration is practically that of
a hill formed by the revolution of a sine curve (Fig. 129). The
frequency of this motion is

T | T .

where T is the tension per running inch ueross any seetion of the
membrane, u; is the mass per unit area, and A is the total area
TR2.

The formula in its second form is useful also when the mem-
brane is no longer circular but has some other boundary which
roughly resembles the circle (square, triangle, half or quarter
circle, etc.). Kven then (127) is approximately correct if the area
A of the non-circular membrane is substituted. Insuch a case the

numerical factor is somewhat greater

than 4.26. An idea of the error in- ‘—— R—_'l
volved can be had from the fact that 4" |

for a square membrane the factor NS ¢

4.26 in Eq (127) becomes 4.44, for a I'1G. 129 —Fundamental mode
2 X 1 rectangular membrane 4.97, ©f & drumhead with the fre-
and for a 3 X 1 rectangle 5.74. quency @ = 2.40V/T/mRx

Just as a membrane is a two-dimensional string, so a plate
may be considered as a two-dimensional ‘“beam.” The theory
of the vibrations of plates even in the approximate form of
Rayleigh-Ritz is extremely complicated. The results are known
for circular and rectangular plates with either free, clamped, or
simply supported edges, and the reader who may have occasion
to use these formulas should refer to the more claborate books on
the subject by Rayleigh, Prescott, or Timoshenko.

Problems

81. Derive Eq. (84) by working out the determinant (78).

62. A simple massless beam of bending stiffness EI and length 4/, sup-
ported at its ends, carries a mass m at a distance [ from each of the supports.
Find:
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a. The three influence numbers.

b. The two natural frequencies.

¢. The two natural modes of motion.

63. A flexible weightless beam of section £ and length ! is simply sup-
ported at its two ends and carries two equal masses m, each at 140 and at 141

r-- Y o1 12 e >

I"ta. 129¢.  Problem 63.

from one of the ends (Fig. 129«). Caleulate the two frequencies by the
method of influence numbers (page 156).

64. In Tig. 68, let my =m, my,=5m, kv =k, ks =3k and k; = Tk.
Let a force I2g sin wt be acting on m;. Find:

a. The frequency w of Py at which m, does not move.

b. The amplitude of m, at this frequency.

Solve this problem without the use of large formulas by a physical consider-
tion, as suggested in Fig. 97,

66. Decrive Iq. (93b).

66. Check the various frequencies shown in Fig. 112.

67. By Rayleigh’s method find the natural frequeney of a string with
tention T and length 3/, earrying masses m at distances [ and 2/ from one
end.  'The mass of the string itself is 3m.

68. A beam EI on two supports, of length  and of mass u, per unit length
(total mass m = wl) carries o concentrated mass A in the middle. ¥ind
the natural frequency by Rayleigh’s method, and in particular find what
fraction of m should be added to M in order to make the simple formula (16)
applicable.

69. The same problem as 68, but for a heam of total mass m, clamped
solidly at both ends, and carrying a mass M at its center.

70. A ship’s propeller shaft has a length of 200 [t. hbetween the engine and
the propeller.  The shaft diameter is 12 in. The propeller has the same
moment of inertia as o solid steel disk of 4 ft. diameter and 6 in. thickness.
The modulus of shear of the shaft is @ = 12 X 10% Ib. per square inch. If
the shaft is supposed to be clamped at the engine, find the natural frequeney
of torsional vibration, taking account of the inertia of the shaft by means
of Rayvleigh’s method (steel weighs 0.28 1b. per cubie ineh).

71. The coil springs of automobile-engine valves often vibrate so that the
individual coils move up and down in the direction of the longitudinal axis ot
the spring. This is due to the fact that a coil spring considered as a “bar”
with distributed mass as well as flexibility can execute longitudinal vibra-
tions as determined by Eq. (93a¢). Find the equivalents for u; and AE in
(93a) in terms of the coil dinmeter D, wire diameter d, number of turns per
inch n,, modulus of shear G, mass per turn of spring m,.

Calculate the first natural period of such a spring of total length I(n = n,l)
clamped on both sides.

72. A cantilever beam of total length 21 has a stiffness EI and a mass per
unit length u, along a part [ adjacent to the clamped end, whereas the other
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half of it has a stiffness 5EI and a unit mass x;/2. Find the fundamental
frequency by Rayleigh’s method.

78. A small }¢-hp. motor frame has the following characteristics (Fig.
126): a = 220 deg., R = 2.75 in.; I = 0.0037 in.¢; E = 27.10¢ lb./in.3;
» = 0.00052 lb. sec.2/in.?

Find the fundamental frequency.

74. A mass hangs on a coil spring (Fig. 23 without damping or excitation).
If the mass of the spring itself is not negligible with respect to the end mass,
calculate what percentage of the spring mass has to be added to the end mass
if the natural frequency is to be found from w? = k/m

a. By Rayleigh’s method.

b. By the exact theory.

76. A uniform bar of length [, bending stiffness E7, and mass per unit
length u, is freely supported on two points at distance 1/6 from each end.
Find the first natural frequency by Rayleigh’s method.

76. A ship drive, such as that discussed with reference to Fig. 147, con-
sists of a propeller weighing 50,000 1b. and a line shaft of 19 in. diameter
and 188 ft. length, on the other end of which there is a large gear weighing
again 50,000 Ib. The gear is driven by pinions and steam turbines which
have no influence on the longitudinal vibrations of the system. On the
inboard side of the main gear the thrust is taken by a Kingsbury thrust bear-
ing, the supporting structure of which has a stiffness in the longitudinal
direction of the shaft of 2.5 X 10¢ Ib./in. The propeller has four blades
and consequently gives four longitudinal impulses to the shaft per revolution.

Calculate the two critical speeds of the installation, considering it as a
two-degree-of-freedom system, distributing the shaft mass equally to the
propeller and to the gear mass.

77. Solve Problem 76 by the exact method, assuming the shaft mass to be
uniformly distributed, and find the numerical answer for the lowest critical
speed.  The data of Problem 76 are taken from an actual ease.  The vibra-
tion was eliminated by stiffening the thrust bearing supports.

78. To ealculate by Rayleigh’s method the antisymmetrical, three-
noded frequency of a free-free bar of length 2/, assume for the curve a sine
wave cxtending from —180 deg. to 4180 deg., with a base line rotated
through a proper angle about the mid-point, so that it interscets the sin»
curve in two points besides the center point.

a. Determine the slope of the base line so as to satisfy the condition that
the angular momentum about the center remains zero during the vibration.

b. Caleculate the frequency with the curve so found.

79. The potential encergy of a membrane, such as is shown in Fig. 129,
is calculated by multiplying the tension T by the increment in area of each
clement caused by the elastic deformation.

a. If the deformation has rotational symmetry about the central axis
(as shown in Fig. 129), derive that this energy is

_ (T(@
Pot ‘fﬁ‘(dr) dA.

b. Assume for the deformation a sinusoid of revolution and calculate the
frequency by Rayleigh’s method.
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80. In connection with the numerical Stodola or “iteration” method,
discussed on page 203, carry out the following calculations:

a. Starting with the first assumption for the second mode, a, = 1.000;
a; = 0.500; a3 = —0.750; carry out the various steps without eliminating
the first mode, and observe that gradually the solution converges to the
first mode and not to the second.

b. In figuring the third mode start with an assumption such as a; = a3
= 1.000, a; = —1.000, and chminate from this solution the first and second
harmonic contents by means of Iig. 76b.  Note that the shape so obtained
is the cxact solution.



CHAPTER V

MULTICYLINDER ENGINES

37. Troubles Peculiar to Reciprocating Engines.—There are
two groups of vibration phenomena of practical importance in
reciprocating machines, namely:

1. Vibrations transmitted to the foundation by the engine
as a whole.

2. Torsional oscillations in the crauk shaft and in the shafting
of the driven machinery.

Jach one of these two effeets is caused by a combination of the
periodic accelerations of the moving parts (pistons, rods, and
cranks) and the periodic variations in cylinder steam or gas
pressure.

Consider a vertical single-cylinder engine. The piston exe-
cutes an alternating motion, <.c., it experiences alternating
vertical accelerations. While the piston is accelerated downward
there must be a downward force acting on it, and this force must
have a reaction pushing upward against the stationary parts of
the engine. Thus an alternating acceleration of the piston is
coupled with an alternating foree on the cylinder frame, which
makes itself felt as a vibration in the engine and in its supports.
In the lateral direction, 7.e., perpendicular to both the crank
shaft and the piston rod, moving parts are also being acceler-
ated, namely the crank pin and part of the connecting rod.
The forces that cause these aceelerations must have equal and
opposite reactions on the frame of the engine. This last effect
is known as ‘“‘horizontal unbalance.” In the longitudinal direc-
tion, 7.c., in the crank-shaft direction, no inertia forces appear,
since all moving parts remain in planes perpendicular to the
crank shaft.

The mathematical relation describing these effects is Newton’s
law, stating that in a mechanical system the rate of change of
momentum equals the resultant / of all external forces:

%(Emﬁ) - F (128)
213
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This is a vector equation and is equivalent to three ordinary
equations. Two of these equations are of importance, while
the third (in the longitudinal direction) is automatically satisfied
because 7 is always zero in that direction.

Equation (128) can be interpreted in a number of ways. First,
consider the ‘“mechanical system” as consisting of the whole
engine, and assume it is mounted on extremely flexible springs
so as to be floating freely in space. No external forces F are
acting, and Fq. (128) states that, while the piston is accelerated
downward (¢.e., acquires downward momentum), the cylinder
must be accelerated upward. If the cylinder mass is 50 times
the piston mass, the cylinder acceleration must be 50 times as
small as the piston acceleration.

Next, consider only the moving parts, 7.e., piston, rod, and
crank shaft, as the mechanical system. During rotation these

parts have a definite acceleration, or (—?t(mﬁ), in the vertical and

lateral directions. KEquation (128) determines the value of the

force /¥ acting on these parts, and consequently the value of the
reaction —F on the stationary parts.

Equation (128) is sometimes written with the differentiation
carried out:

z(m%';) - F (1284)

The expression m di/dt is called the ‘“‘inertia force,” and the
theorem states that the external force acting on the system equals
the sum of all the inertia forces of the moving parts.

These various inertia forces can form moments. Consider a
two-cylinder vertical engine with the two cranks set 180 deg.
apart. While one piston is accelerated downward the other one
is accelerated upward, and the two inertia forces form a couple
tending to rock the engine about a lateral axis. Similarly, the
horizontal or lateral inertia forces of the two cranks are equal
and opposite forming a couple tending to rock the engine about
a vertical axis.

A rocking about the crank-shaft axis can occur even in a
single-cylinder engine. If the piston be accelerated downward
by a pull in the connecting rod, it is clear that this pull exercises
a torque about the crank-shaft axis. Since the piston accelera-
tion is alternating, this inertia torque is also alternating.
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Newton’s law for moments states that in a mechanical system
on which an external torque or moment M is acting

Z_t(zm) -M (129)

where a is the moment arm of the momentum m#. In words: the
external torque equals the rate of change of moment of momen-
tum. With the differentiation performed the relation reads

Ea(miv) =M (129a)
dt

or the sum of the moments of the inertia forces of the various
moving parts equals the external moment.

As before, we can take for our mechanical system either the
whole engine mounted on very weak springs, or we can take
merely the moving parts. In the first case the external torque
is zero, and therefore any increase in the clockwise angular
momentum of the moving parts must be neutralized by an
increase in counterclockwise angular momentum of the stationary
parts of the engine. In the second case the increase in clockwise
angular momentum of the moving parts must be caused by a
clockwise torque or moment
on these parts, which has
a counterclockwise reaction
torque on the frame. If this
frame is mounted solidly on
its foundation, this counter-
torque is communicated to
the foundation and may cause
trouble. On the other hand,
if the engine is mounted on
soft springs, no reaction to
the foundation can penetrate
through these springs and :
the countertorque is absorbed @ ®)

. . Fra. 130.—Gas pressure forces on a single.
as an inertia torque of the cylinder engine.
frame and cylinder block.
Hence that block must vibrate, but no appreciable torque gets
into the foundation: we have ‘“floating power” (page 97).

The formulas (128) and (129) suffice for a derivation of the
inertia properties of the engine which will be carried out in the

P tan
2 b4
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next two sections. We shall turn our attention now to the effect
of alternating steam or gas pressure in the cylinders.

In Fig. 130, let any inertia effect be excluded by assuming either
that the moving parts have a negligible mass or that the engine
is turning over very slowly at a constant speed w. Let the
pressure force on the piston be P, which is variable with the time
(or with the crank angle wt). The gas pressure not only pushes
the piston downward, but it also presses upward against the cylin-
der head. The piston force P is transmitted through the piston
rod (force 1) to the crosshead. Neglecting friction, it is there
held in equilibrium by the forces 2 and 3. The forces 1, 2, and 3
of Fig. 130b are those acting on the crosshead; 3 is a compression
in the connecting rod and 2 has a reaction pressure on the guide or
frame to the right and of magnitude P tan ¢. The force 3 of
magnitude /’/cos ¢ is transmitted through the connecting rod to
the crank pin (force 4). By shifting this force parallel to itself to
O we add a torque yP/cos ¢, which is the driving torque of the
gas pressure. The force 5 is taken up by the main bearings at O
and can be resolved into a vertical component 6, and a horizontal
component 7. From the similarity of the triangles 1, 2, 3 and
5, 6, 7 it can be seen immediately that the magnitude of 6 is P
and that of 7 is P’ tan .

The forces transmitted to the stationary parts of the engine
are:

first, P upward on the cylinder head.

second, P tan ¢ to the right on the crosshead guide.
third, P downward on the main bearings at O.
fourth, P tan ¢ to the left on the main bearings at O.

The total resultant force on the frame is zero, but there is a
resultant torque Pz tan ¢. By Newton’s law of action and
reaction this torque must be equal and opposite to the driving
torque on the crank shaft, y’/cos ¢. The truth of this statement
can easily be verified because it can be seen in Fig. 130b that
y = z sin ¢. Thus the gas pressures in the eylinder do not cause
any resultant forces on the engine frame but produce only a
torque about the longitudinal axis.

Summarizing, we note that no forces occur along the longi-
tudinal axis of an engine, while in the lateral and vertical direc-
tions only inertia forces appear. About the vertical and lateral
axes oniy inertia torques are found, whereas about a longitudinal
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axis both an inertia torque and a cylinder-pressure torque
occur.

If we assume the engine to be built up of solid bodies, i.c.,
elastically non-deformable bodies, the problem is one of ‘“bal-
ance” only. The frame or stationary parts usually fulfill this
condition of rigidity, but as a rule the erank shaft can be twisted
comparatively easily, which makes torsional vibrations possible.
The subject is usually divided into three parts:

a. Inertia Balance: By this is meant the balance of the engine
against vertical and lateral forces and against moments about
vertical and lateral axes.

b. Torque Reaction: Under this heading we study the effect
of the torque (due to inertia and cylinder-pressure cffects) acting
on the stationary parts about the longitudinal axis (floating
power).

c. Torsional Vibrations of the Crank Shaft: Here we deal with
the consequences of this same longitudinal torque on the moving
parts of the engine.

The effect ¢ is of particular importance since many crank
shafts have been broken on account of it. Now that the theory
is understood such failures are unnecessary.

The first step in the discussion of the subject is the derivation
of the expressions for the vertical and lateral inertia forces of a
single-crank mechanism as well as a formula for its inertia
torque.

38. Dynamics of the Crank Mechanism.—Let I'ig. 131 repre-
sent a simple piston and crank, and let

z, = downward displacement of piston from top.

wt = crank angle from top dead center.

r = crank radius.
I = length of connecting rod.

Assume the crank shaft to be rotating at uniform speed, 7.c.,
w is constant. Our first object is the calculation of the position
of the piston in terms of the angle wt. The distance x, would be
equal to the length DB in the figure, were it not that the connect-
ing rod has assumed a slanting position in the meantime. The
distance DB, which is a first approximation of x, can be written

r(l1 — cos wt)

In order to calculate z, exactly, we must add to this as a cor-
rection term the difference between AC and BC or
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(1 — cos ¢)

The auxiliary angle ¢ can be expressed in terms of wf by noting
that

AB = [lsin ¢ = r sin wi
or

It

sin ¢ Tl sin wt (130)
and consequently

ot
cos ¢ = 41 —Tzsm2wt

Hence the exact expression for the piston displacement z, in
terms of the crank angle ot is

xp, = r(l — cos wt) +1 (1 — A )1 ll sm wt) (131)

On account of the square root this formula is not very convenient

for further calculation. It can be simplified by noting that the
second term under the square root is small in
comparison to unity In the usual engine, r/1

% differs little from ! 14, so that the second term
is less than '{¢. Therefore, the square root is
of the form /1 — 5, where § << 1. Expand-
ing this into a power series and retaining only
the first term gives the approximation

5 VIi-s=1- L
E 2
' ™y With § = 1{¢, the error made is less than one

/ part in 2,000. Fquation (131) becomes

x =~ r(l — cos wt) + — sm2 wt
Fia. 131.—Crank

mechanism. . . . . .
A further simplification is obtained by con-
verting the square of the sine into the cosine of the double angle
by means of

cos 2wt = 1 — 2 sin? wt
or
1 — cos 2wt
2

sin? wt
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Thus the piston displacement is
xp, = \1r+ ™) - t+ 7
» 4 r| cos wt + 4] o8 2wt (132a)

The velocity and acceleration follow from the displacement by
differentiation:

Iy = rw[sin wt + ;l sin 2wt] (132b)
i, = rw?[cos wt + ; cos le] (132¢)

After multiplication by the mass of the piston, these expres-
sions become the vertical momentum and the vertical inertia
force. They are seen to con-
sist of two terms, one varying
with the same frequency as the
rotation and known as the
“primary” term, and the other
varying at double frequency
and known as the ‘“secondary”
term. If the connecting rod is
infinitely long, the secondary
term disappears and the piston
executes a harmonic motion.
With a short connecting rod
the motion, and especially the
acceleration, deviates consider-
ably from a sinusoid. Asanex-

\ 7/

~—

ample, Fig. 132 gives the piStOIl Fig. 132.—The piston acceleration
acceleration (or inertia force) as a function of the crank angle for

of an engine in which I/r = 4. =%

Having found the dynamic properties of the piston, we proceed
to the rotating parts of the crank. The problem is first simplified
by concentrating the entire rotating crank mass in its center of
gravity. (The inertia force of this mass is the same as the
resultant of all the small inertia forces on the various small parts
of the crank.) Next the mass is shifted from the center of gravity
to the crank pin A4, but in this process it is diminished inversely
proportional to the distance from the center of the shaft, so that
the inertia force (which is here a centripetal force) remains
unchanged.



220 MULTICYLINDER ENGINES

In this manner the whole crank structure is replaced by a
single mass m. at the crank pin, and the vertical displacement
can be found immediately from Fig. 131:

z. = r(l — cos wt) (133)

so that the vertical components of velocity and acceleration
become

T. = rw Sin ot
e = rw? cos wl (134)
The horizontal components are
Yo = —7 sin wl
Yo = —7w COS wt (135)
Yo = 7Tw?sin ol

The momentum (or inertia force) is obtained from the velocity
(or acceleration) by multiplying by the rotating crank mass m..

Crank end Piston end

Q)¢

e

7
Fia. 133.—Division of the connccting rod weight into its reciprocating and
rotating parts.

Returning to Fig. 131 we note that the incrtia forces of the
piston and the crank have been successfully put into formulas
so that only the characteristics of the connecting rod remain to
be determined.  This seems to be the most difficult part of the
problem, since the motion of the rod is rather complicated. The
top point of the rod deseribes a straight line, while the bottom
point moves on a circle.  All other points deseribe ellipses, so
that the determination and subsequent integration of the inertia
forces of all these points require considerable algebra. Fortu-
nately, however, this is not necessary. If the connecting rod is
replaced by another structure, having the same mass and the
same center of gravity, so that the path of the center of gravity
is not changed, then the total inertia force of the rod is equal to
that of the new structure. This follows directly from Newton'’s
law which states that the component of the inertia force of a body
in a certain dircction cquals the product of its mass and the
acceleration of the center of gravity in that direction.
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With the aid of this relationship the problem can be easily
solved by replacing the rod by two conecentrated masses, onc at
cach end, so that the center of gravity stays where it is and so that
the sum of the two concentrated masses equals the total mass of
the original connecting rod. This division of mass is the same
as the division of the weight into two parts by placing the rod
horizontally on two scales as shown in Fig. 133.

Although the division of the connecting rod into two distinct masses
leaves the center of gravity in its place and also leaves the total mass con-
stant, the moment of inertia of the two distinct masses is different from the
moment of inertia of the original connecting rod. Therefore the division
of Fig. 133 is correct procedure for finding the inertia forces, but it is not
exact for determining the moments of these forces, 7.e., the inertia couple.

Having thus divided the connecting-rod mass into a part
moving with the piston (reciprocating) and another part moving
with the crank pin (rotating), we can denote the total recipro-
cating and rotating masses by M. and m... In other words,
Mree 18 the sum of the mass of the piston and of a part of the con-
necting rod and m.. is the sum of the equivalent mass of the
crank and the other part of the connecting rod.

With this notation the total vertical inertia force X (for all
moving parts) of one cylinder is

X = mmcjp + MrorL'e

2
(Mree + Mrot)7w? COS b + m,e%w2 cos 2wt (136)

and the horizontal inertia force Y is
Y = M/rotyc = mmtrwz Sin O)t (137)

In words: the vertical component of the inertia force consists
of two parts, a ‘“‘primary part” equal to the inertia action of the
combined reciprocating and rotating masses as if they were
moving up and down harmonically with crank-shaft frequency
and amplitude r, and a ‘“‘secondary part’ equal to the inertia
action of a mass ﬁm,cc moving up and down with twice the
crank-shaft frequency and with the same amplitude r.

The horizontal or lateral component has a primary part only,
viz., that due to the rotating mass.

Finally we have to determine the torque of the inertia forces
about the longitudinal axis O. For the purpose of finding the



222 MULTICYLINDER ENGINES

vertical and horizontal inertia forces, the connecting rod was
replaced by two masses at the piston and crank pin in the manner
of Fig. 133, and this procedure was shown to give exact results.
For the inertia torque the result so obtained is no longer exact,
but it will be correct to an acceptable degree of approximation.
Thus again the complicated piston-rod-crank system is replaced
by a mass m.., reciprocating according to (132), and a mass
M., rotating uniformly round O so that it has no torque about O.
The inertia torque is caused wholly by the reciprocating mass
My, and its magnitude can be deduced from Fig. 130b, where it
was seen that the torque equals the downward piston force
multiplied by z tan ¢. That the downward force in the present
argument is an inertia force expressed by —m,, &, instead of
being a gas-pressure force as assumed in Fig. 130 does not make
any difference. The distance z is

x=lcos‘p+rc05wtz< )+r003wt+ cos 2wt

. = — ¥ g _' 2
Further, tan ¢ o sin ¢ (1 + 5 sin <p)

o
l sin wt(l + QTZ sin? wt)

so that the torque becomes
M= —m, &, T tan ¢

= —-mmrw2<cos wt + Il cos 2wt> X i sin wt(l -+ IE sin? wt)

X {(l ) + 7 cos wt + cos 2wt}

Upon multiplying this out we disregard all terms proportional
to the second or higher powers of 7/I. This involves an error of
the same order as that committed in passing from (131) to (132).
Thus

M= —m_ wi?sin wt{ + cos wt + coa 2wt}

With the trigonometric relation
sin wt cos 2wt = 14 sin 3wt — 14 sin wf
the torque becomes finally

M = %m,ww‘-’r (2l sin wf — sin 2wt — % sin 3wt) (138)
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This important formula for the inertia torque (acting on the
shaft in the direction of its rotation, or also on the frame about O
in the opposite direction) is quite accurate for the usual type of
engine where the connecting rod consists of two substantial
bearings at the ends, joined by a relatively light stem. On the
other hand, in a radial aircraft engine, the ‘“master connecting
rod” has a crank end carrying not only the crank-pin bearing,
but n — 1 other bearings to which the

other n — 1 connecting rods are attached. g i 1
It does not seem reasonable to replace this i
structure by two concentrated masses at /‘f’
the ends, and for this case the exact con- /\I/ ¢
necting rod analysis, given below, is of ,’/ A6
interest. / /c'

In F_i;.r,. 1_34 l(.*t the cmnk.mtate in a counter- £ -—é r'w/f‘
clockwise direction at the ulnlform speed w, .and l(_‘.t P
it drag with it the connecting rod. The piston is !
supposed to be massless, since its inertia force is 0 Y
given by Eq. (132¢). The piston moreover is sup- X

posed to have no friction, so that the reaction force Fra. 134
of the cylinder wall on the rod must be Fi. Let )
further F, and F: be the forces exerted by the crank pin on the rod, which
moves in its prescribed manner under the influence of the three forces F.
This is a case of plane motion, governed by the three equations of Newton:

In the z-direction, F, = miq
In the y-direction Fy, + F3 = mjg
Moments about c.g., —Fiasin ¢ + Fia cos ¢ — Fzb cos ¢ = Ig¢

The geometry of the motion is prescribed; in particular the center of gravity
moves thus:

26 = Zp + (@ — 2p)(b/1) = (zpa/l) + (xzb/1) and ye = ycb/l

where the subseripts ¢ and p denote crank pin and piston, while a and b
are the distances to the center of gravity G as shown in Fig. 134. The
accelerations r,, x., and j. are given by Iqs. (132), (134), and (135). The
angle ¢ and its functions, including &, are determined by Eq. (130). Thus
the Newton equations can be solved for their three unknowns Fy, Fy, and F5.
Tt s noted that the first Newton equation becomes
Fi= (mea/l) + (mich/l) = Meeeitp + Meorie

which leads to the result Eq. (136), known before. Similarly the combina-
tion F; 4+ F; was designated before as Y in Eq. (137). Thus, for the inertia
forces it is seen once more that the statement at the bottom of page 220 is
correct. Now we wish to calculate the torque in the clockwise direction
exerted on the shaft by the inertia of the rod. It is

M = —Firsin ot — Fyr cos wt
so that it is neoessary to find F, separately by eliminating F; from between
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the last two Newton equations. This gives
Fao = —mulre? sin f — 168 4 Frasin g
) cos ¢ L cos ¢
In working this out by means of Iiq. (130) we neglect all terms containing
powers of r/l higher than 2. This leads to
12

b . ,(,' . 1 r .
Fy = -—mm.lraﬂ sin wf — - rw? sin wf + Qm‘°"1rw2 sin 2wt
With this expression the inertia torque, after some trigonometry becomes

Mbate = ;mm(,w?ﬁ[% sin wl — (l + g—b (; k) sin 2wt — %; sin 3wt] (139a)
in which k is the radius of gyration of the rod, defined by mk? = Iy. This
result is approximate only in the sense that higher powers of 7/l have been
neglected; otherwise, it is exact. It differs from (138) only in the double-
frequeney terim, which now depends on the moment of inertia mk2.

Tquation (138) is the expression for the inertia torque on the shaft of a
connecting rod consisting of two concentrated masses ma/l and mb/l at
distances b and a from the center of gravity. Such a rod has a radius of
gyration k* = ab, and it is seen that Iq. (139a) reduces to Kq. (138) if this
substitution is made.

[t is interesting to consider two cases of rods that have no end concentra-
tions in order to see how (139a) differs numerically from (138). First take
the uniform rod, @ = b =1/2 and k2 = [2/12. In this case the double-
frequency term of (139a) is 33 per cent greater than the term in the approxi-
mate formula (138).  Next consider a rod with mee = 0, (b = 1), having its
center of gravity at the erank pin and a certain dimension around it, whieh
is a rough picture of the master rod of a radial aireraft engine.  Assuming
k% = 12/10, we find a middle term in (139a) which is the same as that in
(138) if ouly mec is replaced by m/10.  But, morcover, the sign is reversed.

The aireraft master rod of actual practice is a combination of the two
cases just diseussed, and the inerease in moment due to the ““uniform rod
effeet” more or less balances the deerease in moment due to the large moment
of inertin of the erank end.  Thus, even for so unusual a rod as that of a
radial aireraft engine, the approximate result (138) is fairly accurate.

The torque acting on the frame of the engine about the shaft center O
(Fig. 134) is found by multiplying the force F3 by its moment arm.

Miame = F'5(l cos ¢ + 7 cos wt)

Solving for /4 from the Newton equation, substituting it into the above
expression, and working it out, neglecting higher powers of r/l, involves
more aigebra than it is expedient to reproduce here. The answer becomes

= 1 2.2 (7_‘2_:!:>8l‘2>( o2 — (Ib) L o _
Mirame = ;znlro(-w ’ 3[ dralr + Zl] sin wt
ab — k? r 3r(k* —ab) | 3r7] ..
[*blﬂh + 1] sin 2wt — [w'“‘lal*’ = Qf] sin 3wt§ (139b)

Again, for the connccting rod with two concentrated ends (k? = ab) this
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result reduces to Iiq. (138). Thus for the general connecting rod the
inertia torques on the shaft and the frame are not equal but differ by the
moment of the inertia forces of the various rod points about O.  Only when
the rod degenerates into two concentrated masses is this moment zero, since
the two inertia forces arc along the center line and along a radius, both
passing through O.

39. Inertia Balance of Multicylinder Engines.-——The unbalance
or inertia forees on a single-cylinder engine are given by Egs.
(136) and (137). In these
formulas the reciprocating mass O [ [
Mreo 18 always positive, but the

rotating mass m... can be made @ 8 A |
zero or even negative by “coun- - [

terbalancing” the crank (I'ig.
135). It is therefore possible
to reduce the horizontal inertia force Y to zero, but the vertical
unbalance force X always exists.®  Thus a single-cylinder engine
is inherently unbalanced.

Consider a two-cylinder engine with 180-deg. crank angle.
Since the two cranks are opposed to cach other, the two hori-
zontal inertia forces are also in opposition and cancel each other
(except for a moment about the vertical axis).  Since the two
pistons move against cach other, the same is true for the primary
vertical forces. However, the sccondary vertical forees are in
the same direction and add.  To understand this, it is convenient
to visualize the various forces as (the horizontal projections of)
rotating vectors (page 3). We shall now explain this veetor
method for the general case of a multicylinder engine.

In such an engine let the distance between the nth erank and
the first crank be I, and the angle between the nth erank and the
first crank be a, (the nth crank angle). In Fig. 136 the first
crank is shown in a vertical position, corresponding to a maximum
value of the primary vertical inertia force.  The second erank
is a, radians ahead of the first one, and consequently its vertical
primary inertia force has passed through its maximum value
as/w sec. earlier. If the rotating veetor representing the primary
vertical force of the first cylinder is in its vertical position, the
vector representing the sccond cylinder is in the position o,

Fra. 135.—Counterbalanced crank.

* A patent has been issued on a scheme whereby the connecting rod is
extended beyond the crank pin so as to make W, in Fig. 133 ncgative.
In this manner M., may be made zero also. No such engine has ever
been constructed on account of the large crank case required.
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and generally the vector representing the nth cylinder is in the
position a,. The same statement is true for the primary hori-
zontal inertia force.

Therefore, the crank diagram of Fig. 136b, regarded as a vector
diagram (Fig. 136¢), represents the primary force conditions ir

1
I & ’l
d-n
2 3
3

4
(b) )

Fra. 1 36.—annry inertia forces on a four-cylinder engine.

the engine.  For example a four-cylinder engine of this type has
balanced primary forces.

The secondary force vectors, however, rotate twice as fast as
the crank shaft. Referring
again to Fig. 136q, if the second-
ary force of crank 1 be a vertical
vector, the vector of crank 2
2 3 was vertical at the time that

2 crank 2 was vertical. Crank

s 2 has traveled o, radians from

(@) (b) ) the vertical, and the vegtor of
crank 2 consequently is 2a;

radians from the vertical. The

Fm. 137.—8eccondary forces (a), secondary-force diagram there-
primary moments (h) and secondary . A
moments (c) for the four-cylinder engine fore is a star with the angles
of Fig. 136. 2a3, 2as, ...,2a, between
the various vectors. Figure 137a shows this diagram for the
engine of Fig. 136.

A similar reasoning holds for the moments of these forces about
a lateral axis. The moment of the nth inertia force about the
center of the first crank shaft is that force multiplied by the
moment arm [, (Fig. 136a). The plane in which such a moment
operates is defined by the direction of the force and the longi-
tudinal center line of the crank shaft. Therefore, the moment
can be represented also by a vector in the same direction as the
inertia force, its length being multiplied by the proper moment
arm [,

4

'3
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The primary-moment diagram of the engine of Fig. 136a is
given in Fig. 137b, where [, =0, I =1, I3 = 2] and I, = 3L.
The secondary-moment diagram (Fig. 137¢) follows in a similar
manner.

With the aid of such vector diagrams the reader should prove
the following propositions:

1. A four-cylinder engine of 0, 90, 270, 180 deg. crank shaft has
balanced primary and secondary forces and also has balanced
secondary moments, but the primary moments are unbalanced.

2. A four-cylinder engine of 0, 180, 180, 0 deg. crank shaft has
balanced primary forces and moments, while the secondary forces
and moments are unbalanced.

3. A six-cylinder engine (0. 120, 240, 240, 120, 0 deg.) has all
forces balanced and all moments balanced

4. An eight-cylinder in-line engine (0, 180, 90, 270, 270, 90,
180, 0 deg.) is completely balanced.

In these examples it has been tacitly assumed that all pistons
are alike and are spaced at equal distances, which is the case in
modern internal-combustion engines. However, the method will
work just as well for unequal piston masses and unequal spacings.
In fact it was for the application to large triple and quadruple
expansion steam engines for ship propulsion that the theory was
originally developed (Schlick’s theory of balancing, about 1900).

A particularly interesting case of balance occurs in the so-called
V-8 cngine, consisting of two ordinary four-cylinder blocks
operating on a single common crank
shaft. The crank shaft is of the , ‘

0, 90, 270, 180 deg. type, and on '

each throw two pistons act, one .

from cach bank. It was seen
above that each four-cylinder bank A
by itself is unbalanced only in terms

of primary moments, the secondary

forces and moments being com- ¢
letely balanced already in each Fro. 138.
bank. If the V-angle is made 90

deg., as usual, the vertical, or X-, force of a piston in one bank has
the same space dircction as the horizontal, or Y-, force of the other
bank, and it is possible to make the primary components of these
two forces annihilate cach other. Thus the total primary force of
each crank becomes zero and no primary moments can exist.

>
3N
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The manner in which this is done is illustrated in Fig. 138, in
which the z- and y-axes are in the same direction as in Fig. 131,
the subscripts L and R designating the left- and right-bank
cylinders. Let further m.. be the reciprocating mass of one
piston and the corresponding part of one connceting rod, and
let m. be the rotating mass of half of one crank and throw with
the corresponding part of one single conneeting rod. Then the
primary force in the L-direction caused by the longitudinal
component of the left eylinder, by Iiq. (136), is

In L-dircction: (Mo + Muo)70? cos wt due to L
Similarly by lq. (137)
In R-direction: —murw? sin wt due to L

In computing the forces caused by the R-cylinder it is noted
that the angle between its center line and the erank is ot + 7/2,
so that

In L-dircetion: 4mare? sin [wf + (7/2)]

= 4 mMrw? cos wl due to R
In R-direction: (Mo + miw)rw? cos [wf + (7/2)]
= — (Mues + Muot)Tw? SIN i due to R

Summing these contributions we have

In L-direction: (Mree 4 200)rw? cOS wl
In R-dircction: — (Mo + 2Myor)7w? sin i

= + (Moo + 2Miet)Tw? cOs [0t + (7/2)]

It is scen therefore that the unbalanced forees in the R- and
L-directions are alike, a